Spaces:
Running
Running
| static inline int nearest_int(float fval) { | |
| assert(fabsf(fval) <= 4194303.f); | |
| float val = fval + 12582912.f; | |
| int i; memcpy(&i, &val, sizeof(int)); | |
| return (i & 0x007fffff) - 0x00400000; | |
| } | |
| // Functions to create the interleaved data layout formats | |
| // interleave 4 block_q4_0s in blocks of blck_size_interleave | |
| // returns an interleaved block_q4_0x4 | |
| // in the interleaved block_q4_0x4, place deltas for 4 block_q4_0 blocks | |
| // first, then interleave quants from 4 block_q4_0s in blocks of blck_size_interleave | |
| // | |
| // - in : an array of block_q4_0 pointers | |
| // - blck_size_interleave : the block_q4_0 quants bytes are interleaved in blocks of | |
| // blck_size_interleave bytes | |
| // - xor_mask : the mask to convert the nibbles in block_q4_0 quants bytes | |
| // from bias offset form to pure sign form (this saves subtract | |
| // operations durin unpacking) | |
| // | |
| extern "C" { | |
| void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { | |
| assert(QK8_0 == 32); | |
| assert(k % QK8_0 == 0); | |
| const int nb = k / QK8_0; | |
| block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy; | |
| // scalar | |
| const int blck_size_interleave = 4; | |
| float srcv[4][QK8_0]; | |
| float id[4]; | |
| for (int i = 0; i < nb; i++) { | |
| for (int row_iter = 0; row_iter < 4; row_iter++) { | |
| float amax = 0.0f; // absolute max | |
| for (int j = 0; j < QK8_0; j++) { | |
| srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j]; | |
| amax = MAX(amax, fabsf(srcv[row_iter][j])); | |
| } | |
| const float d = amax / ((1 << 7) - 1); | |
| id[row_iter] = d ? 1.0f / d : 0.0f; | |
| y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d); | |
| } | |
| for (int j = 0; j < QK8_0 * 4; j++) { | |
| int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave; | |
| int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave; | |
| src_offset += (j % blck_size_interleave); | |
| float x0 = srcv[src_id][src_offset] * id[src_id]; | |
| y[i].qs[j] = roundf(x0); | |
| } | |
| } | |
| } | |
| void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { | |
| assert(QK8_0 == 32); | |
| assert(k % QK8_0 == 0); | |
| const int nb = k / QK8_0; | |
| block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy; | |
| // scalar | |
| const int blck_size_interleave = 8; | |
| float srcv[4][QK8_0]; | |
| float id[4]; | |
| for (int i = 0; i < nb; i++) { | |
| for (int row_iter = 0; row_iter < 4; row_iter++) { | |
| float amax = 0.0f; // absolute max | |
| for (int j = 0; j < QK8_0; j++) { | |
| srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j]; | |
| amax = MAX(amax, fabsf(srcv[row_iter][j])); | |
| } | |
| const float d = amax / ((1 << 7) - 1); | |
| id[row_iter] = d ? 1.0f / d : 0.0f; | |
| y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d); | |
| } | |
| for (int j = 0; j < QK8_0 * 4; j++) { | |
| int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave; | |
| int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave; | |
| src_offset += (j % blck_size_interleave); | |
| float x0 = srcv[src_id][src_offset] * id[src_id]; | |
| y[i].qs[j] = roundf(x0); | |
| } | |
| } | |
| } | |
| void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { | |
| assert(QK_K == 256); | |
| assert(k % QK_K == 0); | |
| const int nb = k / QK_K; | |
| block_q8_Kx4 * GGML_RESTRICT y = (block_q8_Kx4 *) vy; | |
| // scalar | |
| const int blck_size_interleave = 8; | |
| float srcv[4][QK_K]; | |
| float iscale[4]; | |
| for (int i = 0; i < nb; i++) { | |
| for (int row_iter = 0; row_iter < 4; row_iter++) { | |
| float amax = 0.0f; // absolute max | |
| float max = 0; | |
| for (int j = 0; j < QK_K; j++) { | |
| srcv[row_iter][j] = x[row_iter * k + i * QK_K + j]; | |
| // Update the maximum value of the corresponding super block | |
| if(amax < fabsf(srcv[row_iter][j])) { | |
| amax = fabsf(srcv[row_iter][j]); | |
| max = srcv[row_iter][j]; | |
| } | |
| } | |
| iscale[row_iter] = amax ? -127.f/max : 0; | |
| y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0; | |
| } | |
| for (int j = 0; j < QK_K / 4; j++) { | |
| y[i].bsums[j] = 0; | |
| } | |
| // Quants values are interleaved in sequence of eight bytes from corresponding super blocks | |
| // Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving | |
| // i.e first four bsums from the first super block, followed by first four bsums from second super block and so on | |
| for (int j = 0; j < QK_K * 4; j++) { | |
| int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave; | |
| int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave; | |
| src_offset += (j % blck_size_interleave); | |
| int index = (((j & 31) >> 3) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3); | |
| float x0 = srcv[src_id][src_offset] * iscale[src_id]; | |
| y[i].qs[j] = nearest_int(x0); | |
| y[i].bsums[index] += y[i].qs[j]; | |
| } | |
| } | |
| } | |
| } // extern "C" | |
| template <int64_t INTER_SIZE, ggml_type PARAM_TYPE> | |
| void ggml_quantize_mat_t(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row); | |
| template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) { | |
| assert(nrow == 4); | |
| UNUSED(nrow); | |
| ggml_quantize_mat_q8_0_4x4(x, vy, n_per_row); | |
| } | |
| template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) { | |
| assert(nrow == 4); | |
| UNUSED(nrow); | |
| ggml_quantize_mat_q8_0_4x8(x, vy, n_per_row); | |
| } | |
| template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) { | |
| assert(nrow == 4); | |
| UNUSED(nrow); | |
| ggml_quantize_mat_q8_K_4x8(x, vy, n_per_row); | |
| } | |
| extern "C" { | |
| void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 4; | |
| const int blocklen = 4; | |
| assert(nr == 1); | |
| assert(n % qk == 0); | |
| assert(nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| float sumf[4]; | |
| int sumi; | |
| const block_q8_0 * a_ptr = (const block_q8_0 *) vy; | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); | |
| const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); | |
| sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; | |
| } | |
| sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); | |
| } | |
| } | |
| } | |
| for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; | |
| } | |
| } | |
| void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 4; | |
| const int blocklen = 8; | |
| assert (n % qk == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| float sumf[4]; | |
| int sumi; | |
| const block_q8_0 * a_ptr = (const block_q8_0 *) vy; | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); | |
| const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); | |
| sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; | |
| } | |
| sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); | |
| } | |
| } | |
| } | |
| for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; | |
| } | |
| } | |
| void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 8; | |
| const int blocklen = 8; | |
| assert (n % qk == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| float sumf[8]; | |
| int sumi; | |
| const block_q8_0 * a_ptr = (const block_q8_0 *) vy; | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb); | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); | |
| const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); | |
| sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4; | |
| } | |
| sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); | |
| } | |
| } | |
| } | |
| for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; | |
| } | |
| } | |
| void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK_K; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 8; | |
| const int blocklen = 8; | |
| static const uint32_t kmask1 = 0x3f3f3f3f; | |
| static const uint32_t kmask2 = 0x0f0f0f0f; | |
| static const uint32_t kmask3 = 0x03030303; | |
| assert (n % qk == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| float sumf[8]; | |
| float sum_minf[8]; | |
| uint32_t utmp[32]; | |
| int sumi1; | |
| int sumi2; | |
| int sumi; | |
| const block_q8_K * a_ptr = (const block_q8_K *) vy; | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb); | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumf[j] = 0.0; | |
| sum_minf[j] = 0.0; | |
| } | |
| for (int l = 0; l < nb; l++) { | |
| for (int sb = 0; sb < 8; sb++) { | |
| memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12); | |
| utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4); | |
| const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1; | |
| utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4); | |
| utmp[sb * 4 + 2] = uaux_0; | |
| utmp[sb * 4 + 0] &= kmask1; | |
| } | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32; | |
| uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16; | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi1 = 0; | |
| sumi2 = 0; | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF); | |
| const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4); | |
| sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i]); | |
| sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i + 32]); | |
| sumi1 = sumi1 * scales_0[j]; | |
| sumi2 = sumi2 * scales_1[j]; | |
| sumi += sumi1 + sumi2; | |
| } | |
| sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d; | |
| } | |
| } | |
| for (int sb = 0; sb < 8; sb++) { | |
| uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16; | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d; | |
| } | |
| } | |
| } | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j]; | |
| } | |
| } | |
| } | |
| void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK_K; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 8; | |
| const int blocklen = 8; | |
| assert (n % qk == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| float sumf[8]; | |
| float sum_minf[8]; | |
| int sumi1,sumi2,sumi3,sumi4; | |
| int sumi; | |
| const block_q8_K * a_ptr = (const block_q8_K *)vy; | |
| for(int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb); | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumf[j] = 0.0; | |
| sum_minf[j] = 0.0; | |
| } | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (4 * blocklen)); k++) { | |
| const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ; | |
| const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16; | |
| const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32; | |
| const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48; | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi1 = 0; | |
| sumi2 = 0; | |
| sumi3 = 0; | |
| sumi4 = 0; | |
| sumi = 0; | |
| int offset = ((k / 2) % 2) + j * 2; | |
| for (int i = 0; i < blocklen; ++i){ | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3); | |
| const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3); | |
| const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3); | |
| const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3); | |
| sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i]); | |
| sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 32]); | |
| sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 64]); | |
| sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 96]); | |
| sumi1 = sumi1 * (scales_0[offset] & 0xF); | |
| sumi2 = sumi2 * (scales_1[offset] & 0xF); | |
| sumi3 = sumi3 * (scales_2[offset] & 0xF); | |
| sumi4 = sumi4 * (scales_3[offset] & 0xF); | |
| sumi += sumi1 + sumi2 + sumi3 + sumi4; | |
| } | |
| sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d; | |
| } | |
| } | |
| for(int sb = 0; sb < 8; sb++) { | |
| const uint8_t *mins = b_ptr[l].scales + sb * 16; | |
| for(int j = 0; j < ncols_interleaved; j++){ | |
| sum_minf[j] += ((mins[j * 2] >> 4) * a_ptr[l].bsums[sb * 2] + (mins[(j * 2)+ 1] >> 4) * a_ptr[l].bsums[sb * 2 + 1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d; | |
| } | |
| } | |
| } | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j]; | |
| } | |
| } | |
| } | |
| void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 4; | |
| const int blocklen = 4; | |
| assert(nr == 1); | |
| assert(n % qk == 0); | |
| assert(nc % ncols_interleaved == 0); | |
| UNUSED(bs); | |
| UNUSED(nr); | |
| float sumf[4]; | |
| int sumi; | |
| const block_q8_0 * a_ptr = (const block_q8_0 *) vy; | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb); | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; | |
| const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; | |
| sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])); | |
| } | |
| sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); | |
| } | |
| } | |
| } | |
| for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; | |
| } | |
| } | |
| void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 8; | |
| const int blocklen = 8; | |
| assert(nr == 1); | |
| assert(n % qk == 0); | |
| assert(nc % ncols_interleaved == 0); | |
| UNUSED(bs); | |
| UNUSED(nr); | |
| float sumf[8]; | |
| int sumi; | |
| const block_q8_0 * a_ptr = (const block_q8_0 *) vy; | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb); | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0; | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; | |
| const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; | |
| sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])); | |
| } | |
| sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d); | |
| } | |
| } | |
| } | |
| for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j]; | |
| } | |
| } | |
| void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 4; | |
| const int blocklen = 4; | |
| assert (n % qk == 0); | |
| assert (nr % 4 == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| { | |
| float sumf[4][4]; | |
| int sumi; | |
| for (int y = 0; y < nr / 4; y++) { | |
| const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; | |
| } | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); | |
| const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); | |
| sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + | |
| (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; | |
| } | |
| sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); | |
| } | |
| } | |
| } | |
| } | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) | |
| s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 4; | |
| const int blocklen = 8; | |
| assert (n % qk == 0); | |
| assert (nr % 4 == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| float sumf[4][4]; | |
| int sumi; | |
| for (int y = 0; y < nr / 4; y++) { | |
| const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb); | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; | |
| } | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); | |
| const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); | |
| sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + | |
| (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; | |
| } | |
| sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); | |
| } | |
| } | |
| } | |
| } | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) | |
| s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; | |
| } | |
| } | |
| } | |
| } | |
| void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 8; | |
| const int blocklen = 8; | |
| assert (n % qk == 0); | |
| assert (nr % 4 == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| float sumf[4][8]; | |
| int sumi; | |
| for (int y = 0; y < nr / 4; y++) { | |
| const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb); | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; | |
| } | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4); | |
| const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0); | |
| sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + | |
| (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4; | |
| } | |
| sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); | |
| } | |
| } | |
| } | |
| } | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) | |
| s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; | |
| } | |
| } | |
| } | |
| } | |
| void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK_K; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 8; | |
| const int blocklen = 8; | |
| static const uint32_t kmask1 = 0x3f3f3f3f; | |
| static const uint32_t kmask2 = 0x0f0f0f0f; | |
| static const uint32_t kmask3 = 0x03030303; | |
| assert (n % qk == 0); | |
| assert (nr % 4 == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| float sumf[4][8]; | |
| float sum_minf[4][8]; | |
| uint32_t utmp[32]; | |
| int sumi1; | |
| int sumi2; | |
| int sumi; | |
| for (int y = 0; y < nr / 4; y++) { | |
| const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb); | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb); | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumf[m][j] = 0.0; | |
| sum_minf[m][j] = 0.0; | |
| } | |
| } | |
| for (int l = 0; l < nb; l++) { | |
| for (int sb = 0; sb < 8; sb++) { | |
| memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12); | |
| utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4); | |
| const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1; | |
| utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4); | |
| utmp[sb * 4 + 2] = uaux_0; | |
| utmp[sb * 4 + 0] &= kmask1; | |
| } | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32; | |
| uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16; | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi1 = 0; | |
| sumi2 = 0; | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF); | |
| const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4); | |
| sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i]); | |
| sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]); | |
| sumi1 = sumi1 * scales_0[j]; | |
| sumi2 = sumi2 * scales_1[j]; | |
| sumi += sumi1 + sumi2; | |
| } | |
| sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m]; | |
| } | |
| } | |
| } | |
| for (int sb = 0; sb < 8; sb++) { | |
| uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16; | |
| for(int m = 0; m < 4; m++) { | |
| const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6); | |
| for(int j = 0; j < ncols_interleaved; j++) { | |
| sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m]; | |
| } | |
| } | |
| } | |
| } | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j]; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK_K; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 8; | |
| const int blocklen = 8; | |
| assert (n % qk == 0); | |
| assert (nr % 4 == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| float sumf[4][8]; | |
| float sum_minf[4][8]; | |
| int sumi1, sumi2, sumi3, sumi4; | |
| int sumi; | |
| for (int y = 0; y < nr / 4; y++) { | |
| const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb); | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb); | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumf[m][j] = 0.0; | |
| sum_minf[m][j] = 0.0; | |
| } | |
| } | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (4 * blocklen)); k++) { | |
| const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ; | |
| const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16; | |
| const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32; | |
| const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48; | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi1 = 0; | |
| sumi2 = 0; | |
| sumi3 = 0; | |
| sumi4 = 0; | |
| sumi = 0; | |
| int offset = ((k / 2) % 2) + j * 2; | |
| for (int i = 0; i < blocklen; ++i){ | |
| const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3); | |
| const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3); | |
| const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3); | |
| const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3); | |
| sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i]); | |
| sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]); | |
| sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 256]); | |
| sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 384]); | |
| sumi1 = sumi1 * (scales_0[offset] & 0xF); | |
| sumi2 = sumi2 * (scales_1[offset] & 0xF); | |
| sumi3 = sumi3 * (scales_2[offset] & 0xF); | |
| sumi4 = sumi4 * (scales_3[offset] & 0xF); | |
| sumi += sumi1 + sumi2 + sumi3 + sumi4; | |
| } | |
| sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m]; | |
| } | |
| } | |
| } | |
| for(int sb = 0; sb < 8; sb++) { | |
| const uint8_t *mins = b_ptr[l].scales + sb * 16; | |
| for(int m = 0; m < 4; m++) { | |
| const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6); | |
| for(int j = 0; j < ncols_interleaved; j++) { | |
| int mins_prod = ((mins[j * 2] >> 4) * bsums[0] + (mins[(j * 2)+ 1] >> 4) * bsums[1]); | |
| sum_minf[m][j] += (mins_prod) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m]; | |
| } | |
| } | |
| } | |
| } | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j]; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 4; | |
| const int blocklen = 4; | |
| assert (n % qk == 0); | |
| assert (nr % 4 == 0); | |
| assert (nc % ncols_interleaved == 0); | |
| UNUSED(s); | |
| UNUSED(bs); | |
| UNUSED(vx); | |
| UNUSED(vy); | |
| UNUSED(nr); | |
| UNUSED(nc); | |
| UNUSED(nb); | |
| UNUSED(ncols_interleaved); | |
| UNUSED(blocklen); | |
| { | |
| float sumf[4][4]; | |
| int sumi; | |
| for (int y = 0; y < nr / 4; y++) { | |
| const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb); | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; | |
| } | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; | |
| const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; | |
| sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + | |
| (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])); | |
| } | |
| sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); | |
| } | |
| } | |
| } | |
| } | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) | |
| s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void ggml_gemm_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { | |
| const int qk = QK8_0; | |
| const int nb = n / qk; | |
| const int ncols_interleaved = 8; | |
| const int blocklen = 8; | |
| assert(n % qk == 0); | |
| assert(nr % 4 == 0); | |
| assert(nc % ncols_interleaved == 0); | |
| float sumf[4][8]; | |
| int sumi; | |
| for (int y = 0; y < nr / 4; y++) { | |
| const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb); | |
| for (int x = 0; x < nc / ncols_interleaved; x++) { | |
| const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb); | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0; | |
| } | |
| for (int l = 0; l < nb; l++) { | |
| for (int k = 0; k < (qk / (2 * blocklen)); k++) { | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) { | |
| sumi = 0; | |
| for (int i = 0; i < blocklen; ++i) { | |
| const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F]; | |
| const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4]; | |
| sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) + | |
| (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])); | |
| } | |
| sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]); | |
| } | |
| } | |
| } | |
| } | |
| for (int m = 0; m < 4; m++) { | |
| for (int j = 0; j < ncols_interleaved; j++) | |
| s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j]; | |
| } | |
| } | |
| } | |
| } | |
| } // extern "C" | |
| static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) { | |
| block_q4_0x4 out; | |
| for (int i = 0; i < 4; i++) { | |
| out.d[i] = in[i].d; | |
| } | |
| const int end = QK4_0 * 2 / blck_size_interleave; | |
| if (blck_size_interleave == 8) { | |
| const uint64_t xor_mask = 0x8888888888888888ULL; | |
| for (int i = 0; i < end; ++i) { | |
| int src_id = i % 4; | |
| int src_offset = (i / 4) * blck_size_interleave; | |
| int dst_offset = i * blck_size_interleave; | |
| uint64_t elems; | |
| // Using memcpy to avoid unaligned memory accesses | |
| memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t)); | |
| elems ^= xor_mask; | |
| memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t)); | |
| } | |
| } else if (blck_size_interleave == 4) { | |
| const uint32_t xor_mask = 0x88888888; | |
| for (int i = 0; i < end; ++i) { | |
| int src_id = i % 4; | |
| int src_offset = (i / 4) * blck_size_interleave; | |
| int dst_offset = i * blck_size_interleave; | |
| uint32_t elems; | |
| memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint32_t)); | |
| elems ^= xor_mask; | |
| memcpy(&out.qs[dst_offset], &elems, sizeof(uint32_t)); | |
| } | |
| } else { | |
| GGML_ASSERT(false); | |
| } | |
| return out; | |
| } | |
| // interleave 8 block_q4_0s in blocks of blck_size_interleave | |
| // returns an interleaved block_q4_0x8 | |
| // in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks | |
| // first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave | |
| static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave) { | |
| block_q4_0x8 out; | |
| for (int i = 0; i < 8; i++) { | |
| out.d[i] = in[i].d; | |
| } | |
| const int end = QK4_0 * 4 / blck_size_interleave; | |
| const uint64_t xor_mask = 0x8888888888888888ULL; | |
| for (int i = 0; i < end; ++i) { | |
| int src_id = i % 8; | |
| int src_offset = (i / 8) * blck_size_interleave; | |
| int dst_offset = i * blck_size_interleave; | |
| uint64_t elems; | |
| memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t)); | |
| elems ^= xor_mask; | |
| memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t)); | |
| } | |
| return out; | |
| } | |
| static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_interleave) { | |
| block_q4_Kx8 out; | |
| //Delta(scale) and dmin values of the eight Q4_K structures are copied onto the output interleaved structure | |
| for (int i = 0; i < 8; i++) { | |
| out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d; | |
| } | |
| for (int i = 0; i < 8; i++) { | |
| out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin; | |
| } | |
| const int end = QK_K * 4 / blck_size_interleave; | |
| // Interleave Q4_K quants by taking 8 bytes at a time | |
| for (int i = 0; i < end; ++i) { | |
| int src_id = i % 8; | |
| int src_offset = (i / 8) * blck_size_interleave; | |
| int dst_offset = i * blck_size_interleave; | |
| uint64_t elems; | |
| memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t)); | |
| memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t)); | |
| } | |
| // The below logic is designed so as to unpack and rearrange scales and mins values in Q4_K | |
| // Currently the Q4_K structure has 8 scales and 8 mins packed in 12 bytes ( 6 bits for each value) | |
| // The output Q4_Kx8 structure has 96 bytes | |
| // Every 12 byte is packed such that it contains scales and mins for corresponding sub blocks from Q4_K structure | |
| // For eg - First 12 bytes contains 8 scales and 8 mins - each of first sub block from different Q4_K structures | |
| uint8_t s[8], m[8]; | |
| for (int i = 0; i < 4; i++) { | |
| for (int j = 0; j < 8; j++) { | |
| s[j] = in[j].scales[i] & 63; | |
| m[j] = in[j].scales[i + 4] & 63; | |
| } | |
| out.scales[i * 12] = (s[0] & 63) + ((s[4] & 48) << 2); | |
| out.scales[i * 12 + 1] = (s[1] & 63) + ((s[5] & 48) << 2); | |
| out.scales[i * 12 + 2] = (s[2] & 63) + ((s[6] & 48) << 2); | |
| out.scales[i * 12 + 3] = (s[3] & 63) + ((s[7] & 48) << 2); | |
| out.scales[i * 12 + 4] = (m[0] & 63) + ((m[4] & 48) << 2); | |
| out.scales[i * 12 + 5] = (m[1] & 63) + ((m[5] & 48) << 2); | |
| out.scales[i * 12 + 6] = (m[2] & 63) + ((m[6] & 48) << 2); | |
| out.scales[i * 12 + 7] = (m[3] & 63) + ((m[7] & 48) << 2); | |
| out.scales[i * 12 + 8] = (s[4] & 15) + ((m[4] & 15) << 4); | |
| out.scales[i * 12 + 9] = (s[5] & 15) + ((m[5] & 15) << 4); | |
| out.scales[i * 12 + 10] = (s[6] & 15) + ((m[6] & 15) << 4); | |
| out.scales[i * 12 + 11] = (s[7] & 15) + ((m[7] & 15) << 4); | |
| } | |
| for (int i = 0; i < 4; i++) { | |
| for (int j = 0; j < 8; j++) { | |
| s[j] = ((in[j].scales[i] & 192) >> 2) | (in[j].scales[i+8] & 15); | |
| m[j] = ((in[j].scales[i + 4] & 192) >> 2) | ((in[j].scales[i+8] & 240) >> 4); | |
| } | |
| out.scales[i * 12 + 48] = (s[0] & 63) + ((s[4] & 48) << 2); | |
| out.scales[i * 12 + 49] = (s[1] & 63) + ((s[5] & 48) << 2); | |
| out.scales[i * 12 + 50] = (s[2] & 63) + ((s[6] & 48) << 2); | |
| out.scales[i * 12 + 51] = (s[3] & 63) + ((s[7] & 48) << 2); | |
| out.scales[i * 12 + 52] = (m[0] & 63) + ((m[4] & 48) << 2); | |
| out.scales[i * 12 + 53] = (m[1] & 63) + ((m[5] & 48) << 2); | |
| out.scales[i * 12 + 54] = (m[2] & 63) + ((m[6] & 48) << 2); | |
| out.scales[i * 12 + 55] = (m[3] & 63) + ((m[7] & 48) << 2); | |
| out.scales[i * 12 + 56] = (s[4] & 15) + ((m[4] & 15) << 4); | |
| out.scales[i * 12 + 57] = (s[5] & 15) + ((m[5] & 15) << 4); | |
| out.scales[i * 12 + 58] = (s[6] & 15) + ((m[6] & 15) << 4); | |
| out.scales[i * 12 + 59] = (s[7] & 15) + ((m[7] & 15) << 4); | |
| } | |
| return out; | |
| } | |
| static block_q2_Kx8 make_block_q2_Kx8(block_q2_K * in, unsigned int blck_size_interleave) { | |
| block_q2_Kx8 out; | |
| // Delta(scale) and dmin values of the eight Q2_K structures are copied onto the output interleaved structure | |
| for (int i = 0; i < 8; i++) { | |
| out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d; | |
| } | |
| for (int i = 0; i < 8; i++) { | |
| out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin; | |
| } | |
| const int end = QK_K * 2 / blck_size_interleave; | |
| // Interleave Q2_K quants by taking 8 bytes at a time | |
| for (int i = 0; i < end; ++i) { | |
| int src_id = i % 8; | |
| int src_offset = (i / 8) * blck_size_interleave; | |
| int dst_offset = i * blck_size_interleave; | |
| uint64_t elems; | |
| memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t)); | |
| memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t)); | |
| } | |
| // The below logic is designed so as to unpack and rearrange scales and mins values in Q2_K | |
| // Currently the Q2_K structure has 16 scales and 16 mins packed in 16 bytes ( 4 bits for each value) | |
| // The output Q2_Kx8 structure has 128 bytes for storing scales and mins | |
| // Every 16 byte is packed such that it contains scales and mins for corresponding sub blocks from Q2_K structure | |
| // For eg - First 16 bytes contains 16 scales and 16 mins - each of first and second sub blocks from different Q2_K structures | |
| for(int i = 0; i < 128; i++){ | |
| // Index for selecting which q2k super block | |
| int src1 = (i % 16) / 2; | |
| // Index for selecting scale | |
| int src2 = ((i / 16) * 2) + (i % 2); | |
| out.scales[i] = in[src1].scales[src2]; | |
| } | |
| return out; | |
| } | |
| static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { | |
| GGML_ASSERT(t->type == GGML_TYPE_Q4_0); | |
| GGML_ASSERT(interleave_block == 4 || interleave_block == 8); | |
| constexpr int nrows_interleaved = 4; | |
| block_q4_0x4 * dst = (block_q4_0x4 *)t->data; | |
| const block_q4_0 * src = (const block_q4_0 *)data; | |
| block_q4_0 dst_tmp[4]; | |
| int nrow = ggml_nrows(t); | |
| int nblocks = t->ne[0] / QK4_0; | |
| GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0)); | |
| if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { | |
| return -1; | |
| } | |
| for (int b = 0; b < nrow; b += nrows_interleaved) { | |
| for (int64_t x = 0; x < nblocks; x++) { | |
| for (int i = 0; i < nrows_interleaved; i++) { | |
| dst_tmp[i] = src[x + i * nblocks]; | |
| } | |
| *dst++ = make_block_q4_0x4(dst_tmp, interleave_block); | |
| } | |
| src += nrows_interleaved * nblocks; | |
| } | |
| return 0; | |
| GGML_UNUSED(data_size); | |
| } | |
| static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { | |
| GGML_ASSERT(t->type == GGML_TYPE_Q4_K); | |
| GGML_ASSERT(interleave_block == 8); | |
| constexpr int nrows_interleaved = 8; | |
| block_q4_Kx8 * dst = (block_q4_Kx8*)t->data; | |
| const block_q4_K * src = (const block_q4_K*) data; | |
| block_q4_K dst_tmp[8]; | |
| int nrow = ggml_nrows(t); | |
| int nblocks = t->ne[0] / QK_K; | |
| GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_K)); | |
| if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { | |
| return -1; | |
| } | |
| for (int b = 0; b < nrow; b += nrows_interleaved) { | |
| for (int64_t x = 0; x < nblocks; x++) { | |
| for (int i = 0; i < nrows_interleaved; i++ ) { | |
| dst_tmp[i] = src[x + i * nblocks]; | |
| } | |
| *dst++ = make_block_q4_Kx8(dst_tmp, interleave_block); | |
| } | |
| src += nrows_interleaved * nblocks; | |
| } | |
| return 0; | |
| GGML_UNUSED(data_size); | |
| } | |
| static int repack_q2_K_to_q2_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { | |
| GGML_ASSERT(t->type == GGML_TYPE_Q2_K); | |
| GGML_ASSERT(interleave_block == 8); | |
| constexpr int nrows_interleaved = 8; | |
| block_q2_Kx8 * dst = (block_q2_Kx8*)t->data; | |
| const block_q2_K * src = (const block_q2_K*) data; | |
| block_q2_K dst_tmp[8]; | |
| int nrow = ggml_nrows(t); | |
| int nblocks = t->ne[0] / QK_K; | |
| GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q2_K)); | |
| if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { | |
| return -1; | |
| } | |
| for (int b = 0; b < nrow; b += nrows_interleaved) { | |
| for (int64_t x = 0; x < nblocks; x++) { | |
| for (int i = 0; i < nrows_interleaved; i++ ) { | |
| dst_tmp[i] = src[x + i * nblocks]; | |
| } | |
| *dst++ = make_block_q2_Kx8(dst_tmp, interleave_block); | |
| } | |
| src += nrows_interleaved * nblocks; | |
| } | |
| return 0; | |
| GGML_UNUSED(data_size); | |
| } | |
| static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { | |
| GGML_ASSERT(t->type == GGML_TYPE_Q4_0); | |
| GGML_ASSERT(interleave_block == 8); | |
| constexpr int nrows_interleaved = 8; | |
| block_q4_0x8 * dst = (block_q4_0x8*)t->data; | |
| const block_q4_0 * src = (const block_q4_0*) data; | |
| block_q4_0 dst_tmp[8]; | |
| int nrow = ggml_nrows(t); | |
| int nblocks = t->ne[0] / QK4_0; | |
| GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0)); | |
| if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { | |
| return -1; | |
| } | |
| for (int b = 0; b < nrow; b += nrows_interleaved) { | |
| for (int64_t x = 0; x < nblocks; x++) { | |
| for (int i = 0; i < nrows_interleaved; i++ ) { | |
| dst_tmp[i] = src[x + i * nblocks]; | |
| } | |
| *dst++ = make_block_q4_0x8(dst_tmp, interleave_block); | |
| } | |
| src += nrows_interleaved * nblocks; | |
| } | |
| return 0; | |
| GGML_UNUSED(data_size); | |
| } | |
| static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_size_interleave) { | |
| block_iq4_nlx4 out; | |
| for (int i = 0; i < 4; i++) { | |
| out.d[i] = in[i].d; | |
| } | |
| const int end = QK4_NL * 2 / blck_size_interleave; | |
| // TODO: this branch seems wrong | |
| //if (blck_size_interleave == 8) { | |
| // for (int i = 0; i < end; ++i) { | |
| // int src_id = i % 4; | |
| // int src_offset = (i / 4) * blck_size_interleave; | |
| // int dst_offset = i * blck_size_interleave; | |
| // // Using memcpy to avoid unaligned memory accesses | |
| // memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t)); | |
| // } | |
| //} else | |
| if (blck_size_interleave == 4) { | |
| for (int i = 0; i < end; ++i) { | |
| int src_id = i % 4; | |
| int src_offset = (i / 4) * blck_size_interleave; | |
| int dst_offset = i * blck_size_interleave; | |
| memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint32_t)); | |
| } | |
| } else { | |
| GGML_ASSERT(false); | |
| } | |
| return out; | |
| } | |
| static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { | |
| GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL); | |
| GGML_ASSERT(interleave_block == 4); | |
| const block_iq4_nl * src = (const block_iq4_nl *)data; | |
| block_iq4_nlx4 * dst = ( block_iq4_nlx4 *)t->data; | |
| block_iq4_nl dst_tmp[4]; | |
| int nrow = ggml_nrows(t); | |
| int nrows_interleaved = 4; | |
| int nblocks = t->ne[0] / QK4_NL; | |
| GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl)); | |
| if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) { | |
| return -1; | |
| } | |
| for (int b = 0; b < nrow; b += nrows_interleaved) { | |
| for (int64_t x = 0; x < nblocks; x++) { | |
| for (int i = 0; i < nrows_interleaved; i++) { | |
| dst_tmp[i] = src[x + i * nblocks]; | |
| } | |
| *dst++ = make_block_iq4_nlx4(dst_tmp, interleave_block); | |
| } | |
| src += nrows_interleaved * nblocks; | |
| } | |
| return 0; | |
| GGML_UNUSED(data_size); | |
| } | |
| static block_iq4_nlx8 make_block_iq4_nlx8(block_iq4_nl * in, unsigned int blck_size_interleave) { | |
| block_iq4_nlx8 out; | |
| for (int i = 0; i < 8; i++) { | |
| out.d[i] = in[i].d; | |
| } | |
| const int end = QK4_NL * 4 / blck_size_interleave; | |
| if (blck_size_interleave == 8) { | |
| for (int i = 0; i < end; ++i) { | |
| int src_id = i % 8; | |
| int src_offset = (i / 8) * blck_size_interleave; | |
| int dst_offset = i * blck_size_interleave; | |
| memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t)); | |
| } | |
| } else { | |
| GGML_ASSERT(false); | |
| } | |
| return out; | |
| } | |
| static int repack_iq4_nl_to_iq4_nl_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { | |
| GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL); | |
| GGML_ASSERT(interleave_block == 8); | |
| const block_iq4_nl * src = (const block_iq4_nl *)data; | |
| block_iq4_nlx8 * dst = ( block_iq4_nlx8 *)t->data; | |
| block_iq4_nl dst_tmp[8]; | |
| int nrow = ggml_nrows(t); | |
| int nrows_interleaved = 8; | |
| int nblocks = t->ne[0] / QK4_NL; | |
| GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl)); | |
| if (t->ne[1] % nrows_interleaved != 0) { | |
| return -1; | |
| } | |
| for (int b = 0; b < nrow; b += nrows_interleaved) { | |
| for (int64_t x = 0; x < nblocks; x++) { | |
| for (int i = 0; i < nrows_interleaved; i++) { | |
| dst_tmp[i] = src[x + i * nblocks]; | |
| } | |
| *dst++ = make_block_iq4_nlx8(dst_tmp, interleave_block); | |
| } | |
| src += nrows_interleaved * nblocks; | |
| } | |
| return 0; | |
| GGML_UNUSED(data_size); | |
| } | |
| namespace ggml::cpu::repack { | |
| // repack | |
| template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS> | |
| int repack(struct ggml_tensor *, const void *, size_t); | |
| // TODO: generalise. | |
| template <> int repack<block_q4_0, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) { | |
| return repack_q4_0_to_q4_0_4_bl(t, 4, data, data_size); | |
| } | |
| template <> int repack<block_q4_0, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) { | |
| return repack_q4_0_to_q4_0_4_bl(t, 8, data, data_size); | |
| } | |
| template <> int repack<block_q4_0, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) { | |
| return repack_q4_0_to_q4_0_8_bl(t, 8, data, data_size); | |
| } | |
| template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) { | |
| return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size); | |
| } | |
| template <> int repack<block_q2_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) { | |
| return repack_q2_K_to_q2_K_8_bl(t, 8, data, data_size); | |
| } | |
| template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) { | |
| return repack_iq4_nl_to_iq4_nl_4_bl(t, 4, data, data_size); | |
| } | |
| // TODO: needs to be revisited | |
| //template <> int repack<block_iq4_nl, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) { | |
| // return repack_iq4_nl_to_iq4_nl_4_bl(t, 8, data, data_size); | |
| //} | |
| template <> int repack<block_iq4_nl, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) { | |
| return repack_iq4_nl_to_iq4_nl_8_bl(t, 8, data, data_size); | |
| } | |
| // gemv | |
| template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE> | |
| void gemv(int, float *, size_t, const void *, const void *, int, int); | |
| template <> void gemv<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemv_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemv<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemv_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemv<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemv<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemv_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemv<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemv_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| // gemm | |
| template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE> | |
| void gemm(int, float *, size_t, const void *, const void *, int, int); | |
| template <> void gemm<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemm_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemm<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemm<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemm<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemm<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemm_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| template <> void gemm<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { | |
| ggml_gemm_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc); | |
| } | |
| class tensor_traits_base : public ggml::cpu::tensor_traits { | |
| public: | |
| virtual int repack(struct ggml_tensor * t, const void * data, size_t data_size) = 0; | |
| }; | |
| template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE> class tensor_traits : public tensor_traits_base { | |
| bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override { | |
| // not realy a GGML_TYPE_Q8_0 but same size. | |
| switch (op->op) { | |
| case GGML_OP_MUL_MAT: | |
| { | |
| size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1])); | |
| return true; | |
| } | |
| case GGML_OP_MUL_MAT_ID: | |
| { | |
| size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1])); | |
| size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc. | |
| const int64_t ne02 = op->src[0]->ne[2]; // n_as, n_expert | |
| const int64_t ne12 = op->src[1]->ne[2]; // n_tokens | |
| const size_t sizeof_mmid_row_mapping = sizeof(int64_t); | |
| size += sizeof_mmid_row_mapping*ne02*(ne12 + 1); | |
| return true; | |
| } | |
| default: | |
| // GGML_ABORT("fatal error"); | |
| break; | |
| } | |
| return false; | |
| } | |
| bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override { | |
| switch (op->op) { | |
| case GGML_OP_MUL_MAT: | |
| forward_mul_mat(params, op); | |
| return true; | |
| case GGML_OP_MUL_MAT_ID: | |
| forward_mul_mat_id(params, op); | |
| return true; | |
| default: | |
| // GGML_ABORT("fatal error"); | |
| break; | |
| } | |
| return false; | |
| } | |
| void forward_mul_mat(ggml_compute_params * params, ggml_tensor * op) { | |
| const ggml_tensor * src0 = op->src[0]; | |
| const ggml_tensor * src1 = op->src[1]; | |
| ggml_tensor * dst = op; | |
| GGML_TENSOR_BINARY_OP_LOCALS | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| GGML_ASSERT(ne0 == ne01); | |
| GGML_ASSERT(ne1 == ne11); | |
| GGML_ASSERT(ne2 == ne12); | |
| GGML_ASSERT(ne3 == ne13); | |
| // dst cannot be transposed or permuted | |
| GGML_ASSERT(nb0 == sizeof(float)); | |
| GGML_ASSERT(nb0 <= nb1); | |
| GGML_ASSERT(nb1 <= nb2); | |
| GGML_ASSERT(nb2 <= nb3); | |
| GGML_ASSERT(src1->type == GGML_TYPE_F32); | |
| GGML_ASSERT(ggml_n_dims(op->src[0]) == 2); | |
| // GGML_ASSERT(ggml_n_dims(op->src[1]) == 2); | |
| char * wdata = static_cast<char *>(params->wdata); | |
| const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10); | |
| assert(params->wsize >= nbw1 * ne11); | |
| const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float; | |
| int64_t i11_processed = 0; | |
| for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) { | |
| ggml_quantize_mat_t<INTER_SIZE, PARAM_TYPE>((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), 4, ne10); | |
| } | |
| i11_processed = ne11 - ne11 % 4; | |
| for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) { | |
| from_float((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), ne10); | |
| } | |
| ggml_barrier(params->threadpool); | |
| const void * src1_wdata = params->wdata; | |
| const size_t src1_col_stride = ggml_row_size(PARAM_TYPE, ne10); | |
| int64_t src0_start = (ith * ne01) / nth; | |
| int64_t src0_end = ((ith + 1) * ne01) / nth; | |
| src0_start = (src0_start % NB_COLS) ? src0_start + NB_COLS - (src0_start % NB_COLS) : src0_start; | |
| src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end; | |
| if (src0_start >= src0_end) { | |
| return; | |
| } | |
| // If there are more than three rows in src1, use gemm; otherwise, use gemv. | |
| if (ne11 > 3) { | |
| gemm<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00, | |
| (float *) ((char *) dst->data) + src0_start, ne01, | |
| (const char *) src0->data + src0_start * nb01, | |
| (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start); | |
| } | |
| for (int iter = ne11 - ne11 % 4; iter < ne11; iter++) { | |
| gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00, | |
| (float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01, | |
| (const char *) src0->data + src0_start * nb01, | |
| (const char *) src1_wdata + (src1_col_stride * iter), 1, | |
| src0_end - src0_start); | |
| } | |
| } | |
| void forward_mul_mat_id(ggml_compute_params * params, ggml_tensor * op) { | |
| const ggml_tensor * src0 = op->src[0]; | |
| const ggml_tensor * src1 = op->src[1]; | |
| const ggml_tensor * ids = op->src[2]; | |
| ggml_tensor * dst = op; | |
| GGML_TENSOR_BINARY_OP_LOCALS | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float; | |
| // we don't support permuted src0 or src1 | |
| GGML_ASSERT(nb00 == ggml_type_size(src0->type)); | |
| GGML_ASSERT(nb10 == ggml_type_size(src1->type)); | |
| // dst cannot be transposed or permuted | |
| GGML_ASSERT(nb0 == sizeof(float)); | |
| GGML_ASSERT(nb0 <= nb1); | |
| GGML_ASSERT(nb1 <= nb2); | |
| GGML_ASSERT(nb2 <= nb3); | |
| GGML_ASSERT(ne03 == 1); | |
| GGML_ASSERT(ne13 == 1); | |
| GGML_ASSERT(ne3 == 1); | |
| GGML_ASSERT(src1->type == GGML_TYPE_F32); | |
| // row groups | |
| const int n_ids = ids->ne[0]; // n_expert_used | |
| const int n_as = ne02; // n_expert | |
| const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10); | |
| const size_t nbw2 = nbw1*ne11; | |
| const size_t nbw3 = nbw2*ne12; | |
| struct mmid_row_mapping { | |
| int32_t i1; | |
| int32_t i2; | |
| }; | |
| GGML_ASSERT(params->wsize >= | |
| (GGML_PAD(nbw3, sizeof(int64_t)) + | |
| n_as*(ne12 + 1)*sizeof(mmid_row_mapping)) | |
| ); | |
| auto * wdata = (char *)params->wdata; | |
| auto * wdata_src1_end = (char *)wdata + GGML_PAD(nbw3, sizeof(int64_t)); | |
| // total of [n_as][ne12 + 1] elemets of type mmid_row_mapping (2*int32_t = int64_t) | |
| auto * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as] | |
| struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *) (matrix_row_counts + n_as); // [n_as][ne12] | |
| // src1: float32 => param type | |
| for (int64_t i12 = 0; i12 < ne12; ++i12) { | |
| for (int64_t i11 = ith; i11 < ne11; i11 += nth) { | |
| from_float((float *)((char *) src1->data + i12 * nb12 + i11 * nb11), | |
| (void *) (wdata + i12 * nbw2 + i11 * nbw1), | |
| ne10); | |
| } | |
| } | |
| if (ith == 0) { | |
| // initialize matrix_row_counts | |
| memset(matrix_row_counts, 0, n_as * sizeof(int64_t)); | |
| // group rows by src0 matrix | |
| for (int32_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) { | |
| for (int32_t id = 0; id < n_ids; ++id) { | |
| const int32_t i02 = | |
| *(const int32_t *) ((const char *) ids->data + iid1 * ids->nb[1] + id * ids->nb[0]); | |
| GGML_ASSERT(i02 >= 0 && i02 < n_as); | |
| MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = { id, iid1 }; | |
| matrix_row_counts[i02] += 1; | |
| } | |
| } | |
| } | |
| ggml_barrier(params->threadpool); | |
| // compute each matrix multiplication in sequence | |
| for (int cur_a = 0; cur_a < n_as; ++cur_a) { | |
| const int64_t cne1 = matrix_row_counts[cur_a]; | |
| if (cne1 == 0) { | |
| continue; | |
| } | |
| const auto * src0_cur = (const char *) src0->data + cur_a*nb02; | |
| //const int64_t nr0 = ne01; // src0 rows | |
| const int64_t nr1 = cne1; // src1 rows | |
| int64_t src0_cur_start = (ith * ne01) / nth; | |
| int64_t src0_cur_end = ((ith + 1) * ne01) / nth; | |
| src0_cur_start = (src0_cur_start % NB_COLS) ? src0_cur_start + NB_COLS - (src0_cur_start % NB_COLS) : src0_cur_start; | |
| src0_cur_end = (src0_cur_end % NB_COLS) ? src0_cur_end + NB_COLS - (src0_cur_end % NB_COLS) : src0_cur_end; | |
| if (src0_cur_start >= src0_cur_end) { | |
| return; | |
| } | |
| for (int ir1 = 0; ir1 < nr1; ir1++) { | |
| struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1); | |
| const int id = row_mapping.i1; // selected expert index | |
| const int64_t i11 = id % ne11; | |
| const int64_t i12 = row_mapping.i2; // row index in src1 | |
| const int64_t i1 = id; // selected expert index | |
| const int64_t i2 = i12; // row | |
| const auto * src1_col = (const char *) wdata + (i11 * nbw1 + i12 * nbw2); | |
| gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00, | |
| (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01, | |
| src0_cur + src0_cur_start * nb01, | |
| src1_col, 1, src0_cur_end - src0_cur_start); | |
| } | |
| } | |
| } | |
| int repack(struct ggml_tensor * t, const void * data, size_t data_size) override { | |
| GGML_LOG_DEBUG("%s: repack tensor %s with %s_%dx%d\n", __func__, t->name, ggml_type_name(t->type), | |
| (int) NB_COLS, (int) INTER_SIZE); | |
| return ggml::cpu::repack::repack<BLOC_TYPE, INTER_SIZE, NB_COLS>(t, data, data_size); | |
| } | |
| }; | |
| } // namespace ggml::cpu::repack | |
| static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(const struct ggml_tensor * cur) { | |
| // instance for Q4 | |
| static const ggml::cpu::repack::tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0; | |
| static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0; | |
| static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0; | |
| static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K; | |
| // instance for Q2 | |
| static const ggml::cpu::repack::tensor_traits<block_q2_K, 8, 8, GGML_TYPE_Q8_K> q2_K_8x8_q8_K; | |
| // instance for IQ4 | |
| static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0; | |
| static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0> iq4_nl_8x8_q8_0; | |
| if (cur->type == GGML_TYPE_Q4_0) { | |
| if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) { | |
| if (cur->ne[1] % 8 == 0) { | |
| return &q4_0_8x8_q8_0; | |
| } | |
| } | |
| if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) { | |
| if (cur->ne[1] % 4 == 0) { | |
| return &q4_0_4x8_q8_0; | |
| } | |
| } | |
| if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) { | |
| if (cur->ne[1] % 4 == 0) { | |
| return &q4_0_4x4_q8_0; | |
| } | |
| } | |
| } else if (cur->type == GGML_TYPE_Q4_K) { | |
| if (ggml_cpu_has_avx2()) { | |
| if (cur->ne[1] % 8 == 0) { | |
| return &q4_K_8x8_q8_K; | |
| } | |
| } | |
| } else if (cur->type == GGML_TYPE_Q2_K) { | |
| if (ggml_cpu_has_avx512()) { | |
| if (cur->ne[1] % 8 == 0) { | |
| return &q2_K_8x8_q8_K; | |
| } | |
| } | |
| } else if (cur->type == GGML_TYPE_IQ4_NL) { | |
| if (ggml_cpu_has_avx2()) { | |
| if (cur->ne[1] % 8 == 0) { | |
| return &iq4_nl_8x8_q8_0; | |
| } | |
| } | |
| if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) { | |
| if (cur->ne[1] % 4 == 0) { | |
| return &iq4_nl_4x4_q8_0; | |
| } | |
| } | |
| } | |
| return nullptr; | |
| } | |
| static enum ggml_status ggml_backend_cpu_repack_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | |
| tensor->extra = (void *) const_cast<ggml::cpu::tensor_traits *>(ggml_repack_get_optimal_repack_type(tensor)); | |
| GGML_UNUSED(buffer); | |
| return GGML_STATUS_SUCCESS; | |
| } | |
| static void ggml_backend_cpu_repack_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, | |
| const void * data, size_t offset, size_t size) { | |
| GGML_ASSERT(offset == 0); | |
| GGML_ASSERT(size == ggml_nbytes(tensor)); | |
| auto tensor_traits = (ggml::cpu::repack::tensor_traits_base *) tensor->extra; | |
| auto OK = tensor_traits->repack(tensor, data, size); | |
| GGML_ASSERT(OK == 0); | |
| GGML_UNUSED(buffer); | |
| } | |
| static const char * ggml_backend_cpu_repack_buffer_type_get_name(ggml_backend_buffer_type_t buft) { | |
| return "CPU_REPACK"; | |
| GGML_UNUSED(buft); | |
| } | |
| static ggml_backend_buffer_t ggml_backend_cpu_repack_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { | |
| ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); | |
| if (buffer == nullptr) { | |
| return nullptr; | |
| } | |
| buffer->buft = buft; | |
| buffer->iface.init_tensor = ggml_backend_cpu_repack_buffer_init_tensor; | |
| buffer->iface.set_tensor = ggml_backend_cpu_repack_buffer_set_tensor; | |
| buffer->iface.get_tensor = nullptr; | |
| buffer->iface.cpy_tensor = nullptr; | |
| return buffer; | |
| } | |
| static size_t ggml_backend_cpu_repack_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { | |
| return TENSOR_ALIGNMENT; | |
| GGML_UNUSED(buft); | |
| } | |
| namespace ggml::cpu::repack { | |
| class extra_buffer_type : ggml::cpu::extra_buffer_type { | |
| bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override { | |
| if ( op->op == GGML_OP_MUL_MAT && | |
| op->src[0]->buffer && | |
| (ggml_n_dims(op->src[0]) == 2) && | |
| op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type() && | |
| ggml_repack_get_optimal_repack_type(op->src[0]) | |
| ) { | |
| if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { | |
| return false; | |
| } | |
| if (op->src[1]->type == GGML_TYPE_F32) { | |
| return true; | |
| } | |
| //if (op->src[1]->type == GGML_TYPE_Q8_0) { | |
| // return true; | |
| //} | |
| // may be possible if Q8_0 packed... | |
| } else if (op->op == GGML_OP_MUL_MAT_ID | |
| && op->src[0]->buffer | |
| && (ggml_n_dims(op->src[0]) == 3) | |
| && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type() | |
| && ggml_repack_get_optimal_repack_type(op->src[0]) | |
| ) { | |
| if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { | |
| return false; | |
| } | |
| if (op->src[1]->type == GGML_TYPE_F32) { | |
| return true; | |
| } | |
| //if (op->src[1]->type == GGML_TYPE_Q8_0) { | |
| // return true; | |
| //} | |
| } | |
| return false; | |
| } | |
| ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override { | |
| if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_MUL_MAT_ID) { | |
| if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type()) { | |
| return (ggml::cpu::tensor_traits *) op->src[0]->extra; | |
| } | |
| } | |
| return nullptr; | |
| } | |
| }; | |
| } // namespace ggml::cpu::repack | |
| ggml_backend_buffer_type_t ggml_backend_cpu_repack_buffer_type(void) { | |
| static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_repack = { | |
| /* .iface = */ { | |
| /* .get_name = */ ggml_backend_cpu_repack_buffer_type_get_name, | |
| /* .alloc_buffer = */ ggml_backend_cpu_repack_buffer_type_alloc_buffer, | |
| /* .get_alignment = */ ggml_backend_cpu_repack_buffer_type_get_alignment, | |
| /* .get_max_size = */ nullptr, // defaults to SIZE_MAX | |
| /* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes | |
| /* .is_host = */ nullptr, | |
| }, | |
| /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), | |
| /* .context = */ new ggml::cpu::repack::extra_buffer_type(), | |
| }; | |
| return &ggml_backend_cpu_buffer_type_repack; | |
| } | |