Spaces:
Running
Running
| // Note: once we move threading into a separate C++ file | |
| // will use std::hardware_destructive_interference_size instead of hardcoding it here | |
| // and we'll use C++ attribute syntax. | |
| // precomputed f32 table for f16 (256 KB) (simd-mappings.h) | |
| float ggml_table_f32_f16[1 << 16]; | |
| struct ggml_arm_arch_features_type { | |
| int sve_cnt; | |
| } ggml_arm_arch_features = { 0 }; | |
| typedef volatile LONG atomic_int; | |
| typedef atomic_int atomic_bool; | |
| typedef atomic_int atomic_flag; | |
| typedef enum { | |
| memory_order_relaxed, | |
| memory_order_consume, | |
| memory_order_acquire, | |
| memory_order_release, | |
| memory_order_acq_rel, | |
| memory_order_seq_cst | |
| } memory_order; | |
| static void atomic_store(atomic_int * ptr, LONG val) { | |
| InterlockedExchange(ptr, val); | |
| } | |
| static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) { | |
| // TODO: add support for explicit memory order | |
| InterlockedExchange(ptr, val); | |
| } | |
| static LONG atomic_load(atomic_int * ptr) { | |
| return InterlockedCompareExchange(ptr, 0, 0); | |
| } | |
| static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) { | |
| // TODO: add support for explicit memory order | |
| return InterlockedCompareExchange(ptr, 0, 0); | |
| } | |
| static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) { | |
| return InterlockedExchangeAdd(ptr, inc); | |
| } | |
| static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) { | |
| // TODO: add support for explicit memory order | |
| return InterlockedExchangeAdd(ptr, inc); | |
| } | |
| static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) { | |
| return InterlockedExchange(ptr, 1); | |
| } | |
| static void atomic_flag_clear(atomic_flag * ptr) { | |
| InterlockedExchange(ptr, 0); | |
| } | |
| static void atomic_thread_fence(memory_order mo) { | |
| MemoryBarrier(); | |
| } | |
| typedef HANDLE pthread_t; | |
| typedef DWORD thread_ret_t; | |
| static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) { | |
| (void) unused; | |
| HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL); | |
| if (handle == NULL) | |
| { | |
| return EAGAIN; | |
| } | |
| *out = handle; | |
| return 0; | |
| } | |
| static int pthread_join(pthread_t thread, void * unused) { | |
| (void) unused; | |
| int ret = (int) WaitForSingleObject(thread, INFINITE); | |
| CloseHandle(thread); | |
| return ret; | |
| } | |
| static int sched_yield (void) { | |
| Sleep (0); | |
| return 0; | |
| } | |
| typedef void * thread_ret_t; | |
| typedef pthread_t ggml_thread_t; | |
| static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = { | |
| [GGML_TYPE_F32] = { | |
| .from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp32, | |
| .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32, | |
| .vec_dot_type = GGML_TYPE_F32, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_F16] = { | |
| .from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp16, | |
| .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16, | |
| .vec_dot_type = GGML_TYPE_F16, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q4_0] = { | |
| .from_float = quantize_row_q4_0, | |
| .vec_dot = ggml_vec_dot_q4_0_q8_0, | |
| .vec_dot_type = GGML_TYPE_Q8_0, | |
| .nrows = 2, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q4_1] = { | |
| .from_float = quantize_row_q4_1, | |
| .vec_dot = ggml_vec_dot_q4_1_q8_1, | |
| .vec_dot_type = GGML_TYPE_Q8_1, | |
| .nrows = 2, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q5_0] = { | |
| .from_float = quantize_row_q5_0, | |
| .vec_dot = ggml_vec_dot_q5_0_q8_0, | |
| .vec_dot_type = GGML_TYPE_Q8_0, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q5_1] = { | |
| .from_float = quantize_row_q5_1, | |
| .vec_dot = ggml_vec_dot_q5_1_q8_1, | |
| .vec_dot_type = GGML_TYPE_Q8_1, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q8_0] = { | |
| .from_float = quantize_row_q8_0, | |
| .vec_dot = ggml_vec_dot_q8_0_q8_0, | |
| .vec_dot_type = GGML_TYPE_Q8_0, | |
| .nrows = 2, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q8_1] = { | |
| .from_float = quantize_row_q8_1, | |
| .vec_dot_type = GGML_TYPE_Q8_1, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_MXFP4] = { | |
| .from_float = quantize_row_mxfp4, | |
| .vec_dot = ggml_vec_dot_mxfp4_q8_0, | |
| .vec_dot_type = GGML_TYPE_Q8_0, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q2_K] = { | |
| .from_float = quantize_row_q2_K, | |
| .vec_dot = ggml_vec_dot_q2_K_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q3_K] = { | |
| .from_float = quantize_row_q3_K, | |
| .vec_dot = ggml_vec_dot_q3_K_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q4_K] = { | |
| .from_float = quantize_row_q4_K, | |
| .vec_dot = ggml_vec_dot_q4_K_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 2, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q5_K] = { | |
| .from_float = quantize_row_q5_K, | |
| .vec_dot = ggml_vec_dot_q5_K_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q6_K] = { | |
| .from_float = quantize_row_q6_K, | |
| .vec_dot = ggml_vec_dot_q6_K_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 2, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_IQ2_XXS] = { | |
| .from_float = NULL, | |
| .vec_dot = ggml_vec_dot_iq2_xxs_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_IQ2_XS] = { | |
| .from_float = NULL, | |
| .vec_dot = ggml_vec_dot_iq2_xs_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_IQ3_XXS] = { | |
| // NOTE: from_float for iq3 and iq2_s was removed because these quants require initialization in ggml_quantize_init | |
| //.from_float = quantize_row_iq3_xxs, | |
| .vec_dot = ggml_vec_dot_iq3_xxs_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_IQ3_S] = { | |
| //.from_float = quantize_row_iq3_s, | |
| .vec_dot = ggml_vec_dot_iq3_s_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_IQ2_S] = { | |
| //.from_float = quantize_row_iq2_s, | |
| .vec_dot = ggml_vec_dot_iq2_s_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_IQ1_S] = { | |
| .from_float = NULL, | |
| .vec_dot = ggml_vec_dot_iq1_s_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_IQ1_M] = { | |
| .from_float = NULL, | |
| .vec_dot = ggml_vec_dot_iq1_m_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_IQ4_NL] = { | |
| .from_float = quantize_row_iq4_nl, | |
| .vec_dot = ggml_vec_dot_iq4_nl_q8_0, | |
| .vec_dot_type = GGML_TYPE_Q8_0, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_IQ4_XS] = { | |
| .from_float = quantize_row_iq4_xs, | |
| .vec_dot = ggml_vec_dot_iq4_xs_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_Q8_K] = { | |
| .from_float = quantize_row_q8_K, | |
| }, | |
| [GGML_TYPE_BF16] = { | |
| .from_float = (ggml_from_float_t) ggml_cpu_fp32_to_bf16, | |
| .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16, | |
| .vec_dot_type = GGML_TYPE_BF16, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_TQ1_0] = { | |
| .from_float = quantize_row_tq1_0, | |
| .vec_dot = ggml_vec_dot_tq1_0_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| [GGML_TYPE_TQ2_0] = { | |
| .from_float = quantize_row_tq2_0, | |
| .vec_dot = ggml_vec_dot_tq2_0_q8_K, | |
| .vec_dot_type = GGML_TYPE_Q8_K, | |
| .nrows = 1, | |
| }, | |
| }; | |
| const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) { | |
| return &type_traits_cpu[type]; | |
| } | |
| // | |
| // Threading defs | |
| // | |
| typedef pthread_t ggml_thread_t; | |
| typedef CONDITION_VARIABLE ggml_cond_t; | |
| typedef SRWLOCK ggml_mutex_t; | |
| typedef pthread_cond_t ggml_cond_t; | |
| typedef pthread_mutex_t ggml_mutex_t; | |
| // Threadpool def | |
| struct ggml_threadpool { | |
| ggml_mutex_t mutex; // mutex for cond.var | |
| ggml_cond_t cond; // cond.var for waiting for new work | |
| struct ggml_cgraph * cgraph; | |
| struct ggml_cplan * cplan; | |
| // synchronization primitives | |
| atomic_int n_graph; // incremented when there is work to be done (i.e each graph) | |
| atomic_int GGML_CACHE_ALIGN n_barrier; | |
| atomic_int GGML_CACHE_ALIGN n_barrier_passed; | |
| atomic_int GGML_CACHE_ALIGN current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads. | |
| // these are atomic as an annotation for thread-sanitizer | |
| atomic_bool stop; // Used for stopping the threadpool altogether | |
| atomic_bool pause; // Used for pausing the threadpool or individual threads | |
| atomic_int abort; // Used for aborting processing of a graph | |
| struct ggml_compute_state * workers; // per thread state | |
| int n_threads_max; // number of threads in the pool | |
| atomic_int n_threads_cur; // number of threads used in the current graph | |
| int32_t prio; // Scheduling priority | |
| uint32_t poll; // Polling level (0 - no polling) | |
| enum ggml_status ec; | |
| }; | |
| // Per-thread state | |
| struct ggml_compute_state { | |
| ggml_thread_t thrd; | |
| bool cpumask[GGML_MAX_N_THREADS]; | |
| int last_graph; | |
| bool pending; | |
| struct ggml_threadpool * threadpool; | |
| int ith; | |
| }; | |
| // Helpers for polling loops | |
| static inline void ggml_thread_cpu_relax(void) { | |
| __asm__ volatile("yield" ::: "memory"); | |
| } | |
| static inline void ggml_thread_cpu_relax(void) { | |
| _mm_pause(); | |
| } | |
| static inline void ggml_thread_cpu_relax(void) {;} | |
| // | |
| // NUMA support | |
| // | |
| struct ggml_numa_node { | |
| uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node | |
| uint32_t n_cpus; | |
| }; | |
| struct ggml_numa_nodes { | |
| enum ggml_numa_strategy numa_strategy; | |
| struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES]; | |
| uint32_t n_nodes; | |
| uint32_t total_cpus; // hardware threads on system | |
| uint32_t current_node; // node on which main process is execting | |
| cpu_set_t cpuset; // cpuset from numactl | |
| uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype | |
| }; | |
| // | |
| // ggml state | |
| // | |
| struct ggml_state { | |
| struct ggml_numa_nodes numa; | |
| }; | |
| static struct ggml_state g_state = {0}; | |
| void ggml_barrier(struct ggml_threadpool * tp) { | |
| int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed); | |
| if (n_threads == 1) { | |
| return; | |
| } | |
| int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed); | |
| // enter barrier (full seq-cst fence) | |
| int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst); | |
| if (n_barrier == (n_threads - 1)) { | |
| // last thread | |
| atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed); | |
| // exit barrier (fill seq-cst fence) | |
| atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst); | |
| return; | |
| } | |
| // wait for other threads | |
| while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) { | |
| ggml_thread_cpu_relax(); | |
| } | |
| // exit barrier (full seq-cst fence) | |
| // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead | |
| atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst); | |
| atomic_thread_fence(memory_order_seq_cst); | |
| } | |
| void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value) { | |
| atomic_store_explicit(&tp->current_chunk, value, memory_order_relaxed); | |
| } | |
| int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value) { | |
| return atomic_fetch_add_explicit(&tp->current_chunk, value, memory_order_relaxed); | |
| } | |
| static cpu_set_t ggml_get_numa_affinity(void) { | |
| cpu_set_t cpuset; | |
| pthread_t thread; | |
| thread = pthread_self(); | |
| CPU_ZERO(&cpuset); | |
| pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset); | |
| return cpuset; | |
| } | |
| static uint32_t ggml_get_numa_affinity(void) { | |
| return 0; // no NUMA support | |
| } | |
| void ggml_numa_init(enum ggml_numa_strategy numa_flag) { | |
| if (g_state.numa.n_nodes > 0) { | |
| fprintf(stderr, "ggml_numa_init: NUMA already initialized\n"); | |
| return; | |
| } | |
| struct stat st; | |
| char path[256]; | |
| int rv; | |
| // set numa scheme | |
| g_state.numa.numa_strategy = numa_flag; | |
| GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy); | |
| g_state.numa.cpuset = ggml_get_numa_affinity(); | |
| // enumerate nodes | |
| while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) { | |
| rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes); | |
| GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); | |
| if (stat(path, &st) != 0) { break; } | |
| ++g_state.numa.n_nodes; | |
| } | |
| // enumerate CPUs | |
| while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) { | |
| rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus); | |
| GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); | |
| if (stat(path, &st) != 0) { break; } | |
| ++g_state.numa.total_cpus; | |
| } | |
| GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus); | |
| // figure out which node we're on | |
| uint current_cpu; | |
| int getcpu_ret = 0; | |
| getcpu_ret = getcpu(¤t_cpu, &g_state.numa.current_node); | |
| // old glibc doesn't have a wrapper for this call. Fall back on direct syscall | |
| getcpu_ret = syscall(SYS_getcpu, ¤t_cpu, &g_state.numa.current_node); | |
| if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) { | |
| g_state.numa.n_nodes = 0; | |
| return; | |
| } | |
| GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu); | |
| for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) { | |
| struct ggml_numa_node * node = &g_state.numa.nodes[n]; | |
| GGML_PRINT_DEBUG("CPUs on node %u:", n); | |
| node->n_cpus = 0; | |
| for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) { | |
| rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c); | |
| GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); | |
| if (stat(path, &st) == 0) { | |
| node->cpus[node->n_cpus++] = c; | |
| GGML_PRINT_DEBUG(" %u", c); | |
| } | |
| } | |
| GGML_PRINT_DEBUG("\n"); | |
| } | |
| if (ggml_is_numa()) { | |
| FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r"); | |
| if (fptr != NULL) { | |
| char buf[42]; | |
| if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) { | |
| GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n"); | |
| } | |
| fclose(fptr); | |
| } | |
| } | |
| UNUSED(numa_flag); | |
| // TODO | |
| } | |
| bool ggml_is_numa(void) { | |
| return g_state.numa.n_nodes > 1; | |
| } | |
| static void ggml_init_arm_arch_features(void) { | |
| ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL); | |
| } | |
| struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) { | |
| GGML_ASSERT(!ggml_get_no_alloc(ctx)); | |
| struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1); | |
| ggml_set_i32(result, value); | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) { | |
| GGML_ASSERT(!ggml_get_no_alloc(ctx)); | |
| struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); | |
| ggml_set_f32(result, value); | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { | |
| const int n = ggml_nrows(tensor); | |
| const int nc = tensor->ne[0]; | |
| const size_t n1 = tensor->nb[1]; | |
| char * const data = tensor->data; | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| assert(tensor->nb[0] == sizeof(int8_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| assert(tensor->nb[0] == sizeof(int16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| assert(tensor->nb[0] == sizeof(int32_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| assert(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value)); | |
| } | |
| } break; | |
| case GGML_TYPE_BF16: | |
| { | |
| assert(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value)); | |
| } | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| assert(tensor->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_f32(nc, (float *)(data + i*n1), value); | |
| } | |
| } break; | |
| default: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| return tensor; | |
| } | |
| struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { | |
| const int n = ggml_nrows(tensor); | |
| const int nc = tensor->ne[0]; | |
| const size_t n1 = tensor->nb[1]; | |
| char * const data = tensor->data; | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| assert(tensor->nb[0] == sizeof(int8_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| assert(tensor->nb[0] == sizeof(int16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| assert(tensor->nb[0] == sizeof(int32_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| assert(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value)); | |
| } | |
| } break; | |
| case GGML_TYPE_BF16: | |
| { | |
| assert(tensor->nb[0] == sizeof(ggml_bf16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value)); | |
| } | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| assert(tensor->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_f32(nc, (float *)(data + i*n1), value); | |
| } | |
| } break; | |
| default: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| return tensor; | |
| } | |
| int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { | |
| if (!ggml_is_contiguous(tensor)) { | |
| int64_t id[4] = { 0, 0, 0, 0 }; | |
| ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); | |
| return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]); | |
| } | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); | |
| return ((int8_t *)(tensor->data))[i]; | |
| } | |
| case GGML_TYPE_I16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); | |
| return ((int16_t *)(tensor->data))[i]; | |
| } | |
| case GGML_TYPE_I32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); | |
| return ((int32_t *)(tensor->data))[i]; | |
| } | |
| case GGML_TYPE_F16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); | |
| } | |
| case GGML_TYPE_BF16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); | |
| return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]); | |
| } | |
| case GGML_TYPE_F32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(float)); | |
| return ((float *)(tensor->data))[i]; | |
| } | |
| default: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } | |
| void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { | |
| if (!ggml_is_contiguous(tensor)) { | |
| int64_t id[4] = { 0, 0, 0, 0 }; | |
| ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); | |
| ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value); | |
| return; | |
| } | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); | |
| ((int8_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); | |
| ((int16_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); | |
| ((int32_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| ((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value); | |
| } break; | |
| case GGML_TYPE_BF16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); | |
| ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(float)); | |
| ((float *)(tensor->data))[i] = value; | |
| } break; | |
| default: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } | |
| int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { | |
| void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| return ((int8_t *) data)[0]; | |
| case GGML_TYPE_I16: | |
| return ((int16_t *) data)[0]; | |
| case GGML_TYPE_I32: | |
| return ((int32_t *) data)[0]; | |
| case GGML_TYPE_F16: | |
| return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); | |
| case GGML_TYPE_BF16: | |
| return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]); | |
| case GGML_TYPE_F32: | |
| return ((float *) data)[0]; | |
| default: | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) { | |
| void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| ((int8_t *)(data))[0] = value; | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| ((int16_t *)(data))[0] = value; | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| ((int32_t *)(data))[0] = value; | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| ((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value); | |
| } break; | |
| case GGML_TYPE_BF16: | |
| { | |
| ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| ((float *)(data))[0] = value; | |
| } break; | |
| default: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } | |
| float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { | |
| if (!ggml_is_contiguous(tensor)) { | |
| int64_t id[4] = { 0, 0, 0, 0 }; | |
| ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); | |
| return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]); | |
| } | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| return ((int8_t *)(tensor->data))[i]; | |
| } | |
| case GGML_TYPE_I16: | |
| { | |
| return ((int16_t *)(tensor->data))[i]; | |
| } | |
| case GGML_TYPE_I32: | |
| { | |
| return ((int32_t *)(tensor->data))[i]; | |
| } | |
| case GGML_TYPE_F16: | |
| { | |
| return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); | |
| } | |
| case GGML_TYPE_BF16: | |
| { | |
| return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]); | |
| } | |
| case GGML_TYPE_F32: | |
| { | |
| return ((float *)(tensor->data))[i]; | |
| } | |
| default: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } | |
| void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { | |
| if (!ggml_is_contiguous(tensor)) { | |
| int64_t id[4] = { 0, 0, 0, 0 }; | |
| ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); | |
| ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value); | |
| return; | |
| } | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| ((int8_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| ((int16_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| ((int32_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| ((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value); | |
| } break; | |
| case GGML_TYPE_BF16: | |
| { | |
| ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| ((float *)(tensor->data))[i] = value; | |
| } break; | |
| default: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } | |
| float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { | |
| void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| return ((int8_t *) data)[0]; | |
| case GGML_TYPE_I16: | |
| return ((int16_t *) data)[0]; | |
| case GGML_TYPE_I32: | |
| return ((int32_t *) data)[0]; | |
| case GGML_TYPE_F16: | |
| return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); | |
| case GGML_TYPE_BF16: | |
| return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]); | |
| case GGML_TYPE_F32: | |
| return ((float *) data)[0]; | |
| default: | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) { | |
| void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| ((int8_t *)(data))[0] = value; | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| ((int16_t *)(data))[0] = value; | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| ((int32_t *)(data))[0] = value; | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| ((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value); | |
| } break; | |
| case GGML_TYPE_BF16: | |
| { | |
| ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| ((float *)(data))[0] = value; | |
| } break; | |
| default: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| // ggml_compute_forward_mul_mat | |
| static void ggml_compute_forward_mul_mat_one_chunk( | |
| const struct ggml_compute_params * params, | |
| struct ggml_tensor * dst, | |
| const enum ggml_type type, | |
| const int64_t num_rows_per_vec_dot, | |
| const int64_t ir0_start, | |
| const int64_t ir0_end, | |
| const int64_t ir1_start, | |
| const int64_t ir1_end) { | |
| const struct ggml_tensor * src0 = dst->src[0]; | |
| const struct ggml_tensor * src1 = dst->src[1]; | |
| GGML_TENSOR_BINARY_OP_LOCALS | |
| const bool src1_cont = ggml_is_contiguous(src1); | |
| ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot; | |
| enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type; | |
| // broadcast factors | |
| const int64_t r2 = ne12 / ne02; | |
| const int64_t r3 = ne13 / ne03; | |
| //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end); | |
| // threads with no work simply yield (not sure if it helps) | |
| if (ir0_start >= ir0_end || ir1_start >= ir1_end) { | |
| return; | |
| } | |
| const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; | |
| const size_t row_size = ggml_row_size(vec_dot_type, ne10); | |
| assert(ne12 % ne02 == 0); | |
| assert(ne13 % ne03 == 0); | |
| // block-tiling attempt | |
| const int64_t blck_0 = 16; | |
| const int64_t blck_1 = 16; | |
| const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11; | |
| // attempt to reduce false-sharing (does not seem to make a difference) | |
| // 16 * 2, accounting for mmla kernels | |
| float tmp[32]; | |
| for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) { | |
| for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) { | |
| for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) { | |
| const int64_t i13 = (ir1 / (ne12 * ne1)); | |
| const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1; | |
| const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1); | |
| // broadcast src0 into src1 | |
| const int64_t i03 = i13 / r3; | |
| const int64_t i02 = i12 / r2; | |
| const int64_t i1 = i11; | |
| const int64_t i2 = i12; | |
| const int64_t i3 = i13; | |
| const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03); | |
| // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides | |
| // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using | |
| // the original src1 data pointer, so we should index using the indices directly | |
| // TODO: this is a bit of a hack, we should probably have a better way to handle this | |
| const char * src1_col = (const char*)wdata + | |
| (src1_cont || src1->type != vec_dot_type | |
| ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size | |
| : (i11 * nb11 + i12 * nb12 + i13 * nb13)); | |
| float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3)); | |
| //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) { | |
| // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col); | |
| //} | |
| for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) { | |
| vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot); | |
| } | |
| for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) { | |
| memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float)); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_mul_mat( | |
| const struct ggml_compute_params * params, | |
| struct ggml_tensor * dst) { | |
| const struct ggml_tensor * src0 = dst->src[0]; | |
| const struct ggml_tensor * src1 = dst->src[1]; | |
| GGML_TENSOR_BINARY_OP_LOCALS | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| enum ggml_type const vec_dot_type = type_traits_cpu[src0->type].vec_dot_type; | |
| ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float; | |
| int64_t const vec_dot_num_rows = type_traits_cpu[src0->type].nrows; | |
| GGML_ASSERT(ne0 == ne01); | |
| GGML_ASSERT(ne1 == ne11); | |
| GGML_ASSERT(ne2 == ne12); | |
| GGML_ASSERT(ne3 == ne13); | |
| // we don't support permuted src0 or src1 | |
| GGML_ASSERT(nb00 == ggml_type_size(src0->type)); | |
| GGML_ASSERT(nb10 == ggml_type_size(src1->type)); | |
| // dst cannot be transposed or permuted | |
| GGML_ASSERT(nb0 == sizeof(float)); | |
| GGML_ASSERT(nb0 <= nb1); | |
| GGML_ASSERT(nb1 <= nb2); | |
| GGML_ASSERT(nb2 <= nb3); | |
| // nb01 >= nb00 - src0 is not transposed | |
| // compute by src0 rows | |
| // TODO: extract to "extra_op" | |
| // broadcast factors | |
| const int64_t r2 = ne12 / ne02; | |
| const int64_t r3 = ne13 / ne03; | |
| const bool src1_cont = ggml_is_contiguous(src1); | |
| if (src1_cont) { | |
| for (int64_t i13 = 0; i13 < ne13; i13++) | |
| for (int64_t i12 = 0; i12 < ne12; i12++) | |
| if (!llamafile_sgemm(params, | |
| ne01, ne11, ne00/ggml_blck_size(src0->type), | |
| (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, | |
| nb01/ggml_type_size(src0->type), | |
| (const char *)src1->data + i12*nb12 + i13*nb13, | |
| nb11/ggml_type_size(src1->type), | |
| (char *)dst->data + i12*nb2 + i13*nb3, | |
| nb1/ggml_type_size(dst->type), | |
| src0->type, | |
| src1->type, | |
| dst->type)) | |
| goto UseGgmlGemm1; | |
| return; | |
| } | |
| UseGgmlGemm1:; | |
| if (src1->type != vec_dot_type) { | |
| char * wdata = params->wdata; | |
| const size_t nbw0 = ggml_type_size(vec_dot_type); | |
| const size_t nbw1 = ggml_row_size(vec_dot_type, ne10); | |
| const size_t nbw2 = nbw1*ne11; | |
| const size_t nbw3 = nbw2*ne12; | |
| assert(params->wsize >= ne13*nbw3); | |
| GGML_ASSERT(src1->type == GGML_TYPE_F32); | |
| for (int64_t i13 = 0; i13 < ne13; ++i13) { | |
| for (int64_t i12 = 0; i12 < ne12; ++i12) { | |
| for (int64_t i11 = ith; i11 < ne11; i11 += nth) { | |
| from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), | |
| (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1), | |
| ne10); | |
| } | |
| } | |
| } | |
| for (int64_t i13 = 0; i13 < ne13; ++i13) { | |
| for (int64_t i12 = 0; i12 < ne12; ++i12) { | |
| for (int64_t i11 = 0; i11 < ne11; ++i11) { | |
| size_t bs = ggml_blck_size(vec_dot_type); | |
| int64_t ne10_block_start = (ith * ne10/bs) / nth; | |
| int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth; | |
| from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10), | |
| (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0), | |
| (ne10_block_end - ne10_block_start) * bs); | |
| } | |
| } | |
| } | |
| } | |
| if (ith == 0) { | |
| // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. | |
| atomic_store_explicit(¶ms->threadpool->current_chunk, nth, memory_order_relaxed); | |
| } | |
| ggml_barrier(params->threadpool); | |
| if (src1->type != vec_dot_type) { | |
| const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; | |
| const size_t row_size = ggml_row_size(vec_dot_type, ne10); | |
| for (int64_t i13 = 0; i13 < ne13; i13++) | |
| for (int64_t i12 = 0; i12 < ne12; i12++) | |
| if (!llamafile_sgemm(params, | |
| ne01, ne11, ne00/ggml_blck_size(src0->type), | |
| (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, | |
| nb01/ggml_type_size(src0->type), | |
| (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size, | |
| row_size/ggml_type_size(vec_dot_type), | |
| (char *)dst->data + i12*nb2 + i13*nb3, | |
| nb1/ggml_type_size(dst->type), | |
| src0->type, | |
| vec_dot_type, | |
| dst->type)) | |
| goto UseGgmlGemm2; | |
| return; | |
| } | |
| UseGgmlGemm2:; | |
| // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers) | |
| const int64_t nr0 = ne0; | |
| // This is the size of the rest of the dimensions of the result | |
| const int64_t nr1 = ne1 * ne2 * ne3; | |
| // Now select a reasonable chunk size. | |
| int chunk_size = 16; | |
| // We need to step up the size if it's small | |
| if (nr0 == 1 || nr1 == 1) { | |
| chunk_size = 64; | |
| } | |
| // distribute the work across the inner or outer loop based on which one is larger | |
| // The number of chunks in the 0/1 dim. | |
| // CEIL(nr0/chunk_size) | |
| int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size; | |
| int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size; | |
| // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread. | |
| // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggml-org/llama.cpp/pull/6915 | |
| // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that. | |
| if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) { | |
| // distribute the thread work across the inner or outer loop based on which one is larger | |
| nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows | |
| nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows | |
| } | |
| // The number of elements in each chunk | |
| const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0; | |
| const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1; | |
| // The first chunk comes from our thread_id, the rest will get auto-assigned. | |
| int current_chunk = ith; | |
| while (current_chunk < nchunk0 * nchunk1) { | |
| const int64_t ith0 = current_chunk % nchunk0; | |
| const int64_t ith1 = current_chunk / nchunk0; | |
| const int64_t ir0_start = dr0 * ith0; | |
| const int64_t ir0_end = MIN(ir0_start + dr0, nr0); | |
| const int64_t ir1_start = dr1 * ith1; | |
| const int64_t ir1_end = MIN(ir1_start + dr1, nr1); | |
| // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols | |
| int64_t num_rows_per_vec_dot = vec_dot_num_rows; | |
| // these checks are needed to avoid crossing dim1 boundaries | |
| // can be optimized, but the logic would become more complicated, so keeping it like this for simplicity | |
| if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) { | |
| num_rows_per_vec_dot = 1; | |
| } | |
| ggml_compute_forward_mul_mat_one_chunk(params, dst, src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end); | |
| if (nth >= nchunk0 * nchunk1) { | |
| break; | |
| } | |
| current_chunk = atomic_fetch_add_explicit(¶ms->threadpool->current_chunk, 1, memory_order_relaxed); | |
| } | |
| } | |
| // ggml_compute_forward_mul_mat_id | |
| struct mmid_row_mapping { | |
| int32_t i1; | |
| int32_t i2; | |
| }; | |
| static void ggml_compute_forward_mul_mat_id_one_chunk( | |
| struct ggml_tensor * dst, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| const struct ggml_tensor * ids, | |
| const int64_t cur_a, | |
| const int64_t ir0_start, | |
| const int64_t ir0_end, | |
| const int64_t ir1_start, | |
| const int64_t ir1_end, | |
| const char * src0_cur, | |
| const struct mmid_row_mapping * matrix_rows, | |
| const size_t row_size, | |
| const bool src1_cont, | |
| const void * wdata) { | |
| GGML_TENSOR_BINARY_OP_LOCALS | |
| const enum ggml_type type = src0->type; | |
| ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot; | |
| enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type; | |
| const int64_t blck_0 = 16; | |
| const int64_t blck_1 = 16; | |
| float tmp[16]; | |
| for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) { | |
| for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) { | |
| for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ++ir1) { | |
| const int64_t _i12 = ir1; // logical row index for this expert | |
| struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12); | |
| const int id = row_mapping.i1; // selected expert index | |
| const int64_t i11 = id % ne11; | |
| const int64_t i12 = row_mapping.i2; // row index in src1 | |
| const int64_t i1 = id; // selected expert index | |
| const int64_t i2 = i12; // row | |
| // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides | |
| // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using | |
| // the original src1 data pointer, so we should index using the indices directly | |
| // TODO: this is a bit of a hack, we should probably have a better way to handle this | |
| const char * src1_col = (const char *) wdata + | |
| (src1_cont || src1->type != vec_dot_type | |
| ? (i11 + i12*ne11)*row_size | |
| : (i11*nb11 + i12*nb12)); | |
| float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2)); | |
| for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) { | |
| vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1); | |
| } | |
| memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir0_end) - iir0)*sizeof(float)); | |
| } | |
| } | |
| } | |
| } | |
| static void * incr_ptr_aligned(void ** p, size_t size, size_t align) { | |
| void * ptr = *p; | |
| ptr = (void *) GGML_PAD((uintptr_t) ptr, align); | |
| *p = (void *) ((char *) ptr + size); | |
| return ptr; | |
| } | |
| static void ggml_compute_forward_mul_mat_id( | |
| const struct ggml_compute_params * params, | |
| struct ggml_tensor * dst) { | |
| const struct ggml_tensor * src0 = dst->src[0]; | |
| const struct ggml_tensor * src1 = dst->src[1]; | |
| const struct ggml_tensor * ids = dst->src[2]; | |
| GGML_TENSOR_BINARY_OP_LOCALS | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const enum ggml_type type = src0->type; | |
| const bool src1_cont = ggml_is_contiguous(src1); | |
| enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type; | |
| ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float; | |
| // we don't support permuted src0 or src1 | |
| GGML_ASSERT(nb00 == ggml_type_size(type)); | |
| GGML_ASSERT(nb10 == ggml_type_size(src1->type)); | |
| // dst cannot be transposed or permuted | |
| GGML_ASSERT(nb0 == sizeof(float)); | |
| GGML_ASSERT(nb0 <= nb1); | |
| GGML_ASSERT(nb1 <= nb2); | |
| GGML_ASSERT(nb2 <= nb3); | |
| // row groups | |
| const int n_ids = ids->ne[0]; // n_expert_used | |
| const int n_as = ne02; // n_expert | |
| void * wdata_cur = params->wdata; | |
| if (src1->type != vec_dot_type) { | |
| incr_ptr_aligned(&wdata_cur, ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t)); | |
| } | |
| int64_t * matrix_row_counts = // [n_as] | |
| incr_ptr_aligned(&wdata_cur, n_as*sizeof(int64_t), sizeof(int64_t)); | |
| struct mmid_row_mapping * matrix_rows = // [n_as][ids->ne[0]*ids->ne[1]] | |
| incr_ptr_aligned(&wdata_cur, n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping), sizeof(int64_t)); | |
| char (*atomic_current_chunk)[CACHE_LINE_SIZE] = // [n_as] | |
| incr_ptr_aligned(&wdata_cur, CACHE_LINE_SIZE * n_as, CACHE_LINE_SIZE); | |
| GGML_ASSERT(params->wsize >= (size_t)((char *) wdata_cur - (char *) params->wdata)); | |
| if (src1->type != vec_dot_type) { | |
| char * wdata = params->wdata; | |
| const size_t nbw0 = ggml_type_size(vec_dot_type); | |
| const size_t nbw1 = ggml_row_size(vec_dot_type, ne10); | |
| const size_t nbw2 = nbw1*ne11; | |
| const size_t nbw3 = nbw2*ne12; | |
| assert(params->wsize >= ne13*nbw3); | |
| GGML_ASSERT(src1->type == GGML_TYPE_F32); | |
| for (int64_t i13 = 0; i13 < ne13; ++i13) { | |
| for (int64_t i12 = ith; i12 < ne12; i12 += nth) { | |
| for (int64_t i11 = 0; i11 < ne11; ++i11) { | |
| from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), | |
| (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1), | |
| ne10); | |
| } | |
| } | |
| } | |
| for (int64_t i13 = 0; i13 < ne13; ++i13) { | |
| for (int64_t i12 = 0; i12 < ne12; ++i12) { | |
| for (int64_t i11 = 0; i11 < ne11; ++i11) { | |
| size_t bs = ggml_blck_size(vec_dot_type); | |
| int64_t ne10_block_start = (ith * ne10/bs) / nth; | |
| int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth; | |
| from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10), | |
| (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0), | |
| (ne10_block_end - ne10_block_start) * bs); | |
| } | |
| } | |
| } | |
| } | |
| if (ith == 0) { | |
| // initialize matrix_row_counts | |
| memset(matrix_row_counts, 0, n_as*sizeof(int64_t)); | |
| // group rows by src0 matrix | |
| for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) { | |
| for (int id = 0; id < n_ids; ++id) { | |
| const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]); | |
| assert(i02 >= 0 && i02 < n_as); | |
| MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1}; | |
| matrix_row_counts[i02] += 1; | |
| } | |
| } | |
| } | |
| // reset current_chunk | |
| for (int cur_a = ith; cur_a < n_as; cur_a += nth) { | |
| atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a); | |
| *current_chunk_ctr = nth; | |
| } | |
| ggml_barrier(params->threadpool); | |
| for (int cur_a = 0; cur_a < n_as; ++cur_a) { | |
| const int64_t cne1 = matrix_row_counts[cur_a]; | |
| if (cne1 == 0) { | |
| continue; | |
| } | |
| const char * src0_cur = (const char *) src0->data + cur_a * nb02; | |
| const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; | |
| const size_t row_size = ggml_row_size(vec_dot_type, ne10); | |
| const int64_t nr0 = ne01; | |
| const int64_t nr1 = cne1; | |
| int chunk_size = 16; | |
| if (nr0 == 1 || nr1 == 1) { | |
| chunk_size = 64; | |
| } | |
| // disable for ARM | |
| const bool disable_chunking = true; | |
| // disable for NUMA | |
| const bool disable_chunking = ggml_is_numa(); | |
| int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size; | |
| int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size; | |
| if (nchunk0 * nchunk1 < nth * 4 || disable_chunking) { | |
| nchunk0 = nr0 > nr1 ? nth : 1; | |
| nchunk1 = nr0 > nr1 ? 1 : nth; | |
| } | |
| const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0; | |
| const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1; | |
| int current_chunk = ith; | |
| atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a); | |
| while (current_chunk < nchunk0 * nchunk1) { | |
| const int64_t ith0 = current_chunk % nchunk0; | |
| const int64_t ith1 = current_chunk / nchunk0; | |
| const int64_t ir0_start = dr0 * ith0; | |
| const int64_t ir0_end = MIN(ir0_start + dr0, nr0); | |
| const int64_t ir1_start = dr1 * ith1; | |
| const int64_t ir1_end = MIN(ir1_start + dr1, nr1); | |
| ggml_compute_forward_mul_mat_id_one_chunk( | |
| dst, src0, src1, ids, cur_a, | |
| ir0_start, ir0_end, ir1_start, ir1_end, | |
| src0_cur, matrix_rows, row_size, src1_cont, wdata | |
| ); | |
| if (nth >= nchunk0 * nchunk1) { | |
| break; | |
| } | |
| current_chunk = atomic_fetch_add_explicit(current_chunk_ctr, 1, memory_order_relaxed); | |
| } | |
| } | |
| } | |
| ///////////////////////////////// | |
| static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { | |
| GGML_ASSERT(params); | |
| if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) { | |
| return; | |
| } | |
| // extra_buffer op? | |
| if (ggml_cpu_extra_compute_forward(params, tensor)) { | |
| return; | |
| } | |
| switch (tensor->op) { | |
| case GGML_OP_DUP: | |
| { | |
| ggml_compute_forward_dup(params, tensor); | |
| } break; | |
| case GGML_OP_ADD: | |
| { | |
| ggml_compute_forward_add(params, tensor); | |
| } break; | |
| case GGML_OP_ADD_ID: | |
| { | |
| ggml_compute_forward_add_id(params, tensor); | |
| } break; | |
| case GGML_OP_ADD1: | |
| { | |
| ggml_compute_forward_add1(params, tensor); | |
| } break; | |
| case GGML_OP_ACC: | |
| { | |
| ggml_compute_forward_acc(params, tensor); | |
| } break; | |
| case GGML_OP_SUB: | |
| { | |
| ggml_compute_forward_sub(params, tensor); | |
| } break; | |
| case GGML_OP_MUL: | |
| { | |
| ggml_compute_forward_mul(params, tensor); | |
| } break; | |
| case GGML_OP_DIV: | |
| { | |
| ggml_compute_forward_div(params, tensor); | |
| } break; | |
| case GGML_OP_SQR: | |
| { | |
| ggml_compute_forward_sqr(params, tensor); | |
| } break; | |
| case GGML_OP_SQRT: | |
| { | |
| ggml_compute_forward_sqrt(params, tensor); | |
| } break; | |
| case GGML_OP_LOG: | |
| { | |
| ggml_compute_forward_log(params, tensor); | |
| } break; | |
| case GGML_OP_SIN: | |
| { | |
| ggml_compute_forward_sin(params, tensor); | |
| } break; | |
| case GGML_OP_COS: | |
| { | |
| ggml_compute_forward_cos(params, tensor); | |
| } break; | |
| case GGML_OP_SUM: | |
| { | |
| ggml_compute_forward_sum(params, tensor); | |
| } break; | |
| case GGML_OP_SUM_ROWS: | |
| { | |
| ggml_compute_forward_sum_rows(params, tensor); | |
| } break; | |
| case GGML_OP_MEAN: | |
| { | |
| ggml_compute_forward_mean(params, tensor); | |
| } break; | |
| case GGML_OP_ARGMAX: | |
| { | |
| ggml_compute_forward_argmax(params, tensor); | |
| } break; | |
| case GGML_OP_COUNT_EQUAL: | |
| { | |
| ggml_compute_forward_count_equal(params, tensor); | |
| } break; | |
| case GGML_OP_REPEAT: | |
| { | |
| ggml_compute_forward_repeat(params, tensor); | |
| } break; | |
| case GGML_OP_REPEAT_BACK: | |
| { | |
| ggml_compute_forward_repeat_back(params, tensor); | |
| } break; | |
| case GGML_OP_CONCAT: | |
| { | |
| ggml_compute_forward_concat(params, tensor); | |
| } break; | |
| case GGML_OP_SILU_BACK: | |
| { | |
| ggml_compute_forward_silu_back(params, tensor); | |
| } break; | |
| case GGML_OP_NORM: | |
| { | |
| ggml_compute_forward_norm(params, tensor); | |
| } break; | |
| case GGML_OP_RMS_NORM: | |
| { | |
| ggml_compute_forward_rms_norm(params, tensor); | |
| } break; | |
| case GGML_OP_RMS_NORM_BACK: | |
| { | |
| ggml_compute_forward_rms_norm_back(params, tensor); | |
| } break; | |
| case GGML_OP_GROUP_NORM: | |
| { | |
| ggml_compute_forward_group_norm(params, tensor); | |
| } break; | |
| case GGML_OP_L2_NORM: | |
| { | |
| ggml_compute_forward_l2_norm(params, tensor); | |
| } break; | |
| case GGML_OP_MUL_MAT: | |
| { | |
| ggml_compute_forward_mul_mat(params, tensor); | |
| } break; | |
| case GGML_OP_MUL_MAT_ID: | |
| { | |
| ggml_compute_forward_mul_mat_id(params, tensor); | |
| } break; | |
| case GGML_OP_OUT_PROD: | |
| { | |
| ggml_compute_forward_out_prod(params, tensor); | |
| } break; | |
| case GGML_OP_SCALE: | |
| { | |
| ggml_compute_forward_scale(params, tensor); | |
| } break; | |
| case GGML_OP_SET: | |
| { | |
| ggml_compute_forward_set(params, tensor); | |
| } break; | |
| case GGML_OP_CPY: | |
| { | |
| ggml_compute_forward_cpy(params, tensor); | |
| } break; | |
| case GGML_OP_CONT: | |
| { | |
| ggml_compute_forward_cont(params, tensor); | |
| } break; | |
| case GGML_OP_RESHAPE: | |
| { | |
| ggml_compute_forward_reshape(params, tensor); | |
| } break; | |
| case GGML_OP_VIEW: | |
| { | |
| ggml_compute_forward_view(params, tensor); | |
| } break; | |
| case GGML_OP_PERMUTE: | |
| { | |
| ggml_compute_forward_permute(params, tensor); | |
| } break; | |
| case GGML_OP_TRANSPOSE: | |
| { | |
| ggml_compute_forward_transpose(params, tensor); | |
| } break; | |
| case GGML_OP_GET_ROWS: | |
| { | |
| ggml_compute_forward_get_rows(params, tensor); | |
| } break; | |
| case GGML_OP_GET_ROWS_BACK: | |
| { | |
| ggml_compute_forward_get_rows_back(params, tensor); | |
| } break; | |
| case GGML_OP_SET_ROWS: | |
| { | |
| ggml_compute_forward_set_rows(params, tensor); | |
| } break; | |
| case GGML_OP_DIAG: | |
| { | |
| ggml_compute_forward_diag(params, tensor); | |
| } break; | |
| case GGML_OP_DIAG_MASK_INF: | |
| { | |
| ggml_compute_forward_diag_mask_inf(params, tensor); | |
| } break; | |
| case GGML_OP_DIAG_MASK_ZERO: | |
| { | |
| ggml_compute_forward_diag_mask_zero(params, tensor); | |
| } break; | |
| case GGML_OP_SOFT_MAX: | |
| { | |
| ggml_compute_forward_soft_max(params, tensor); | |
| } break; | |
| case GGML_OP_SOFT_MAX_BACK: | |
| { | |
| ggml_compute_forward_soft_max_ext_back(params, tensor); | |
| } break; | |
| case GGML_OP_ROPE: | |
| { | |
| ggml_compute_forward_rope(params, tensor); | |
| } break; | |
| case GGML_OP_ROPE_BACK: | |
| { | |
| ggml_compute_forward_rope_back(params, tensor); | |
| } break; | |
| case GGML_OP_CLAMP: | |
| { | |
| ggml_compute_forward_clamp(params, tensor); | |
| } break; | |
| case GGML_OP_CONV_TRANSPOSE_1D: | |
| { | |
| ggml_compute_forward_conv_transpose_1d(params, tensor); | |
| } break; | |
| case GGML_OP_IM2COL: | |
| { | |
| ggml_compute_forward_im2col(params, tensor); | |
| } break; | |
| case GGML_OP_IM2COL_BACK: | |
| { | |
| ggml_compute_forward_im2col_back_f32(params, tensor); | |
| } break; | |
| case GGML_OP_CONV_2D: | |
| { | |
| ggml_compute_forward_conv_2d(params, tensor); | |
| } break; | |
| case GGML_OP_CONV_2D_DW: | |
| { | |
| ggml_compute_forward_conv_2d_dw(params, tensor); | |
| } break; | |
| case GGML_OP_CONV_TRANSPOSE_2D: | |
| { | |
| ggml_compute_forward_conv_transpose_2d(params, tensor); | |
| } break; | |
| case GGML_OP_POOL_1D: | |
| { | |
| ggml_compute_forward_pool_1d(params, tensor); | |
| } break; | |
| case GGML_OP_POOL_2D: | |
| { | |
| ggml_compute_forward_pool_2d(params, tensor); | |
| } break; | |
| case GGML_OP_POOL_2D_BACK: | |
| { | |
| ggml_compute_forward_pool_2d_back(params, tensor); | |
| } break; | |
| case GGML_OP_UPSCALE: | |
| { | |
| ggml_compute_forward_upscale(params, tensor); | |
| } break; | |
| case GGML_OP_PAD: | |
| { | |
| ggml_compute_forward_pad(params, tensor); | |
| } break; | |
| case GGML_OP_PAD_REFLECT_1D: | |
| { | |
| ggml_compute_forward_pad_reflect_1d(params, tensor); | |
| } break; | |
| case GGML_OP_ROLL: | |
| { | |
| ggml_compute_forward_roll(params, tensor); | |
| } break; | |
| case GGML_OP_ARANGE: | |
| { | |
| ggml_compute_forward_arange(params, tensor); | |
| } break; | |
| case GGML_OP_TIMESTEP_EMBEDDING: | |
| { | |
| ggml_compute_forward_timestep_embedding(params, tensor); | |
| } break; | |
| case GGML_OP_ARGSORT: | |
| { | |
| ggml_compute_forward_argsort(params, tensor); | |
| } break; | |
| case GGML_OP_LEAKY_RELU: | |
| { | |
| ggml_compute_forward_leaky_relu(params, tensor); | |
| } break; | |
| case GGML_OP_FLASH_ATTN_EXT: | |
| { | |
| ggml_compute_forward_flash_attn_ext(params, tensor); | |
| } break; | |
| case GGML_OP_FLASH_ATTN_BACK: | |
| { | |
| int32_t t = ggml_get_op_params_i32(tensor, 0); | |
| GGML_ASSERT(t == 0 || t == 1); | |
| bool masked = t != 0; | |
| ggml_compute_forward_flash_attn_back(params, masked, tensor); | |
| } break; | |
| case GGML_OP_SSM_CONV: | |
| { | |
| ggml_compute_forward_ssm_conv(params, tensor); | |
| } break; | |
| case GGML_OP_SSM_SCAN: | |
| { | |
| ggml_compute_forward_ssm_scan(params, tensor); | |
| } break; | |
| case GGML_OP_WIN_PART: | |
| { | |
| ggml_compute_forward_win_part(params, tensor); | |
| } break; | |
| case GGML_OP_WIN_UNPART: | |
| { | |
| ggml_compute_forward_win_unpart(params, tensor); | |
| } break; | |
| case GGML_OP_UNARY: | |
| { | |
| ggml_compute_forward_unary(params, tensor); | |
| } break; | |
| case GGML_OP_GLU: | |
| { | |
| ggml_compute_forward_glu(params, tensor); | |
| } break; | |
| case GGML_OP_GET_REL_POS: | |
| { | |
| ggml_compute_forward_get_rel_pos(params, tensor); | |
| } break; | |
| case GGML_OP_ADD_REL_POS: | |
| { | |
| ggml_compute_forward_add_rel_pos(params, tensor); | |
| } break; | |
| case GGML_OP_RWKV_WKV6: | |
| { | |
| ggml_compute_forward_rwkv_wkv6(params, tensor); | |
| } break; | |
| case GGML_OP_GATED_LINEAR_ATTN: | |
| { | |
| ggml_compute_forward_gla(params, tensor); | |
| } break; | |
| case GGML_OP_RWKV_WKV7: | |
| { | |
| ggml_compute_forward_rwkv_wkv7(params, tensor); | |
| } break; | |
| case GGML_OP_MAP_CUSTOM1: | |
| { | |
| ggml_compute_forward_map_custom1(params, tensor); | |
| } | |
| break; | |
| case GGML_OP_MAP_CUSTOM2: | |
| { | |
| ggml_compute_forward_map_custom2(params, tensor); | |
| } | |
| break; | |
| case GGML_OP_MAP_CUSTOM3: | |
| { | |
| ggml_compute_forward_map_custom3(params, tensor); | |
| } | |
| break; | |
| case GGML_OP_CUSTOM: | |
| { | |
| ggml_compute_forward_custom(params, tensor); | |
| } | |
| break; | |
| case GGML_OP_CROSS_ENTROPY_LOSS: | |
| { | |
| ggml_compute_forward_cross_entropy_loss(params, tensor); | |
| } | |
| break; | |
| case GGML_OP_CROSS_ENTROPY_LOSS_BACK: | |
| { | |
| ggml_compute_forward_cross_entropy_loss_back(params, tensor); | |
| } | |
| break; | |
| case GGML_OP_OPT_STEP_ADAMW: | |
| { | |
| ggml_compute_forward_opt_step_adamw(params, tensor); | |
| } | |
| break; | |
| case GGML_OP_OPT_STEP_SGD: | |
| { | |
| ggml_compute_forward_opt_step_sgd(params, tensor); | |
| } | |
| break; | |
| case GGML_OP_NONE: | |
| { | |
| // nop | |
| } break; | |
| case GGML_OP_COUNT: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } | |
| // Android's libc implementation "bionic" does not support setting affinity | |
| static void set_numa_thread_affinity(int thread_n) { | |
| if (!ggml_is_numa()) { | |
| return; | |
| } | |
| int node_num; | |
| int rv; | |
| size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); | |
| switch(g_state.numa.numa_strategy) { | |
| case GGML_NUMA_STRATEGY_DISTRIBUTE: | |
| // run thread on node_num thread_n / (threads per node) | |
| node_num = thread_n % g_state.numa.n_nodes; | |
| break; | |
| case GGML_NUMA_STRATEGY_ISOLATE: | |
| // run thread on current_node | |
| node_num = g_state.numa.current_node; | |
| break; | |
| case GGML_NUMA_STRATEGY_NUMACTL: | |
| // use the cpuset that numactl gave us | |
| rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset); | |
| if (rv) { | |
| fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv)); | |
| } | |
| return; | |
| default: | |
| return; | |
| } | |
| struct ggml_numa_node * node = &g_state.numa.nodes[node_num]; | |
| cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); | |
| CPU_ZERO_S(setsize, cpus); | |
| for (size_t i = 0; i < node->n_cpus; ++i) { | |
| CPU_SET_S(node->cpus[i], setsize, cpus); | |
| } | |
| rv = pthread_setaffinity_np(pthread_self(), setsize, cpus); | |
| if (rv) { | |
| fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv)); | |
| } | |
| CPU_FREE(cpus); | |
| } | |
| static void clear_numa_thread_affinity(void) { | |
| if (!ggml_is_numa()) { | |
| return; | |
| } | |
| size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); | |
| cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); | |
| CPU_ZERO_S(setsize, cpus); | |
| for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) { | |
| CPU_SET_S(i, setsize, cpus); | |
| } | |
| int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus); | |
| if (rv) { | |
| fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv)); | |
| } | |
| CPU_FREE(cpus); | |
| } | |
| // TODO: Windows etc. | |
| // (the linux implementation may also work on BSD, someone should test) | |
| static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); } | |
| static void clear_numa_thread_affinity(void) {} | |
| static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { | |
| int n_tasks = 0; | |
| if (ggml_is_empty(node)) { | |
| // no need to multi-thread a no-op | |
| n_tasks = 1; | |
| return n_tasks; | |
| } | |
| switch (node->op) { | |
| case GGML_OP_CPY: | |
| case GGML_OP_DUP: | |
| case GGML_OP_CONT: | |
| case GGML_OP_ADD: | |
| case GGML_OP_ADD_ID: | |
| case GGML_OP_ADD1: | |
| case GGML_OP_ACC: | |
| { | |
| n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_SUB: | |
| case GGML_OP_SQR: | |
| case GGML_OP_SQRT: | |
| case GGML_OP_LOG: | |
| case GGML_OP_SIN: | |
| case GGML_OP_COS: | |
| case GGML_OP_SUM: | |
| case GGML_OP_SUM_ROWS: | |
| case GGML_OP_MEAN: | |
| case GGML_OP_ARGMAX: | |
| { | |
| n_tasks = 1; | |
| } break; | |
| case GGML_OP_COUNT_EQUAL: | |
| { | |
| n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_REPEAT: | |
| case GGML_OP_REPEAT_BACK: | |
| case GGML_OP_LEAKY_RELU: | |
| { | |
| n_tasks = 1; | |
| } break; | |
| case GGML_OP_UNARY: | |
| switch (ggml_get_unary_op(node)) { | |
| case GGML_UNARY_OP_ABS: | |
| case GGML_UNARY_OP_SGN: | |
| case GGML_UNARY_OP_NEG: | |
| case GGML_UNARY_OP_STEP: | |
| case GGML_UNARY_OP_TANH: | |
| case GGML_UNARY_OP_ELU: | |
| case GGML_UNARY_OP_RELU: | |
| case GGML_UNARY_OP_SIGMOID: | |
| case GGML_UNARY_OP_HARDSWISH: | |
| case GGML_UNARY_OP_HARDSIGMOID: | |
| case GGML_UNARY_OP_EXP: | |
| { | |
| n_tasks = 1; | |
| } break; | |
| case GGML_UNARY_OP_GELU: | |
| case GGML_UNARY_OP_GELU_ERF: | |
| case GGML_UNARY_OP_GELU_QUICK: | |
| case GGML_UNARY_OP_SILU: | |
| { | |
| n_tasks = n_threads; | |
| } break; | |
| default: | |
| GGML_ABORT("fatal error"); | |
| } | |
| break; | |
| case GGML_OP_GLU: | |
| switch (ggml_get_glu_op(node)) { | |
| case GGML_GLU_OP_REGLU: | |
| case GGML_GLU_OP_GEGLU: | |
| case GGML_GLU_OP_SWIGLU: | |
| case GGML_GLU_OP_SWIGLU_OAI: | |
| case GGML_GLU_OP_GEGLU_ERF: | |
| case GGML_GLU_OP_GEGLU_QUICK: | |
| { | |
| n_tasks = n_threads; | |
| } break; | |
| default: | |
| GGML_ABORT("fatal error"); | |
| } | |
| break; | |
| case GGML_OP_SILU_BACK: | |
| case GGML_OP_MUL: | |
| case GGML_OP_DIV: | |
| case GGML_OP_NORM: | |
| case GGML_OP_RMS_NORM: | |
| case GGML_OP_RMS_NORM_BACK: | |
| case GGML_OP_L2_NORM: | |
| case GGML_OP_GROUP_NORM: | |
| case GGML_OP_CONCAT: | |
| case GGML_OP_MUL_MAT: | |
| case GGML_OP_MUL_MAT_ID: | |
| case GGML_OP_OUT_PROD: | |
| { | |
| n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_GET_ROWS: | |
| case GGML_OP_SET_ROWS: | |
| { | |
| // FIXME: get_rows can use additional threads, but the cost of launching additional threads | |
| // decreases performance with GPU offloading | |
| //n_tasks = n_threads; | |
| n_tasks = 1; | |
| } break; | |
| case GGML_OP_SCALE: | |
| case GGML_OP_SET: | |
| case GGML_OP_RESHAPE: | |
| case GGML_OP_VIEW: | |
| case GGML_OP_PERMUTE: | |
| case GGML_OP_TRANSPOSE: | |
| case GGML_OP_GET_ROWS_BACK: | |
| case GGML_OP_DIAG: | |
| { | |
| n_tasks = 1; | |
| } break; | |
| case GGML_OP_DIAG_MASK_ZERO: | |
| case GGML_OP_DIAG_MASK_INF: | |
| case GGML_OP_SOFT_MAX_BACK: | |
| case GGML_OP_ROPE: | |
| case GGML_OP_ROPE_BACK: | |
| case GGML_OP_ADD_REL_POS: | |
| { | |
| n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_CLAMP: | |
| { | |
| n_tasks = 1; //TODO | |
| } break; | |
| case GGML_OP_SOFT_MAX: | |
| { | |
| n_tasks = MIN(n_threads, ggml_nrows(node->src[0])); | |
| } break; | |
| case GGML_OP_IM2COL: | |
| case GGML_OP_IM2COL_BACK: | |
| case GGML_OP_CONV_2D: | |
| case GGML_OP_CONV_2D_DW: | |
| case GGML_OP_CONV_TRANSPOSE_1D: | |
| case GGML_OP_CONV_TRANSPOSE_2D: | |
| { | |
| n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_POOL_1D: | |
| case GGML_OP_POOL_2D: | |
| case GGML_OP_POOL_2D_BACK: | |
| { | |
| n_tasks = 1; | |
| } break; | |
| case GGML_OP_UPSCALE: | |
| case GGML_OP_PAD: | |
| case GGML_OP_PAD_REFLECT_1D: | |
| case GGML_OP_ROLL: | |
| case GGML_OP_ARANGE: | |
| case GGML_OP_TIMESTEP_EMBEDDING: | |
| case GGML_OP_ARGSORT: | |
| case GGML_OP_FLASH_ATTN_EXT: | |
| case GGML_OP_FLASH_ATTN_BACK: | |
| case GGML_OP_SSM_CONV: | |
| case GGML_OP_SSM_SCAN: | |
| case GGML_OP_RWKV_WKV6: | |
| case GGML_OP_GATED_LINEAR_ATTN: | |
| case GGML_OP_RWKV_WKV7: | |
| { | |
| n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_WIN_PART: | |
| case GGML_OP_WIN_UNPART: | |
| case GGML_OP_GET_REL_POS: | |
| { | |
| n_tasks = 1; | |
| } break; | |
| case GGML_OP_MAP_CUSTOM1: | |
| { | |
| struct ggml_map_custom1_op_params p; | |
| memcpy(&p, node->op_params, sizeof(p)); | |
| if (p.n_tasks == GGML_N_TASKS_MAX) { | |
| n_tasks = n_threads; | |
| } else { | |
| n_tasks = MIN(p.n_tasks, n_threads); | |
| } | |
| } break; | |
| case GGML_OP_MAP_CUSTOM2: | |
| { | |
| struct ggml_map_custom2_op_params p; | |
| memcpy(&p, node->op_params, sizeof(p)); | |
| if (p.n_tasks == GGML_N_TASKS_MAX) { | |
| n_tasks = n_threads; | |
| } else { | |
| n_tasks = MIN(p.n_tasks, n_threads); | |
| } | |
| } break; | |
| case GGML_OP_MAP_CUSTOM3: | |
| { | |
| struct ggml_map_custom3_op_params p; | |
| memcpy(&p, node->op_params, sizeof(p)); | |
| if (p.n_tasks == GGML_N_TASKS_MAX) { | |
| n_tasks = n_threads; | |
| } else { | |
| n_tasks = MIN(p.n_tasks, n_threads); | |
| } | |
| } break; | |
| case GGML_OP_CUSTOM: | |
| { | |
| struct ggml_custom_op_params p; | |
| memcpy(&p, node->op_params, sizeof(p)); | |
| if (p.n_tasks == GGML_N_TASKS_MAX) { | |
| n_tasks = n_threads; | |
| } else { | |
| n_tasks = MIN(p.n_tasks, n_threads); | |
| } | |
| } break; | |
| case GGML_OP_CROSS_ENTROPY_LOSS: | |
| case GGML_OP_CROSS_ENTROPY_LOSS_BACK: | |
| case GGML_OP_OPT_STEP_ADAMW: | |
| case GGML_OP_OPT_STEP_SGD: | |
| { | |
| n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_NONE: | |
| { | |
| n_tasks = 1; | |
| } break; | |
| case GGML_OP_COUNT: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| default: | |
| { | |
| fprintf(stderr, "%s: op not implemented: ", __func__); | |
| if (node->op < GGML_OP_COUNT) { | |
| fprintf(stderr, "%s\n", ggml_op_name(node->op)); | |
| } else { | |
| fprintf(stderr, "%d\n", node->op); | |
| } | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| assert(n_tasks > 0); | |
| return n_tasks; | |
| } | |
| static thread_ret_t ggml_graph_compute_secondary_thread(void* data); | |
| // TODO: support > 64 CPUs | |
| static bool ggml_thread_apply_affinity(bool * mask) { | |
| HANDLE h = GetCurrentThread(); | |
| uint64_t bitmask = 0ULL; | |
| assert(GGML_MAX_N_THREADS >= 64); | |
| for (int32_t i = 0; i < 8; i++) { | |
| int32_t idx = i * 8; | |
| uint8_t val = 0; | |
| val |= mask[idx + 0] << 0; | |
| val |= mask[idx + 1] << 1; | |
| val |= mask[idx + 2] << 2; | |
| val |= mask[idx + 3] << 3; | |
| val |= mask[idx + 4] << 4; | |
| val |= mask[idx + 5] << 5; | |
| val |= mask[idx + 6] << 6; | |
| val |= mask[idx + 7] << 7; | |
| bitmask |= (uint64_t)val << idx; | |
| } | |
| for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) { | |
| if (mask[i]) { | |
| fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n"); | |
| break; | |
| } | |
| } | |
| DWORD_PTR m = (DWORD_PTR)bitmask; | |
| m = SetThreadAffinityMask(h, m); | |
| return m != 0; | |
| } | |
| static bool ggml_thread_apply_priority(int32_t prio) { | |
| // Note that on Windows the Process Priority Class must be updated in order to set Thread priority. | |
| // This is up to the applications. | |
| DWORD p = THREAD_PRIORITY_NORMAL; | |
| switch (prio) { | |
| case GGML_SCHED_PRIO_LOW: p = THREAD_PRIORITY_BELOW_NORMAL; break; | |
| case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break; | |
| case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break; | |
| case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break; | |
| case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break; | |
| } | |
| if (prio != GGML_SCHED_PRIO_LOW) { | |
| // Tell Windows that this thread should not be throttled (needs its own CPU core). | |
| // Newer Windows 11 versions aggresively park (offline) CPU cores and often place | |
| // all our threads onto the first 4 cores which results in terrible performance with | |
| // n_threads > 4 | |
| THREAD_POWER_THROTTLING_STATE t; | |
| ZeroMemory(&t, sizeof(t)); | |
| t.Version = THREAD_POWER_THROTTLING_CURRENT_VERSION; | |
| t.ControlMask = THREAD_POWER_THROTTLING_EXECUTION_SPEED; | |
| t.StateMask = 0; | |
| if (!SetThreadInformation(GetCurrentThread(), ThreadPowerThrottling, &t, sizeof(t))) { | |
| GGML_LOG_DEBUG("failed to disable thread power throttling %d : (%d)\n", prio, (int) GetLastError()); | |
| return false; | |
| } | |
| } | |
| if (prio == GGML_SCHED_PRIO_NORMAL) { | |
| // Keep inherited policy/priority | |
| return true; | |
| } | |
| if (!SetThreadPriority(GetCurrentThread(), p)) { | |
| fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError()); | |
| return false; | |
| } | |
| return true; | |
| } | |
| static bool ggml_thread_apply_affinity(const bool * mask) { | |
| // Not supported on Apple platforms | |
| UNUSED(mask); | |
| return true; | |
| } | |
| static bool ggml_thread_apply_priority(int32_t prio) { | |
| struct sched_param p; | |
| int32_t policy = SCHED_OTHER; | |
| switch (prio) { | |
| // TODO: there seems to be no way to set lower prio on Apple platforms | |
| case GGML_SCHED_PRIO_LOW: policy = SCHED_OTHER; p.sched_priority = 0; break; | |
| case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; | |
| case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; | |
| case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; | |
| case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break; | |
| } | |
| if (prio == GGML_SCHED_PRIO_NORMAL) { | |
| // Keep inherited policy/priority | |
| return true; | |
| } | |
| int32_t err = pthread_setschedparam(pthread_self(), policy, &p); | |
| if (err != 0) { | |
| fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err); | |
| return false; | |
| } | |
| return true; | |
| } | |
| // TODO: this may not work on BSD, to be verified | |
| static bool ggml_thread_apply_affinity(const bool * mask) { | |
| cpu_set_t cpuset; | |
| int err; | |
| CPU_ZERO(&cpuset); | |
| for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) { | |
| if (mask[i]) { | |
| GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i); | |
| CPU_SET(i, &cpuset); | |
| } | |
| } | |
| err = sched_setaffinity(0, sizeof(cpuset), &cpuset); | |
| if (err < 0) { | |
| err = errno; | |
| } | |
| err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset); | |
| if (err != 0) { | |
| fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err); | |
| return false; | |
| } | |
| return true; | |
| } | |
| static bool ggml_thread_apply_priority(int32_t prio) { | |
| struct sched_param p; | |
| int32_t policy = SCHED_OTHER; | |
| switch (prio) { | |
| case GGML_SCHED_PRIO_LOW: policy = SCHED_BATCH; p.sched_priority = 0; break; | |
| case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; | |
| case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; | |
| case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; | |
| case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break; | |
| } | |
| if (prio == GGML_SCHED_PRIO_NORMAL) { | |
| // Keep inherited policy/priority | |
| return true; | |
| } | |
| int32_t err = pthread_setschedparam(pthread_self(), policy, &p); | |
| if (err != 0) { | |
| fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err); | |
| return false; | |
| } | |
| return true; | |
| } | |
| static bool ggml_thread_apply_affinity(const bool * mask) { | |
| UNUSED(mask); | |
| return true; | |
| } | |
| static bool ggml_thread_apply_priority(int32_t prio) { | |
| UNUSED(prio); | |
| return true; | |
| } | |
| static bool ggml_thread_cpumask_is_valid(const bool * mask) { | |
| for (int i = 0; i < GGML_MAX_N_THREADS; i++) { | |
| if (mask[i]) { return true; } | |
| } | |
| return false; | |
| } | |
| static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) { | |
| if (!strict) { | |
| memcpy(local_mask, global_mask, GGML_MAX_N_THREADS); | |
| return; | |
| } else { | |
| memset(local_mask, 0, GGML_MAX_N_THREADS); | |
| int32_t base_idx = *iter; | |
| for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) { | |
| int32_t idx = base_idx + i; | |
| if (idx >= GGML_MAX_N_THREADS) { | |
| // Just a cheaper modulo | |
| idx -= GGML_MAX_N_THREADS; | |
| } | |
| if (global_mask[idx]) { | |
| local_mask[idx] = 1; | |
| *iter = idx + 1; | |
| return; | |
| } | |
| } | |
| } | |
| } | |
| void ggml_threadpool_free(struct ggml_threadpool* threadpool) { | |
| if (!threadpool) return; | |
| const int n_threads = threadpool->n_threads_max; | |
| struct ggml_compute_state* workers = threadpool->workers; | |
| ggml_mutex_lock(&threadpool->mutex); | |
| threadpool->stop = true; | |
| threadpool->pause = false; | |
| ggml_cond_broadcast(&threadpool->cond); | |
| ggml_mutex_unlock(&threadpool->mutex); | |
| for (int j = 1; j < n_threads; j++) { | |
| int32_t rc = ggml_thread_join(workers[j].thrd, NULL); | |
| GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED); | |
| UNUSED(rc); | |
| } | |
| ggml_mutex_destroy(&threadpool->mutex); | |
| ggml_cond_destroy(&threadpool->cond); | |
| const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads; | |
| ggml_aligned_free(threadpool->workers, workers_size); | |
| ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool)); | |
| } | |
| // pause/resume must be called under mutex | |
| static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) { | |
| GGML_PRINT_DEBUG("Pausing threadpool\n"); | |
| threadpool->pause = true; | |
| ggml_cond_broadcast(&threadpool->cond); | |
| } | |
| static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) { | |
| GGML_PRINT_DEBUG("Resuming threadpool\n"); | |
| threadpool->pause = false; | |
| ggml_cond_broadcast(&threadpool->cond); | |
| } | |
| void ggml_threadpool_pause(struct ggml_threadpool * threadpool) { | |
| ggml_mutex_lock(&threadpool->mutex); | |
| if (!threadpool->pause) { | |
| ggml_threadpool_pause_locked(threadpool); | |
| } | |
| ggml_mutex_unlock(&threadpool->mutex); | |
| UNUSED(threadpool); | |
| } | |
| void ggml_threadpool_resume(struct ggml_threadpool * threadpool) { | |
| ggml_mutex_lock(&threadpool->mutex); | |
| if (threadpool->pause) { | |
| ggml_threadpool_resume_locked(threadpool); | |
| } | |
| ggml_mutex_unlock(&threadpool->mutex); | |
| UNUSED(threadpool); | |
| } | |
| struct ggml_cplan ggml_graph_plan( | |
| const struct ggml_cgraph * cgraph, | |
| int n_threads, | |
| struct ggml_threadpool * threadpool) { | |
| if (threadpool == NULL) { | |
| //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads); | |
| } | |
| if (n_threads <= 0) { | |
| n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS; | |
| } | |
| size_t work_size = 0; | |
| struct ggml_cplan cplan; | |
| memset(&cplan, 0, sizeof(struct ggml_cplan)); | |
| int max_tasks = 1; | |
| // thread scheduling for the different operations + work buffer size estimation | |
| for (int i = 0; i < cgraph->n_nodes; i++) { | |
| struct ggml_tensor * node = cgraph->nodes[i]; | |
| const int n_tasks = ggml_get_n_tasks(node, n_threads); | |
| max_tasks = MAX(max_tasks, n_tasks); | |
| size_t cur = 0; | |
| if (!ggml_cpu_extra_work_size(n_threads, node, &cur)) { | |
| switch (node->op) { | |
| case GGML_OP_CPY: | |
| case GGML_OP_DUP: | |
| { | |
| if (ggml_is_quantized(node->type) || | |
| // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32 | |
| (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) || | |
| (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) { | |
| cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; | |
| } | |
| } break; | |
| case GGML_OP_ADD: | |
| case GGML_OP_ADD_ID: | |
| case GGML_OP_ADD1: | |
| { | |
| if (ggml_is_quantized(node->src[0]->type)) { | |
| cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; | |
| } | |
| } break; | |
| case GGML_OP_ACC: | |
| { | |
| if (ggml_is_quantized(node->src[0]->type)) { | |
| cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks; | |
| } | |
| } break; | |
| case GGML_OP_COUNT_EQUAL: | |
| { | |
| cur = ggml_type_size(node->type)*n_tasks; | |
| } break; | |
| case GGML_OP_MUL_MAT: | |
| { | |
| const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type; | |
| if (node->src[1]->type != vec_dot_type) { | |
| cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1])); | |
| } | |
| } break; | |
| case GGML_OP_MUL_MAT_ID: | |
| { | |
| cur = 0; | |
| const struct ggml_tensor * src0 = node->src[0]; | |
| const struct ggml_tensor * src1 = node->src[1]; | |
| const struct ggml_tensor * ids = node->src[2]; | |
| const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type; | |
| const int n_as = src0->ne[2]; | |
| // src1 | |
| if (src1->type != vec_dot_type) { | |
| cur += ggml_row_size(vec_dot_type, ggml_nelements(src1)) + sizeof(int64_t); | |
| } | |
| // matrix_row_counts | |
| cur += n_as * sizeof(int64_t) + sizeof(int64_t); | |
| // matrix_rows | |
| cur += n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping) + sizeof(int64_t); | |
| // atomic_current_chunk | |
| cur += CACHE_LINE_SIZE*n_as + CACHE_LINE_SIZE; | |
| } break; | |
| case GGML_OP_OUT_PROD: | |
| { | |
| if (ggml_is_quantized(node->src[0]->type)) { | |
| cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; | |
| } | |
| } break; | |
| case GGML_OP_SOFT_MAX: | |
| case GGML_OP_ROPE: | |
| case GGML_OP_ROPE_BACK: | |
| { | |
| cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; | |
| } break; | |
| case GGML_OP_CONV_TRANSPOSE_1D: | |
| { | |
| GGML_ASSERT(node->src[0]->ne[3] == 1); | |
| GGML_ASSERT(node->src[1]->ne[2] == 1); | |
| GGML_ASSERT(node->src[1]->ne[3] == 1); | |
| const int64_t ne00 = node->src[0]->ne[0]; // K | |
| const int64_t ne01 = node->src[0]->ne[1]; // Cout | |
| const int64_t ne02 = node->src[0]->ne[2]; // Cin | |
| const int64_t ne10 = node->src[1]->ne[0]; // L | |
| const int64_t ne11 = node->src[1]->ne[1]; // Cin | |
| if ((node->src[0]->type == GGML_TYPE_F16 || | |
| node->src[0]->type == GGML_TYPE_BF16) && | |
| node->src[1]->type == GGML_TYPE_F32) { | |
| cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02; | |
| cur += sizeof(ggml_fp16_t)*ne10*ne11; | |
| } else if (node->src[0]->type == GGML_TYPE_F32 && | |
| node->src[1]->type == GGML_TYPE_F32) { | |
| cur += sizeof(float)*ne00*ne01*ne02; | |
| cur += sizeof(float)*ne10*ne11; | |
| } else { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } break; | |
| case GGML_OP_CONV_2D: | |
| { | |
| cur = GGML_IM2COL_WORK_SIZE; | |
| } break; | |
| case GGML_OP_CONV_TRANSPOSE_2D: | |
| { | |
| const int64_t ne00 = node->src[0]->ne[0]; // W | |
| const int64_t ne01 = node->src[0]->ne[1]; // H | |
| const int64_t ne02 = node->src[0]->ne[2]; // Channels Out | |
| const int64_t ne03 = node->src[0]->ne[3]; // Channels In | |
| const int64_t ne10 = node->src[1]->ne[0]; // W | |
| const int64_t ne11 = node->src[1]->ne[1]; // H | |
| const int64_t ne12 = node->src[1]->ne[2]; // Channels In | |
| cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03; | |
| cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12; | |
| } break; | |
| case GGML_OP_FLASH_ATTN_EXT: | |
| { | |
| const int64_t ne10 = node->src[1]->ne[0]; // DK | |
| const int64_t ne20 = node->src[2]->ne[0]; // DV | |
| cur = sizeof(float)*(1*ne10 + 2*ne20)*n_tasks; // 1x head size K + 2x head size V (per thread) | |
| } break; | |
| case GGML_OP_FLASH_ATTN_BACK: | |
| { | |
| const int64_t D = node->src[0]->ne[0]; | |
| const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL); | |
| const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back | |
| if (node->src[1]->type == GGML_TYPE_F32) { | |
| cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) | |
| cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 | |
| } else if (node->src[1]->type == GGML_TYPE_F16) { | |
| cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) | |
| cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 | |
| } else if (node->src[1]->type == GGML_TYPE_BF16) { | |
| cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) | |
| cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 | |
| } | |
| } break; | |
| case GGML_OP_CROSS_ENTROPY_LOSS: | |
| { | |
| cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks); | |
| } break; | |
| case GGML_OP_COUNT: | |
| { | |
| GGML_ABORT("fatal error"); | |
| } | |
| default: | |
| break; | |
| } | |
| } | |
| work_size = MAX(work_size, cur); | |
| } | |
| if (work_size > 0) { | |
| work_size += CACHE_LINE_SIZE*(n_threads); | |
| } | |
| cplan.threadpool = threadpool; | |
| cplan.n_threads = MIN(max_tasks, n_threads); | |
| cplan.work_size = work_size; | |
| cplan.work_data = NULL; | |
| return cplan; | |
| } | |
| static thread_ret_t ggml_graph_compute_thread(void * data) { | |
| struct ggml_compute_state * state = (struct ggml_compute_state *) data; | |
| struct ggml_threadpool * tp = state->threadpool; | |
| const struct ggml_cgraph * cgraph = tp->cgraph; | |
| const struct ggml_cplan * cplan = tp->cplan; | |
| set_numa_thread_affinity(state->ith); | |
| struct ggml_compute_params params = { | |
| /*.ith =*/ state->ith, | |
| /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed), | |
| /*.wsize =*/ cplan->work_size, | |
| /*.wdata =*/ cplan->work_data, | |
| /*.threadpool=*/ tp, | |
| }; | |
| for (int node_n = 0; node_n < cgraph->n_nodes && atomic_load_explicit(&tp->abort, memory_order_relaxed) != node_n; node_n++) { | |
| struct ggml_tensor * node = cgraph->nodes[node_n]; | |
| ggml_compute_forward(¶ms, node); | |
| if (state->ith == 0 && cplan->abort_callback && | |
| cplan->abort_callback(cplan->abort_callback_data)) { | |
| atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed); | |
| tp->ec = GGML_STATUS_ABORTED; | |
| } | |
| if (node_n + 1 < cgraph->n_nodes) { | |
| ggml_barrier(state->threadpool); | |
| } | |
| } | |
| ggml_barrier(state->threadpool); | |
| return 0; | |
| } | |
| // check if thread is active | |
| static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) { | |
| struct ggml_threadpool * threadpool = state->threadpool; | |
| int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed); | |
| return (state->ith < n_threads); | |
| } | |
| // check if thread is ready to proceed (exit from polling or sleeping) | |
| static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) { | |
| struct ggml_threadpool * threadpool = state->threadpool; | |
| if (state->pending || threadpool->stop || threadpool->pause) { return true; } | |
| // check for new graph/work | |
| int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed); | |
| if (new_graph != state->last_graph) { | |
| state->pending = ggml_graph_compute_thread_active(state); | |
| state->last_graph = new_graph; | |
| } | |
| return state->pending; | |
| } | |
| // sync thread state after polling | |
| static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) { | |
| // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead | |
| atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst); | |
| atomic_thread_fence(memory_order_seq_cst); | |
| UNUSED(state); | |
| } | |
| static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) { | |
| struct ggml_threadpool * threadpool = state->threadpool; | |
| // Skip polling for unused threads | |
| if (!ggml_graph_compute_thread_active(state)) { | |
| return state->pending; | |
| } | |
| // This seems to make 0 ... 100 a decent range for polling level across modern processors. | |
| // Perhaps, we can adjust it dynamically based on load and things. | |
| const uint64_t n_rounds = 1024UL * 128 * threadpool->poll; | |
| for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) { | |
| // No new work. Keep polling. | |
| ggml_thread_cpu_relax(); | |
| } | |
| return state->pending; | |
| } | |
| static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) { | |
| struct ggml_threadpool * threadpool = state->threadpool; | |
| if (ggml_graph_compute_poll_for_work(state)) { | |
| ggml_graph_compute_thread_sync(state); | |
| return state->pending; | |
| } | |
| ggml_mutex_lock_shared(&threadpool->mutex); | |
| while (!ggml_graph_compute_thread_ready(state)) { | |
| // No new work. Wait for the signal. | |
| GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith); | |
| ggml_cond_wait(&threadpool->cond, &threadpool->mutex); | |
| } | |
| ggml_mutex_unlock_shared(&threadpool->mutex); | |
| return state->pending; | |
| } | |
| static thread_ret_t ggml_graph_compute_secondary_thread(void* data) { | |
| struct ggml_compute_state * state = (struct ggml_compute_state *) data; | |
| struct ggml_threadpool * threadpool = state->threadpool; | |
| ggml_thread_apply_priority(threadpool->prio); | |
| if (ggml_thread_cpumask_is_valid(state->cpumask)) { | |
| ggml_thread_apply_affinity(state->cpumask); | |
| } | |
| while (true) { | |
| // Check if we need to sleep | |
| while (threadpool->pause) { | |
| GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith); | |
| ggml_mutex_lock_shared(&threadpool->mutex); | |
| if (threadpool->pause) { | |
| ggml_cond_wait(&threadpool->cond, &threadpool->mutex); | |
| } | |
| GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith); | |
| ggml_mutex_unlock_shared(&threadpool->mutex); | |
| } | |
| // This needs to be checked for after the cond_wait | |
| if (threadpool->stop) break; | |
| // Check if there is new work | |
| // The main thread is the only one that can dispatch new work | |
| ggml_graph_compute_check_for_work(state); | |
| if (state->pending) { | |
| state->pending = false; | |
| ggml_graph_compute_thread(state); | |
| } | |
| } | |
| return (thread_ret_t) 0; | |
| } | |
| // Start processing new graph | |
| static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads) | |
| { | |
| // Always take the mutex here because the worker threads are doing hybrid poll/wait | |
| ggml_mutex_lock(&threadpool->mutex); | |
| GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads); | |
| // Update the number of active threads | |
| atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed); | |
| // Indicate the graph is ready to be processed | |
| // We need the full seq-cst fence here because of the polling threads (used in thread_sync) | |
| atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst); | |
| if (threadpool->pause) { | |
| // Update main thread prio and affinity to match the threadpool settings | |
| ggml_thread_apply_priority(threadpool->prio); | |
| if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) { | |
| ggml_thread_apply_affinity(threadpool->workers[0].cpumask); | |
| } | |
| // resume does cond broadcast | |
| ggml_threadpool_resume_locked(threadpool); | |
| } else { | |
| ggml_cond_broadcast(&threadpool->cond); | |
| } | |
| ggml_mutex_unlock(&threadpool->mutex); | |
| } | |
| static struct ggml_threadpool * ggml_threadpool_new_impl( | |
| struct ggml_threadpool_params * tpp, | |
| struct ggml_cgraph * cgraph, | |
| struct ggml_cplan * cplan) { | |
| struct ggml_threadpool * threadpool = | |
| ggml_aligned_malloc(sizeof(struct ggml_threadpool)); | |
| { | |
| threadpool->cgraph = cgraph; | |
| threadpool->cplan = cplan; | |
| threadpool->n_graph = 0; | |
| threadpool->n_barrier = 0; | |
| threadpool->n_barrier_passed = 0; | |
| threadpool->current_chunk = 0; | |
| threadpool->stop = false; | |
| threadpool->pause = tpp->paused; | |
| threadpool->abort = -1; | |
| threadpool->workers = NULL; | |
| threadpool->n_threads_max = tpp->n_threads; | |
| threadpool->n_threads_cur = tpp->n_threads; | |
| threadpool->poll = tpp->poll; | |
| threadpool->prio = tpp->prio; | |
| threadpool->ec = GGML_STATUS_SUCCESS; | |
| } | |
| // Allocate and init workers state | |
| const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads; | |
| struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size); | |
| memset(workers, 0, workers_size); | |
| for (int j = 0; j < tpp->n_threads; j++) { | |
| workers[j].threadpool = threadpool; | |
| workers[j].ith = j; | |
| } | |
| threadpool->workers = workers; | |
| ggml_mutex_init(&threadpool->mutex); | |
| ggml_cond_init(&threadpool->cond); | |
| // Spin the threads for all workers, and update CPU placements. | |
| // Place the main thread last (towards the higher numbered CPU cores). | |
| int32_t cpumask_iter = 0; | |
| for (int j = 1; j < tpp->n_threads; j++) { | |
| ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter); | |
| int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]); | |
| GGML_ASSERT(rc == 0); | |
| } | |
| ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter); | |
| if (!threadpool->pause) { | |
| // Update main thread prio and affinity at the start, otherwise we'll do it in resume | |
| ggml_thread_apply_priority(threadpool->prio); | |
| if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) { | |
| ggml_thread_apply_affinity(threadpool->workers[0].cpumask); | |
| } | |
| } | |
| return threadpool; | |
| } | |
| struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) { | |
| return ggml_threadpool_new_impl(tpp, NULL, NULL); | |
| } | |
| enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { | |
| ggml_cpu_init(); | |
| GGML_ASSERT(cplan); | |
| GGML_ASSERT(cplan->n_threads > 0); | |
| GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL); | |
| int n_threads = cplan->n_threads; | |
| struct ggml_threadpool * threadpool = cplan->threadpool; | |
| bool disposable_threadpool = false; | |
| if (threadpool == NULL) { | |
| //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads); | |
| disposable_threadpool = true; | |
| struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads); | |
| threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan); | |
| } else { | |
| // Reset some of the parameters that need resetting | |
| // No worker threads should be accessing the parameters below at this stage | |
| threadpool->cgraph = cgraph; | |
| threadpool->cplan = cplan; | |
| threadpool->current_chunk = 0; | |
| threadpool->abort = -1; | |
| threadpool->ec = GGML_STATUS_SUCCESS; | |
| } | |
| if (n_threads > 1) { | |
| { | |
| { | |
| // update the number of threads from the actual number of threads that we got from OpenMP | |
| n_threads = omp_get_num_threads(); | |
| atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed); | |
| } | |
| ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]); | |
| } | |
| } else { | |
| atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed); | |
| ggml_graph_compute_thread(&threadpool->workers[0]); | |
| } | |
| if (n_threads > threadpool->n_threads_max) { | |
| GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max); | |
| n_threads = threadpool->n_threads_max; | |
| } | |
| // Kick all threads to start the new graph | |
| ggml_graph_compute_kickoff(threadpool, n_threads); | |
| // This is a work thread too | |
| ggml_graph_compute_thread(&threadpool->workers[0]); | |
| // don't leave affinity set on the main thread | |
| clear_numa_thread_affinity(); | |
| enum ggml_status ret = threadpool->ec; | |
| if (disposable_threadpool) { | |
| ggml_threadpool_free(threadpool); | |
| } | |
| return ret; | |
| } | |
| enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) { | |
| struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL); | |
| cplan.work_data = (uint8_t *)ggml_new_buffer(ctx, cplan.work_size); | |
| return ggml_graph_compute(cgraph, &cplan); | |
| } | |
| void ggml_cpu_fp32_to_fp32(const float * x, float * y, int64_t n) { | |
| memcpy(y, x, n * sizeof(float)); | |
| } | |
| void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) { | |
| int64_t i = 0; | |
| for (; i + 15 < n; i += 16) { | |
| __m512 x_vec = _mm512_loadu_ps(x + i); | |
| __m256i y_vec = _mm512_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); | |
| _mm256_storeu_si256((__m256i *)(y + i), y_vec); | |
| } | |
| for (; i + 7 < n; i += 8) { | |
| __m256 x_vec = _mm256_loadu_ps(x + i); | |
| __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); | |
| _mm_storeu_si128((__m128i *)(y + i), y_vec); | |
| } | |
| for (; i + 3 < n; i += 4) { | |
| __m128 x_vec = _mm_loadu_ps(x + i); | |
| __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); | |
| _mm_storel_epi64((__m128i *)(y + i), y_vec); | |
| } | |
| for (; i + 7 < n; i += 8) { | |
| float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0)); | |
| float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4)); | |
| uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0); | |
| uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0); | |
| vec_xst(v_y, 0, (ggml_fp16_t *)(y + i)); | |
| } | |
| for (; i + 3 < n; i += 4) { | |
| float32x4_t v_x = vec_xl(0, (const float *)(x + i)); | |
| float32x4_t v_zero = vec_splats(0.0f); | |
| uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0); | |
| uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0); | |
| vec_xst(v_y, 0, (ggml_fp16_t *)(y + i)); | |
| } | |
| for (; i < n; ++i) { | |
| y[i] = GGML_CPU_FP32_TO_FP16(x[i]); | |
| } | |
| } | |
| void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) { | |
| int64_t i = 0; | |
| for (; i + 15 < n; i += 16) { | |
| __m256i x_vec = _mm256_loadu_si256((const __m256i *)(x + i)); | |
| __m512 y_vec = _mm512_cvtph_ps(x_vec); | |
| _mm512_storeu_ps(y + i, y_vec); | |
| } | |
| for (; i + 7 < n; i += 8) { | |
| __m128i x_vec = _mm_loadu_si128((const __m128i *)(x + i)); | |
| __m256 y_vec = _mm256_cvtph_ps(x_vec); | |
| _mm256_storeu_ps(y + i, y_vec); | |
| } | |
| for (; i + 3 < n; i += 4) { | |
| __m128i x_vec = _mm_loadl_epi64((const __m128i *)(x + i)); | |
| __m128 y_vec = _mm_cvtph_ps(x_vec); | |
| _mm_storeu_ps(y + i, y_vec); | |
| } | |
| for (; i + 7 < n; i += 8) { | |
| uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i)); | |
| uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0); | |
| float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0); | |
| float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0); | |
| vec_xst(v_yh, 0, (float *)(y + i + 0)); | |
| vec_xst(v_yl, 0, (float *)(y + i + 4)); | |
| } | |
| for (; i + 3 < n; i += 4) { | |
| uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i)); | |
| uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0); | |
| float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0); | |
| vec_xst(v_yh, 0, (float *)(y + i)); | |
| } | |
| for (; i < n; ++i) { | |
| y[i] = GGML_CPU_FP16_TO_FP32(x[i]); | |
| } | |
| } | |
| void ggml_cpu_fp32_to_bf16(const float * x, ggml_bf16_t * y, int64_t n) { | |
| int64_t i = 0; | |
| for (; i < n; ++i) { | |
| y[i] = GGML_FP32_TO_BF16(x[i]); | |
| } | |
| } | |
| void ggml_cpu_bf16_to_fp32(const ggml_bf16_t * x, float * y, int64_t n) { | |
| int64_t i = 0; | |
| for (; i + 15 < n; i += 16) { | |
| _mm512_storeu_ps(y + i, | |
| _mm512_castsi512_ps( | |
| _mm512_slli_epi32( | |
| _mm512_cvtepu16_epi32( | |
| _mm256_loadu_si256( | |
| (const __m256i *)(x + i))), | |
| 16))); | |
| } | |
| for (; i + 7 < n; i += 8) { | |
| _mm256_storeu_ps(y + i, | |
| _mm256_castsi256_ps( | |
| _mm256_slli_epi32( | |
| _mm256_cvtepu16_epi32( | |
| _mm_loadu_si128( | |
| (const __m128i *)(x + i))), | |
| 16))); | |
| } | |
| for (; i < n; i++) { | |
| y[i] = GGML_BF16_TO_FP32(x[i]); | |
| } | |
| } | |
| int ggml_cpu_has_avx(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_avx_vnni(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_avx2(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_avx512(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_avx512_vbmi(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_avx512_vnni(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_avx512_bf16(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_amx_int8(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_bmi2(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_fma(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_arm_fma(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_riscv_v(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_f16c(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_fp16_va(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_wasm_simd(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_llamafile(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_sse3(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_ssse3(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_vsx(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_vxe(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_nnpa(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_neon(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_dotprod(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_sve(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_matmul_int8(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_get_sve_cnt(void) { | |
| return ggml_arm_arch_features.sve_cnt; | |
| return 0; | |
| } | |
| int ggml_cpu_has_sme(void) { | |
| return 1; | |
| return 0; | |
| } | |
| void ggml_cpu_init(void) { | |
| // needed to initialize ggml_time | |
| { | |
| struct ggml_init_params params = { 0, NULL, false }; | |
| struct ggml_context * ctx = ggml_init(params); | |
| ggml_free(ctx); | |
| } | |
| ggml_critical_section_start(); | |
| static bool is_first_call = true; | |
| if (is_first_call) { | |
| // initialize GELU, Quick GELU, SILU and EXP F32 tables | |
| { | |
| const uint64_t t_start = ggml_time_us(); UNUSED(t_start); | |
| for (int i = 0; i < (1 << 16); ++i) { | |
| union { | |
| uint16_t u16; | |
| ggml_fp16_t fp16; | |
| } u = {i}; | |
| float f = GGML_COMPUTE_FP16_TO_FP32(u.fp16); | |
| ggml_table_f32_f16[i] = f; | |
| ggml_table_gelu_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_f32(f)); | |
| ggml_table_gelu_quick_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_quick_f32(f)); | |
| } | |
| const uint64_t t_end = ggml_time_us(); UNUSED(t_end); | |
| GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0); | |
| //if (!getenv("OMP_WAIT_POLICY")) { | |
| // // set the wait policy to active, so that OpenMP threads don't sleep | |
| // putenv("OMP_WAIT_POLICY=active"); | |
| //} | |
| if (!getenv("KMP_BLOCKTIME")) { | |
| // set the time to wait before sleeping a thread | |
| // this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases | |
| putenv("KMP_BLOCKTIME=200"); // 200ms | |
| } | |
| } | |
| ggml_init_arm_arch_features(); | |
| is_first_call = false; | |
| } | |
| ggml_critical_section_end(); | |
| } | |