Spaces:
Running
Running
| using vDSP_fn_t = void (*)(const float *, vDSP_Stride, const float *, vDSP_Stride, float *, vDSP_Stride, vDSP_Length); | |
| static inline float op_add(float a, float b) { | |
| return a + b; | |
| } | |
| static inline float op_sub(float a, float b) { | |
| return a - b; | |
| } | |
| static inline float op_mul(float a, float b) { | |
| return a * b; | |
| } | |
| static inline float op_div(float a, float b) { | |
| return a / b; | |
| } | |
| template <float (*op)(float, float), typename src0_t, typename src1_t, typename dst_t> | |
| static inline void vec_binary_op_contiguous(const int64_t n, dst_t * z, const src0_t * x, const src1_t * y) { | |
| constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32; | |
| constexpr auto src1_to_f32 = type_conversion_table<src1_t>::to_f32; | |
| constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32; | |
| for (int i = 0; i < n; i++) { | |
| z[i] = f32_to_dst(op(src0_to_f32(x[i]), src1_to_f32(y[i]))); | |
| } | |
| } | |
| template <float (*op)(float, float), typename src0_t, typename src1_t, typename dst_t> | |
| static inline void vec_binary_op_non_contiguous(const int64_t n, const int64_t ne10, const int64_t nb10, dst_t * z, const src0_t * x, const src1_t * y) { | |
| constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32; | |
| constexpr auto src1_to_f32 = type_conversion_table<src1_t>::to_f32; | |
| constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32; | |
| for (int i = 0; i < n; i++) { | |
| int i10 = i % ne10; | |
| const src1_t * y_ptr = (const src1_t *)((const char *)y + i10*nb10); | |
| z[i] = f32_to_dst(op(src0_to_f32(x[i]), src1_to_f32(*y_ptr))); | |
| } | |
| } | |
| template <float (*op)(float, float), typename src0_t, typename src1_t, typename dst_t> | |
| static void apply_binary_op(const ggml_compute_params * params, ggml_tensor * dst) { | |
| const ggml_tensor * src0 = dst->src[0]; | |
| const ggml_tensor * src1 = dst->src[1]; | |
| GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); | |
| GGML_TENSOR_BINARY_OP_LOCALS | |
| GGML_ASSERT( nb0 == sizeof(dst_t)); | |
| GGML_ASSERT(nb00 == sizeof(src0_t)); | |
| const auto [ir0, ir1] = get_thread_range(params, src0); | |
| const bool is_src1_contiguous = (nb10 == sizeof(src1_t)); | |
| if (!is_src1_contiguous) { // broadcast not implemented yet for non-contiguous | |
| GGML_ASSERT(ggml_are_same_shape(src0, src1)); | |
| } | |
| vDSP_fn_t vDSP_op = nullptr; | |
| // TODO - avoid the f32-only check using type 'trait' lookup tables and row-based src-to-float conversion functions | |
| if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { | |
| if (op == op_add) { | |
| vDSP_op = vDSP_vadd; | |
| } else if (op == op_sub) { | |
| vDSP_op = vDSP_vsub; | |
| } else if (op == op_mul) { | |
| vDSP_op = vDSP_vmul; | |
| } else if (op == op_div) { | |
| vDSP_op = vDSP_vdiv; | |
| } | |
| } | |
| for (int64_t ir = ir0; ir < ir1; ++ir) { | |
| const int64_t i03 = ir/(ne02*ne01); | |
| const int64_t i02 = (ir - i03*ne02*ne01)/ne01; | |
| const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); | |
| const int64_t i13 = i03 % ne13; | |
| const int64_t i12 = i02 % ne12; | |
| const int64_t i11 = i01 % ne11; | |
| dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 ); | |
| const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01); | |
| const src1_t * src1_ptr = (const src1_t *) ((const char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11); | |
| if (is_src1_contiguous) { | |
| // src1 is broadcastable across src0 and dst in i1, i2, i3 | |
| const int64_t nr0 = ne00 / ne10; | |
| for (int64_t r = 0; r < nr0; ++r) { | |
| if constexpr (std::is_same_v<src0_t, float> && std::is_same_v<src1_t, float> && std::is_same_v<dst_t, float>) { | |
| if (vDSP_op != nullptr) { | |
| vDSP_op(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10); | |
| continue; | |
| } | |
| } | |
| vec_binary_op_contiguous<op>(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr); | |
| } | |
| } else { | |
| vec_binary_op_non_contiguous<op>(ne0, ne10, nb10, dst_ptr, src0_ptr, src1_ptr); | |
| } | |
| } | |
| } | |
| // TODO: Use the 'traits' lookup table (for type conversion fns), instead of a mass of 'if' conditions with long templates | |
| template <float (*op)(float, float)> | |
| static void binary_op(const ggml_compute_params * params, ggml_tensor * dst) { | |
| const ggml_tensor * src0 = dst->src[0]; | |
| const ggml_tensor * src1 = dst->src[1]; | |
| /* */ if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32 | |
| apply_binary_op<op, float, float, float>(params, dst); | |
| } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16 | |
| apply_binary_op<op, ggml_fp16_t, ggml_fp16_t, ggml_fp16_t>(params, dst); | |
| } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16 | |
| apply_binary_op<op, ggml_bf16_t, ggml_bf16_t, ggml_bf16_t>(params, dst); | |
| } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_BF16) { | |
| apply_binary_op<op, ggml_bf16_t, float, ggml_bf16_t>(params, dst); | |
| } else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { | |
| apply_binary_op<op, ggml_bf16_t, float, float>(params, dst); | |
| } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) { | |
| apply_binary_op<op, ggml_fp16_t, float, ggml_fp16_t>(params, dst); | |
| } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { | |
| apply_binary_op<op, ggml_fp16_t, float, float>(params, dst); | |
| } else { | |
| GGML_ABORT("%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__, | |
| ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type)); | |
| } | |
| } | |
| void ggml_compute_forward_add_non_quantized(const ggml_compute_params * params, ggml_tensor * dst) { | |
| binary_op<op_add>(params, dst); | |
| } | |
| void ggml_compute_forward_sub(const ggml_compute_params * params, ggml_tensor * dst) { | |
| binary_op<op_sub>(params, dst); | |
| } | |
| void ggml_compute_forward_mul(const ggml_compute_params * params, ggml_tensor * dst) { | |
| binary_op<op_mul>(params, dst); | |
| } | |
| void ggml_compute_forward_div(const ggml_compute_params * params, ggml_tensor * dst) { | |
| binary_op<op_div>(params, dst); | |
| } | |