Spaces:
Running
Running
| void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) { | |
| if (ubatch->token) { | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens)); | |
| } | |
| if (ubatch->embd) { | |
| const int64_t n_embd = embd->ne[0]; | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd)); | |
| } | |
| } | |
| void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) { | |
| if (ubatch->pos && pos) { | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| if (ubatch->token && n_pos_per_embd == 4) { | |
| // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D | |
| // the 3 first dims are the same, and 4th dim is all 0 | |
| std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd); | |
| // copy the first dimension | |
| for (int i = 0; i < n_tokens; ++i) { | |
| pos_data[ i] = ubatch->pos[i]; | |
| pos_data[ n_tokens + i] = ubatch->pos[i]; | |
| pos_data[2 * n_tokens + i] = ubatch->pos[i]; | |
| pos_data[3 * n_tokens + i] = 0; // 4th dim is 0 | |
| } | |
| ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos)); | |
| } else { | |
| ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos)); | |
| } | |
| } | |
| } | |
| void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) { | |
| if (ubatch->pos && attn_scale) { | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| std::vector<float> attn_scale_data(n_tokens, 0.0f); | |
| for (int i = 0; i < n_tokens; ++i) { | |
| const float pos = ubatch->pos[i]; | |
| attn_scale_data[i] = std::log( | |
| std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0 | |
| ) * f_attn_temp_scale + 1.0; | |
| } | |
| ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale)); | |
| } | |
| } | |
| void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) { | |
| if (pos_bucket) { | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer)); | |
| GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing | |
| int32_t * data = (int32_t *) pos_bucket->data; | |
| for (int h = 0; h < 1; ++h) { | |
| for (int j = 0; j < n_tokens; ++j) { | |
| for (int i = 0; i < n_tokens; ++i) { | |
| data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) { | |
| if (pos_bucket) { | |
| kv_state->set_input_pos_bucket(pos_bucket, ubatch); | |
| } | |
| } | |
| void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) { | |
| GGML_ASSERT(out_ids); | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer)); | |
| int32_t * data = (int32_t *) out_ids->data; | |
| if (n_outputs == n_tokens) { | |
| for (int i = 0; i < n_tokens; ++i) { | |
| data[i] = i; | |
| } | |
| return; | |
| } | |
| GGML_ASSERT(ubatch->output); | |
| int n_outputs = 0; | |
| for (int i = 0; i < n_tokens; ++i) { | |
| if (ubatch->output[i]) { | |
| data[n_outputs++] = i; | |
| } | |
| } | |
| } | |
| void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) { | |
| if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| const int64_t n_seq_tokens = ubatch->n_seq_tokens; | |
| const int64_t n_seqs_unq = ubatch->n_seqs_unq; | |
| GGML_ASSERT(mean); | |
| GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer)); | |
| float * data = (float *) mean->data; | |
| memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean)); | |
| std::vector<uint64_t> sums(n_seqs_unq, 0); | |
| for (int i = 0; i < n_tokens; i += n_seq_tokens) { | |
| for (int s = 0; s < ubatch->n_seq_id[i]; ++s) { | |
| const llama_seq_id seq_id = ubatch->seq_id[i][s]; | |
| const int32_t seq_idx = ubatch->seq_idx[seq_id]; | |
| sums[seq_idx] += ubatch->n_seq_tokens; | |
| } | |
| } | |
| std::vector<float> div(n_seqs_unq, 0.0f); | |
| for (int s = 0; s < n_seqs_unq; ++s) { | |
| const uint64_t sum = sums[s]; | |
| if (sum > 0) { | |
| div[s] = 1.0f/float(sum); | |
| } | |
| } | |
| for (int i = 0; i < n_tokens; i += n_seq_tokens) { | |
| for (int s = 0; s < ubatch->n_seq_id[i]; ++s) { | |
| const llama_seq_id seq_id = ubatch->seq_id[i][s]; | |
| const int32_t seq_idx = ubatch->seq_idx[seq_id]; | |
| for (int j = 0; j < n_seq_tokens; ++j) { | |
| data[seq_idx*n_tokens + i + j] = div[seq_idx]; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) { | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| const int64_t n_seq_tokens = ubatch->n_seq_tokens; | |
| const int64_t n_seqs_unq = ubatch->n_seqs_unq; | |
| if (cparams.embeddings && ( | |
| cparams.pooling_type == LLAMA_POOLING_TYPE_CLS || | |
| cparams.pooling_type == LLAMA_POOLING_TYPE_RANK | |
| )) { | |
| GGML_ASSERT(cls); | |
| GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer)); | |
| uint32_t * data = (uint32_t *) cls->data; | |
| memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls)); | |
| for (int i = 0; i < n_tokens; i += n_seq_tokens) { | |
| for (int s = 0; s < ubatch->n_seq_id[i]; ++s) { | |
| const llama_seq_id seq_id = ubatch->seq_id[i][s]; | |
| const int32_t seq_idx = ubatch->seq_idx[seq_id]; | |
| data[seq_idx] = i; | |
| } | |
| } | |
| } | |
| if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) { | |
| GGML_ASSERT(cls); | |
| GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer)); | |
| uint32_t * data = (uint32_t *) cls->data; | |
| memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls)); | |
| std::vector<int> last_pos(n_seqs_unq, -1); | |
| std::vector<int> last_row(n_seqs_unq, -1); | |
| for (int i = 0; i < n_tokens; ++i) { | |
| const llama_pos pos = ubatch->pos[i]; | |
| for (int s = 0; s < ubatch->n_seq_id[i]; ++s) { | |
| const llama_seq_id seq_id = ubatch->seq_id[i][s]; | |
| const int32_t seq_idx = ubatch->seq_idx[seq_id]; | |
| if (pos >= last_pos[seq_idx]) { | |
| last_pos[seq_idx] = pos; | |
| last_row[seq_idx] = i; | |
| } | |
| } | |
| } | |
| for (int s = 0; s < n_seqs_unq; ++s) { | |
| if (last_row[s] >= 0) { | |
| data[s] = last_row[s]; | |
| } | |
| } | |
| } | |
| } | |
| void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) { | |
| GGML_UNUSED(ubatch); | |
| const int64_t n_rs = mem_state->get_n_rs(); | |
| if (s_copy) { | |
| GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer)); | |
| int32_t * data = (int32_t *) s_copy->data; | |
| // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n | |
| for (uint32_t i = 0; i < n_rs; ++i) { | |
| data[i] = mem_state->s_copy(i); | |
| } | |
| } | |
| } | |
| void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) { | |
| GGML_UNUSED(ubatch); | |
| if (cross_embd && !cross->v_embd.empty()) { | |
| assert(cross_embd->type == GGML_TYPE_F32); | |
| ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd)); | |
| } | |
| } | |
| void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) { | |
| const int64_t n_kv = ubatch->n_tokens; | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| GGML_ASSERT(kq_mask); | |
| GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer)); | |
| float * data = (float *) kq_mask->data; | |
| for (int h = 0; h < 1; ++h) { | |
| for (int i1 = 0; i1 < n_tokens; ++i1) { | |
| const llama_seq_id s1 = ubatch->seq_id[i1][0]; | |
| for (int i0 = 0; i0 < n_tokens; ++i0) { | |
| float f = -INFINITY; | |
| for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) { | |
| const llama_seq_id s0 = ubatch->seq_id[i0][0]; | |
| // TODO: reimplement this like in llama_kv_cache_unified | |
| if (s0 == s1 && (!cparams.causal_attn || ubatch->pos[i0] <= ubatch->pos[i1])) { | |
| if (hparams.use_alibi) { | |
| f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]); | |
| } else { | |
| f = 0.0f; | |
| } | |
| break; | |
| } | |
| } | |
| data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f; | |
| } | |
| } | |
| } | |
| } | |
| void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) { | |
| if (self_kq_mask) { | |
| kv_state->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); | |
| } | |
| } | |
| void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) { | |
| if (self_kq_mask) { | |
| kv_state->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); | |
| } | |
| if (self_kq_mask_swa) { | |
| kv_state->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn); | |
| } | |
| } | |
| void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) { | |
| GGML_ASSERT(cross_kq_mask); | |
| const int64_t n_enc = cross_kq_mask->ne[0]; | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer)); | |
| GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing | |
| float * data = (float *) cross_kq_mask->data; | |
| for (int h = 0; h < 1; ++h) { | |
| for (int i = 0; i < n_tokens; ++i) { | |
| for (int j = 0; j < n_enc; ++j) { | |
| float f = -INFINITY; | |
| for (int s = 0; s < ubatch->n_seq_id[i]; ++s) { | |
| const llama_seq_id seq_id = ubatch->seq_id[i][s]; | |
| if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) { | |
| f = 0.0f; | |
| } | |
| } | |
| data[h*(n_enc*n_tokens) + i*n_enc + j] = f; | |
| } | |
| } | |
| for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { | |
| for (int j = 0; j < n_enc; ++j) { | |
| data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY; | |
| } | |
| } | |
| } | |
| } | |
| void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) { | |
| if (self_kq_mask) { | |
| mem_state->get_state_attn()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); | |
| } | |
| const int64_t n_rs = mem_state->get_state_recr()->get_n_rs(); | |
| if (s_copy) { | |
| GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer)); | |
| int32_t * data = (int32_t *) s_copy->data; | |
| // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n | |
| for (uint32_t i = 0; i < n_rs; ++i) { | |
| data[i] = mem_state->get_state_recr()->s_copy(i); | |
| } | |
| } | |
| } | |
| // | |
| // llm_graph_context | |
| // | |
| llm_graph_context::llm_graph_context(const llm_graph_params & params) : | |
| arch (params.arch), | |
| hparams (params.hparams), | |
| cparams (params.cparams), | |
| ubatch (params.ubatch), | |
| n_embd (hparams.n_embd), | |
| n_layer (hparams.n_layer), | |
| n_rot (hparams.n_rot), | |
| n_ctx (cparams.n_ctx), | |
| n_head (hparams.n_head()), | |
| n_head_kv (hparams.n_head_kv()), | |
| n_embd_head_k (hparams.n_embd_head_k), | |
| n_embd_k_gqa (hparams.n_embd_k_gqa()), | |
| n_embd_head_v (hparams.n_embd_head_v), | |
| n_embd_v_gqa (hparams.n_embd_v_gqa()), | |
| n_expert (hparams.n_expert), | |
| n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used), | |
| freq_base (cparams.rope_freq_base), | |
| freq_scale (cparams.rope_freq_scale), | |
| ext_factor (cparams.yarn_ext_factor), | |
| attn_factor (cparams.yarn_attn_factor), | |
| beta_fast (cparams.yarn_beta_fast), | |
| beta_slow (cparams.yarn_beta_slow), | |
| norm_eps (hparams.f_norm_eps), | |
| norm_rms_eps (hparams.f_norm_rms_eps), | |
| n_tokens (ubatch.n_tokens), | |
| n_outputs (params.n_outputs), | |
| n_ctx_orig (cparams.n_ctx_orig_yarn), | |
| pooling_type (cparams.pooling_type), | |
| rope_type (hparams.rope_type), | |
| ctx0 (params.ctx), | |
| sched (params.sched), | |
| backend_cpu (params.backend_cpu), | |
| cvec (params.cvec), | |
| loras (params.loras), | |
| mstate (params.mstate), | |
| cross (params.cross), | |
| cb_func (params.cb), | |
| res (std::make_unique<llm_graph_result>()) { | |
| } | |
| void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const { | |
| if (cb_func) { | |
| cb_func(ubatch, cur, name, il); | |
| } | |
| } | |
| ggml_tensor * llm_graph_context::build_cvec( | |
| ggml_tensor * cur, | |
| int il) const { | |
| return cvec->apply_to(ctx0, cur, il); | |
| } | |
| ggml_tensor * llm_graph_context::build_lora_mm( | |
| ggml_tensor * w, | |
| ggml_tensor * cur) const { | |
| ggml_tensor * res = ggml_mul_mat(ctx0, w, cur); | |
| for (const auto & lora : *loras) { | |
| llama_adapter_lora_weight * lw = lora.first->get_weight(w); | |
| if (lw == nullptr) { | |
| continue; | |
| } | |
| const float adapter_scale = lora.second; | |
| const float scale = lw->get_scale(lora.first->alpha, adapter_scale); | |
| ggml_tensor * ab_cur = ggml_mul_mat( | |
| ctx0, lw->b, | |
| ggml_mul_mat(ctx0, lw->a, cur) | |
| ); | |
| ab_cur = ggml_scale(ctx0, ab_cur, scale); | |
| res = ggml_add(ctx0, res, ab_cur); | |
| } | |
| return res; | |
| } | |
| ggml_tensor * llm_graph_context::build_lora_mm_id( | |
| ggml_tensor * w, // ggml_tensor * as | |
| ggml_tensor * cur, // ggml_tensor * b | |
| ggml_tensor * ids) const { | |
| ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids); | |
| for (const auto & lora : *loras) { | |
| llama_adapter_lora_weight * lw = lora.first->get_weight(w); | |
| if (lw == nullptr) { | |
| continue; | |
| } | |
| const float alpha = lora.first->alpha; | |
| const float rank = (float) lw->b->ne[0]; | |
| const float scale = alpha ? lora.second * alpha / rank : lora.second; | |
| ggml_tensor * ab_cur = ggml_mul_mat_id( | |
| ctx0, lw->b, | |
| ggml_mul_mat_id(ctx0, lw->a, cur, ids), | |
| ids | |
| ); | |
| ab_cur = ggml_scale(ctx0, ab_cur, scale); | |
| res = ggml_add(ctx0, res, ab_cur); | |
| } | |
| return res; | |
| } | |
| ggml_tensor * llm_graph_context::build_norm( | |
| ggml_tensor * cur, | |
| ggml_tensor * mw, | |
| ggml_tensor * mb, | |
| llm_norm_type type, | |
| int il) const { | |
| switch (type) { | |
| case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break; | |
| case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break; | |
| case LLM_NORM_GROUP: | |
| { | |
| cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]); | |
| cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps); | |
| cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]); | |
| } break; | |
| } | |
| if (mw || mb) { | |
| cb(cur, "norm", il); | |
| } | |
| if (mw) { | |
| cur = ggml_mul(ctx0, cur, mw); | |
| if (mb) { | |
| cb(cur, "norm_w", il); | |
| } | |
| } | |
| if (mb) { | |
| cur = ggml_add(ctx0, cur, mb); | |
| } | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_ffn( | |
| ggml_tensor * cur, | |
| ggml_tensor * up, | |
| ggml_tensor * up_b, | |
| ggml_tensor * up_s, | |
| ggml_tensor * gate, | |
| ggml_tensor * gate_b, | |
| ggml_tensor * gate_s, | |
| ggml_tensor * down, | |
| ggml_tensor * down_b, | |
| ggml_tensor * down_s, | |
| ggml_tensor * act_scales, | |
| llm_ffn_op_type type_op, | |
| llm_ffn_gate_type type_gate, | |
| int il) const { | |
| ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur; | |
| cb(tmp, "ffn_up", il); | |
| if (up_b) { | |
| tmp = ggml_add(ctx0, tmp, up_b); | |
| cb(tmp, "ffn_up_b", il); | |
| } | |
| if (up_s) { | |
| tmp = ggml_mul(ctx0, tmp, up_s); | |
| cb(tmp, "ffn_up_s", il); | |
| } | |
| if (gate) { | |
| switch (type_gate) { | |
| case LLM_FFN_SEQ: | |
| { | |
| cur = build_lora_mm(gate, tmp); | |
| cb(cur, "ffn_gate", il); | |
| } break; | |
| case LLM_FFN_PAR: | |
| { | |
| cur = build_lora_mm(gate, cur); | |
| cb(cur, "ffn_gate", il); | |
| } break; | |
| } | |
| if (gate_b) { | |
| cur = ggml_add(ctx0, cur, gate_b); | |
| cb(cur, "ffn_gate_b", il); | |
| } | |
| if (gate_s) { | |
| cur = ggml_mul(ctx0, cur, gate_s); | |
| cb(cur, "ffn_gate_s", il); | |
| } | |
| } else { | |
| cur = tmp; | |
| } | |
| switch (type_op) { | |
| case LLM_FFN_SILU: | |
| { | |
| cur = ggml_silu(ctx0, cur); | |
| cb(cur, "ffn_silu", il); | |
| } break; | |
| case LLM_FFN_GELU: | |
| { | |
| cur = ggml_gelu(ctx0, cur); | |
| cb(cur, "ffn_gelu", il); | |
| if (act_scales != NULL) { | |
| cur = ggml_div(ctx0, cur, act_scales); | |
| cb(cur, "ffn_act", il); | |
| } | |
| } break; | |
| case LLM_FFN_RELU: | |
| { | |
| cur = ggml_relu(ctx0, cur); | |
| cb(cur, "ffn_relu", il); | |
| } break; | |
| case LLM_FFN_RELU_SQR: | |
| { | |
| cur = ggml_relu(ctx0, cur); | |
| cb(cur, "ffn_relu", il); | |
| cur = ggml_sqr(ctx0, cur); | |
| cb(cur, "ffn_sqr(relu)", il); | |
| } break; | |
| case LLM_FFN_SWIGLU: | |
| { | |
| // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf | |
| int64_t split_point = cur->ne[0] / 2; | |
| // TODO: these conts should not be needed, see https://github.com/ggml-org/llama.cpp/pull/14090#discussion_r2137437217 | |
| ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0)); | |
| ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur))); | |
| x0 = ggml_silu(ctx0, x0); | |
| cb(cur, "ffn_silu", il); | |
| cur = ggml_mul(ctx0, x0, x1); | |
| cb(cur, "ffn_mul", il); | |
| } break; | |
| case LLM_FFN_GEGLU: | |
| { | |
| // Split into two equal parts | |
| int64_t split_point = cur->ne[0] / 2; | |
| // TODO: these conts should not be needed, see https://github.com/ggml-org/llama.cpp/pull/14090#discussion_r2137437217 | |
| ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0)); | |
| ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur))); | |
| x0 = ggml_gelu(ctx0, x0); | |
| cb(x0, "ffn_gelu", il); | |
| cur = ggml_mul(ctx0, x0, x1); | |
| cb(cur, "ffn_geglu", il); | |
| } break; | |
| } | |
| if (gate && type_gate == LLM_FFN_PAR) { | |
| cur = ggml_mul(ctx0, cur, tmp); | |
| cb(cur, "ffn_gate_par", il); | |
| } | |
| if (down) { | |
| cur = build_lora_mm(down, cur); | |
| if (arch == LLM_ARCH_GLM4) { | |
| // GLM4 seems to have numerical issues with half-precision accumulators | |
| ggml_mul_mat_set_prec(cur, GGML_PREC_F32); | |
| } | |
| } | |
| if (down_b) { | |
| cb(cur, "ffn_down", il); | |
| } | |
| if (down_b) { | |
| cur = ggml_add(ctx0, cur, down_b); | |
| } | |
| if (down_s) { | |
| cur = ggml_mul(ctx0, cur, down_s); | |
| cb(cur, "ffn_down_s", il); | |
| } | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_moe_ffn( | |
| ggml_tensor * cur, | |
| ggml_tensor * gate_inp, | |
| ggml_tensor * up_exps, | |
| ggml_tensor * gate_exps, | |
| ggml_tensor * down_exps, | |
| ggml_tensor * exp_probs_b, | |
| int64_t n_expert, | |
| int64_t n_expert_used, | |
| llm_ffn_op_type type_op, | |
| bool norm_w, | |
| bool scale_w, | |
| float w_scale, | |
| llama_expert_gating_func_type gating_op, | |
| int il) const { | |
| const int64_t n_embd = cur->ne[0]; | |
| const int64_t n_tokens = cur->ne[1]; | |
| const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN | |
| ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens] | |
| cb(logits, "ffn_moe_logits", il); | |
| ggml_tensor * probs = nullptr; | |
| switch (gating_op) { | |
| case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: | |
| { | |
| probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens] | |
| } break; | |
| case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: | |
| { | |
| probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens] | |
| } break; | |
| default: | |
| GGML_ABORT("fatal error"); | |
| } | |
| cb(probs, "ffn_moe_probs", il); | |
| // add experts selection bias - introduced in DeepSeek V3 | |
| // leave probs unbiased as it's later used to get expert weights | |
| ggml_tensor * selection_probs = probs; | |
| if (exp_probs_b != nullptr) { | |
| selection_probs = ggml_add(ctx0, probs, exp_probs_b); | |
| cb(selection_probs, "ffn_moe_probs_biased", il); | |
| } | |
| // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k | |
| // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198 | |
| if (arch == LLM_ARCH_LLAMA4) { | |
| selection_probs = logits; | |
| } | |
| // select experts | |
| ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens] | |
| cb(selected_experts->src[0], "ffn_moe_argsort", il); | |
| cb(selected_experts, "ffn_moe_topk", il); | |
| ggml_tensor * weights = ggml_get_rows(ctx0, | |
| ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens] | |
| cb(weights, "ffn_moe_weights", il); | |
| if (norm_w) { | |
| weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); | |
| ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens] | |
| cb(weights_sum, "ffn_moe_weights_sum", il); | |
| weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens] | |
| cb(weights, "ffn_moe_weights_norm", il); | |
| weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens); | |
| } | |
| if (scale_w) { | |
| weights = ggml_scale(ctx0, weights, w_scale); | |
| cb(weights, "ffn_moe_weights_scaled", il); | |
| } | |
| cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens); | |
| if (weight_before_ffn) { | |
| // repeat cur to [n_embd, n_expert_used, n_tokens] | |
| ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1); | |
| cur = ggml_mul(ctx0, repeated, weights); | |
| cb(cur, "ffn_moe_weighted", il); | |
| } | |
| ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens] | |
| cb(up, "ffn_moe_up", il); | |
| ggml_tensor * experts = nullptr; | |
| if (gate_exps) { | |
| cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens] | |
| cb(cur, "ffn_moe_gate", il); | |
| } else { | |
| cur = up; | |
| } | |
| switch (type_op) { | |
| case LLM_FFN_SILU: | |
| { | |
| cur = ggml_silu(ctx0, cur); | |
| cb(cur, "ffn_moe_silu", il); | |
| } break; | |
| case LLM_FFN_GELU: | |
| { | |
| cur = ggml_gelu(ctx0, cur); | |
| cb(cur, "ffn_moe_gelu", il); | |
| } break; | |
| default: | |
| GGML_ABORT("fatal error"); | |
| } | |
| if (gate_exps) { | |
| cur = ggml_mul(ctx0, cur, up); // [n_ff, n_expert_used, n_tokens] | |
| cb(cur, "ffn_moe_gate_par", il); | |
| } | |
| experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens] | |
| cb(experts, "ffn_moe_down", il); | |
| if (!weight_before_ffn) { | |
| experts = ggml_mul(ctx0, experts, weights); | |
| cb(cur, "ffn_moe_weighted", il); | |
| } | |
| // aggregate experts | |
| ggml_tensor * moe_out = nullptr; | |
| for (int i = 0; i < n_expert_used; ++i) { | |
| ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens, | |
| experts->nb[2], i*experts->nb[1]); | |
| if (i == 0) { | |
| moe_out = cur_expert; | |
| } else { | |
| moe_out = ggml_add(ctx0, moe_out, cur_expert); | |
| } | |
| } | |
| if (n_expert_used == 1) { | |
| // avoid returning a non-contiguous tensor | |
| moe_out = ggml_cont(ctx0, moe_out); | |
| } | |
| cb(moe_out, "ffn_moe_out", il); | |
| return moe_out; | |
| } | |
| // input embeddings with optional lora | |
| ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const { | |
| const int64_t n_embd = hparams.n_embd; | |
| auto inp = std::make_unique<llm_graph_input_embd>(); | |
| ggml_tensor * cur = nullptr; | |
| if (ubatch.token) { | |
| inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens); | |
| //cb(inp->tokens, "inp_tokens", -1); | |
| ggml_set_input(inp->tokens); | |
| res->t_tokens = inp->tokens; | |
| cur = ggml_get_rows(ctx0, tok_embd, inp->tokens); | |
| // apply lora for embedding tokens if needed | |
| for (const auto & lora : *loras) { | |
| llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd); | |
| if (lw == nullptr) { | |
| continue; | |
| } | |
| const float adapter_scale = lora.second; | |
| const float scale = lw->get_scale(lora.first->alpha, adapter_scale); | |
| ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat( | |
| ctx0, lw->b, // non-transposed lora_b | |
| ggml_get_rows(ctx0, lw->a, inp->tokens) | |
| ), scale); | |
| cur = ggml_add(ctx0, cur, inpL_delta); | |
| } | |
| } else { | |
| inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens); | |
| ggml_set_input(inp->embd); | |
| cur = inp->embd; | |
| } | |
| // For Granite architecture | |
| if (hparams.f_embedding_scale != 0.0f) { | |
| cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale); | |
| } | |
| cb(cur, "inp_embd", -1); | |
| res->add_input(std::move(inp)); | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_inp_pos() const { | |
| auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd()); | |
| auto & cur = inp->pos; | |
| cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd()); | |
| ggml_set_input(cur); | |
| res->add_input(std::move(inp)); | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_inp_attn_scale() const { | |
| auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale); | |
| auto & cur = inp->attn_scale; | |
| // this need to be 1x1xN for broadcasting | |
| cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens); | |
| ggml_set_input(cur); | |
| res->add_input(std::move(inp)); | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_inp_out_ids() const { | |
| // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls, | |
| // but this would make the graph topology depend on the number of output tokens, which can interere with | |
| // features that require constant topology such as pipline parallelism | |
| // ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471 | |
| //if (n_outputs < n_tokens) { | |
| // return nullptr; | |
| //} | |
| auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs); | |
| auto & cur = inp->out_ids; | |
| cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs); | |
| ggml_set_input(cur); | |
| res->add_input(std::move(inp)); | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_inp_mean() const { | |
| auto inp = std::make_unique<llm_graph_input_mean>(cparams); | |
| auto & cur = inp->mean; | |
| cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq); | |
| ggml_set_input(cur); | |
| res->add_input(std::move(inp)); | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_inp_cls() const { | |
| auto inp = std::make_unique<llm_graph_input_cls>(cparams); | |
| auto & cur = inp->cls; | |
| cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq); | |
| ggml_set_input(cur); | |
| res->add_input(std::move(inp)); | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_inp_cross_embd() const { | |
| auto inp = std::make_unique<llm_graph_input_cross_embd>(cross); | |
| auto & cur = inp->cross_embd; | |
| // if we have the output embeddings from the encoder, use them directly | |
| // TODO: needs more work to be correct, for now just use the tensor shape | |
| //if (cross->t_embd) { | |
| // cur = ggml_view_tensor(ctx0, cross->t_embd); | |
| // return cur; | |
| //} | |
| const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd; | |
| const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train; | |
| cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc); | |
| ggml_set_input(cur); | |
| res->add_input(std::move(inp)); | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const { | |
| auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams); | |
| auto & cur = inp->pos_bucket; | |
| cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens); | |
| ggml_set_input(cur); | |
| res->add_input(std::move(inp)); | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const { | |
| const auto * kv_state = static_cast<const llama_kv_cache_unified_state *>(mstate); | |
| auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, kv_state); | |
| const auto n_kv = kv_state->get_n_kv(); | |
| auto & cur = inp->pos_bucket; | |
| cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens); | |
| ggml_set_input(cur); | |
| res->add_input(std::move(inp)); | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const { | |
| ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]); | |
| cb(pos_bucket_1d, "pos_bucket_1d", -1); | |
| ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d); | |
| pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]); | |
| pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3); | |
| pos_bias = ggml_cont (ctx0, pos_bias); | |
| cb(pos_bias, "pos_bias", -1); | |
| return pos_bias; | |
| } | |
| llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const { | |
| const auto * mem_state = static_cast<const llama_memory_hybrid_state *>(mstate); | |
| auto inp = std::make_unique<llm_graph_input_mem_hybrid>(hparams, cparams, mem_state); | |
| { | |
| GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Hybrid recurrent is not supported with SWA attention layers"); | |
| const auto n_kv = inp->mem_state->get_state_attn()->get_n_kv(); | |
| inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); | |
| //cb(inp->self_kq_mask, "KQ_mask", -1); | |
| ggml_set_input(inp->self_kq_mask); | |
| inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask; | |
| } | |
| { | |
| const auto n_rs = mem_state->get_state_recr()->get_n_rs(); | |
| inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs); | |
| ggml_set_input(inp->s_copy); | |
| } | |
| return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp)); | |
| } | |
| ggml_tensor * llm_graph_context::build_attn_mha( | |
| ggml_cgraph * gf, | |
| ggml_tensor * q, | |
| ggml_tensor * k, | |
| ggml_tensor * v, | |
| ggml_tensor * kq_b, | |
| ggml_tensor * kq_mask, | |
| ggml_tensor * v_mla, | |
| float kq_scale) const { | |
| const bool v_trans = v->nb[1] > v->nb[2]; | |
| q = ggml_permute(ctx0, q, 0, 2, 1, 3); | |
| k = ggml_permute(ctx0, k, 0, 2, 1, 3); | |
| v = ggml_permute(ctx0, v, 0, 2, 1, 3); | |
| const auto n_tokens = q->ne[1]; | |
| const auto n_head = q->ne[2]; | |
| const auto n_kv = k->ne[1]; | |
| ggml_tensor * cur; | |
| // TODO: replace hardcoded padding with ggml-provided padding | |
| if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) { | |
| GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet"); | |
| if (v_trans) { | |
| v = ggml_transpose(ctx0, v); | |
| } | |
| // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn) | |
| if (k->type == GGML_TYPE_F32) { | |
| k = ggml_cast(ctx0, k, GGML_TYPE_F16); | |
| } | |
| if (v->type == GGML_TYPE_F32) { | |
| v = ggml_cast(ctx0, v, GGML_TYPE_F16); | |
| } | |
| cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias, | |
| hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f); | |
| ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); | |
| if (v_mla) { | |
| // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens. | |
| // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient. | |
| cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens); | |
| cur = ggml_mul_mat(ctx0, v_mla, cur); | |
| // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1. | |
| // The permutations are noops and only change how the tensor data is interpreted. | |
| cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); | |
| cur = ggml_mul_mat(ctx0, v_mla, cur); | |
| cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); | |
| cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs. | |
| } | |
| cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens); | |
| } else { | |
| ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); | |
| // note: this op tends to require high floating point range | |
| // while for some models F16 is enough, for others it is not, so we default to F32 here | |
| ggml_mul_mat_set_prec(kq, GGML_PREC_F32); | |
| if (arch == LLM_ARCH_GROK) { | |
| // need to do the following: | |
| // multiply by attn_output_multiplyer of 0.08838834764831845 | |
| // and then : | |
| // kq = 30 * tanh(kq / 30) | |
| // before the softmax below | |
| kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f)); | |
| kq = ggml_scale(ctx0, kq, 30); | |
| } | |
| if (hparams.attn_soft_cap) { | |
| kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping); | |
| kq = ggml_tanh (ctx0, kq); | |
| kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping); | |
| } | |
| if (kq_b) { | |
| kq = ggml_add(ctx0, kq, kq_b); | |
| } | |
| kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias); | |
| if (!v_trans) { | |
| // note: avoid this branch | |
| v = ggml_cont(ctx0, ggml_transpose(ctx0, v)); | |
| } | |
| ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq); | |
| // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA | |
| if (v_mla) { | |
| kqv = ggml_mul_mat(ctx0, v_mla, kqv); | |
| } | |
| cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3); | |
| cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens); | |
| if (!cparams.offload_kqv) { | |
| // all nodes between the KV store and the attention output are run on the CPU | |
| ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu); | |
| } | |
| } | |
| ggml_build_forward_expand(gf, cur); | |
| return cur; | |
| } | |
| llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const { | |
| auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams); | |
| // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch | |
| inp->kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); | |
| //cb(inp_kq_mask, "KQ_mask", -1); | |
| ggml_set_input(inp->kq_mask); | |
| inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask; | |
| return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp)); | |
| } | |
| ggml_tensor * llm_graph_context::build_attn( | |
| llm_graph_input_attn_no_cache * inp, | |
| ggml_cgraph * gf, | |
| ggml_tensor * wo, | |
| ggml_tensor * wo_b, | |
| ggml_tensor * q_cur, | |
| ggml_tensor * k_cur, | |
| ggml_tensor * v_cur, | |
| ggml_tensor * kq_b, | |
| ggml_tensor * v_mla, | |
| float kq_scale, | |
| int il) const { | |
| GGML_UNUSED(n_tokens); | |
| // these nodes are added to the graph together so that they are not reordered | |
| // by doing so, the number of splits in the graph is reduced | |
| ggml_build_forward_expand(gf, q_cur); | |
| ggml_build_forward_expand(gf, k_cur); | |
| ggml_build_forward_expand(gf, v_cur); | |
| const auto & kq_mask = inp->get_kq_mask(); | |
| ggml_tensor * q = q_cur; | |
| ggml_tensor * k = k_cur; | |
| ggml_tensor * v = v_cur; | |
| ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); | |
| cb(cur, "kqv_out", il); | |
| if (wo) { | |
| cur = build_lora_mm(wo, cur); | |
| } | |
| if (wo_b) { | |
| //cb(cur, "kqv_wo", il); | |
| } | |
| if (wo_b) { | |
| cur = ggml_add(ctx0, cur, wo_b); | |
| } | |
| return cur; | |
| } | |
| llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const { | |
| const auto * kv_state = static_cast<const llama_kv_cache_unified_state *>(mstate); | |
| auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, kv_state); | |
| { | |
| GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified_iswa for SWA"); | |
| const auto n_kv = kv_state->get_n_kv(); | |
| inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); | |
| //cb(inp->self_kq_mask, "KQ_mask", -1); | |
| ggml_set_input(inp->self_kq_mask); | |
| inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask; | |
| } | |
| return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp)); | |
| } | |
| ggml_tensor * llm_graph_context::build_attn( | |
| llm_graph_input_attn_kv_unified * inp, | |
| ggml_cgraph * gf, | |
| ggml_tensor * wo, | |
| ggml_tensor * wo_b, | |
| ggml_tensor * q_cur, | |
| ggml_tensor * k_cur, | |
| ggml_tensor * v_cur, | |
| ggml_tensor * kq_b, | |
| ggml_tensor * v_mla, | |
| float kq_scale, | |
| int il) const { | |
| // these nodes are added to the graph together so that they are not reordered | |
| // by doing so, the number of splits in the graph is reduced | |
| ggml_build_forward_expand(gf, q_cur); | |
| ggml_build_forward_expand(gf, k_cur); | |
| ggml_build_forward_expand(gf, v_cur); | |
| const auto * kv_state = static_cast<const llama_kv_cache_unified_state *>(mstate); | |
| // store to KV cache | |
| { | |
| ggml_build_forward_expand(gf, kv_state->cpy_k(ctx0, k_cur, il)); | |
| ggml_build_forward_expand(gf, kv_state->cpy_v(ctx0, v_cur, il)); | |
| } | |
| const auto & kq_mask = inp->get_kq_mask(); | |
| ggml_tensor * q = q_cur; | |
| ggml_tensor * k = kv_state->get_k(ctx0, il); | |
| ggml_tensor * v = kv_state->get_v(ctx0, il); | |
| ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); | |
| cb(cur, "kqv_out", il); | |
| if (wo) { | |
| cur = build_lora_mm(wo, cur); | |
| if (arch == LLM_ARCH_GLM4) { | |
| // GLM4 seems to have numerical issues with half-precision accumulators | |
| ggml_mul_mat_set_prec(cur, GGML_PREC_F32); | |
| } | |
| } | |
| if (wo_b) { | |
| cur = ggml_add(ctx0, cur, wo_b); | |
| } | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_attn( | |
| llm_graph_input_attn_kv_unified_iswa * inp, | |
| ggml_cgraph * gf, | |
| ggml_tensor * wo, | |
| ggml_tensor * wo_b, | |
| ggml_tensor * q_cur, | |
| ggml_tensor * k_cur, | |
| ggml_tensor * v_cur, | |
| ggml_tensor * kq_b, | |
| ggml_tensor * v_mla, | |
| float kq_scale, | |
| int il) const { | |
| // these nodes are added to the graph together so that they are not reordered | |
| // by doing so, the number of splits in the graph is reduced | |
| ggml_build_forward_expand(gf, q_cur); | |
| ggml_build_forward_expand(gf, k_cur); | |
| ggml_build_forward_expand(gf, v_cur); | |
| const auto * kv_state_iswa = static_cast<const llama_kv_cache_unified_iswa_state *>(mstate); | |
| const bool is_swa = hparams.is_swa(il); | |
| const auto * kv_state = is_swa ? kv_state_iswa->get_swa() : kv_state_iswa->get_base(); | |
| // store to KV cache | |
| { | |
| ggml_build_forward_expand(gf, kv_state->cpy_k(ctx0, k_cur, il)); | |
| ggml_build_forward_expand(gf, kv_state->cpy_v(ctx0, v_cur, il)); | |
| } | |
| const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask(); | |
| ggml_tensor * q = q_cur; | |
| ggml_tensor * k = kv_state->get_k(ctx0, il); | |
| ggml_tensor * v = kv_state->get_v(ctx0, il); | |
| ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); | |
| cb(cur, "kqv_out", il); | |
| if (wo) { | |
| cur = build_lora_mm(wo, cur); | |
| } | |
| if (wo_b) { | |
| //cb(cur, "kqv_wo", il); | |
| } | |
| if (wo_b) { | |
| cur = ggml_add(ctx0, cur, wo_b); | |
| } | |
| return cur; | |
| } | |
| llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const { | |
| auto inp = std::make_unique<llm_graph_input_attn_cross>(cross); | |
| const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train; | |
| inp->cross_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); | |
| ggml_set_input(inp->cross_kq_mask); | |
| inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask; | |
| return (llm_graph_input_attn_cross *) res->add_input(std::move(inp)); | |
| } | |
| ggml_tensor * llm_graph_context::build_attn( | |
| llm_graph_input_attn_cross * inp, | |
| ggml_cgraph * gf, | |
| ggml_tensor * wo, | |
| ggml_tensor * wo_b, | |
| ggml_tensor * q_cur, | |
| ggml_tensor * k_cur, | |
| ggml_tensor * v_cur, | |
| ggml_tensor * kq_b, | |
| ggml_tensor * v_mla, | |
| float kq_scale, | |
| int il) const { | |
| // these nodes are added to the graph together so that they are not reordered | |
| // by doing so, the number of splits in the graph is reduced | |
| ggml_build_forward_expand(gf, q_cur); | |
| ggml_build_forward_expand(gf, k_cur); | |
| ggml_build_forward_expand(gf, v_cur); | |
| const auto & kq_mask = inp->get_kq_mask_cross(); | |
| ggml_tensor * q = q_cur; | |
| ggml_tensor * k = k_cur; | |
| ggml_tensor * v = v_cur; | |
| ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); | |
| cb(cur, "kqv_out", il); | |
| if (wo) { | |
| cur = build_lora_mm(wo, cur); | |
| } | |
| if (wo_b) { | |
| //cb(cur, "kqv_wo", il); | |
| } | |
| if (wo_b) { | |
| cur = ggml_add(ctx0, cur, wo_b); | |
| } | |
| return cur; | |
| } | |
| ggml_tensor * llm_graph_context::build_attn( | |
| llm_graph_input_mem_hybrid * inp, | |
| ggml_cgraph * gf, | |
| ggml_tensor * wo, | |
| ggml_tensor * wo_b, | |
| ggml_tensor * q_cur, | |
| ggml_tensor * k_cur, | |
| ggml_tensor * v_cur, | |
| ggml_tensor * kq_b, | |
| ggml_tensor * v_mla, | |
| float kq_scale, | |
| int il) const { | |
| // these nodes are added to the graph together so that they are not reordered | |
| // by doing so, the number of splits in the graph is reduced | |
| ggml_build_forward_expand(gf, q_cur); | |
| ggml_build_forward_expand(gf, k_cur); | |
| ggml_build_forward_expand(gf, v_cur); | |
| const auto * kv_state = static_cast<const llama_memory_hybrid_state *>(mstate)->get_state_attn(); | |
| // store to KV cache | |
| { | |
| ggml_build_forward_expand(gf, kv_state->cpy_k(ctx0, k_cur, il)); | |
| ggml_build_forward_expand(gf, kv_state->cpy_v(ctx0, v_cur, il)); | |
| } | |
| const auto & kq_mask = inp->get_kq_mask(); | |
| ggml_tensor * q = q_cur; | |
| ggml_tensor * k = kv_state->get_k(ctx0, il); | |
| ggml_tensor * v = kv_state->get_v(ctx0, il); | |
| ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); | |
| cb(cur, "kqv_out", il); | |
| if (wo) { | |
| cur = build_lora_mm(wo, cur); | |
| if (arch == LLM_ARCH_GLM4) { | |
| // GLM4 seems to have numerical issues with half-precision accumulators | |
| ggml_mul_mat_set_prec(cur, GGML_PREC_F32); | |
| } | |
| } | |
| if (wo_b) { | |
| cur = ggml_add(ctx0, cur, wo_b); | |
| } | |
| return cur; | |
| } | |
| llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const { | |
| const auto * kv_state = static_cast<const llama_kv_cache_unified_iswa_state *>(mstate); | |
| auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, kv_state); | |
| { | |
| const auto n_kv = kv_state->get_base()->get_n_kv(); | |
| inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); | |
| //cb(inp->self_kq_mask, "KQ_mask", -1); | |
| ggml_set_input(inp->self_kq_mask); | |
| inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask; | |
| } | |
| { | |
| GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA"); | |
| const auto n_kv = kv_state->get_swa()->get_n_kv(); | |
| inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); | |
| //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1); | |
| ggml_set_input(inp->self_kq_mask_swa); | |
| inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa; | |
| } | |
| return (llm_graph_input_attn_kv_unified_iswa *) res->add_input(std::move(inp)); | |
| } | |
| ggml_tensor * llm_graph_context::build_rs( | |
| ggml_cgraph * gf, | |
| ggml_tensor * s, | |
| ggml_tensor * state_copy, | |
| int32_t state_size, | |
| int32_t n_seqs, | |
| uint32_t n_kv, | |
| uint32_t kv_head, | |
| uint32_t kv_size, | |
| int32_t rs_zero, | |
| bool avoid_copies) const { | |
| ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, kv_size); | |
| // Clear a single state which will then be copied to the other cleared states. | |
| // Note that this is a no-op when the view is zero-sized. | |
| ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0)); | |
| ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0)); | |
| ggml_tensor * output_states; | |
| if (!avoid_copies) { | |
| // copy states | |
| // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv | |
| // {state_size, kv_size} -> {state_size, n_seqs} | |
| output_states = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_seqs, 0)); | |
| ggml_build_forward_expand(gf, output_states); | |
| } else { | |
| // FIXME: make the gathering operation happen before the copy below | |
| // (maybe with an optional lambda function passed as a parameter instead of `avoid_copies`?) | |
| output_states = states; | |
| } | |
| // copy extra states which won't be changed further (between n_seqs and n_kv) | |
| ggml_tensor * states_extra = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_kv - n_seqs, n_seqs*state_copy->nb[0])); | |
| ggml_build_forward_expand(gf, | |
| ggml_cpy(ctx0, | |
| states_extra, | |
| ggml_view_1d(ctx0, s, state_size*(n_kv - n_seqs), (kv_head + n_seqs)*state_size*ggml_element_size(s)))); | |
| return output_states; | |
| } | |
| llm_graph_input_rs * llm_graph_context::build_rs_inp() const { | |
| const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); | |
| auto inp = std::make_unique<llm_graph_input_rs>(kv_state); | |
| const auto n_rs = kv_state->get_n_rs(); | |
| inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs); | |
| ggml_set_input(inp->s_copy); | |
| return (llm_graph_input_rs *) res->add_input(std::move(inp)); | |
| } | |
| ggml_tensor * llm_graph_context::build_rs( | |
| llm_graph_input_rs * inp, | |
| ggml_cgraph * gf, | |
| ggml_tensor * s, | |
| int32_t state_size, | |
| int32_t n_seqs, | |
| bool avoid_copies) const { | |
| const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); | |
| return build_rs(gf, s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), avoid_copies); | |
| } | |
| ggml_tensor * llm_graph_context::build_rs( | |
| llm_graph_input_mem_hybrid * inp, | |
| ggml_cgraph * gf, | |
| ggml_tensor * s, | |
| int32_t state_size, | |
| int32_t n_seqs, | |
| bool avoid_copies) const { | |
| const auto * kv_state = static_cast<const llama_memory_hybrid_state *>(mstate)->get_state_recr(); | |
| return build_rs(gf, s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), avoid_copies); | |
| } | |
| ggml_tensor * llm_graph_context::build_rwkv_token_shift_load( | |
| llm_graph_input_rs * inp, | |
| ggml_cgraph * gf, | |
| const llama_ubatch & ubatch, | |
| int il) const { | |
| const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); | |
| const auto token_shift_count = hparams.token_shift_count; | |
| const int64_t n_seqs = ubatch.n_seqs; | |
| ggml_tensor * token_shift_all = kv_state->get_r_l(il); | |
| ggml_tensor * token_shift = build_rs( | |
| inp, gf, token_shift_all, | |
| hparams.n_embd_r(), n_seqs); | |
| token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs); | |
| return token_shift; | |
| } | |
| ggml_tensor * llm_graph_context::build_rwkv_token_shift_store( | |
| ggml_tensor * token_shift, | |
| const llama_ubatch & ubatch, | |
| int il) const { | |
| const auto * kv_state = static_cast<const llama_memory_recurrent_state *>(mstate); | |
| const auto token_shift_count = hparams.token_shift_count; | |
| const auto n_embd = hparams.n_embd; | |
| const int64_t n_seqs = ubatch.n_seqs; | |
| const auto kv_head = kv_state->get_head(); | |
| return ggml_cpy( | |
| ctx0, | |
| ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0), | |
| ggml_view_1d(ctx0, kv_state->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(kv_state->get_r_l(il))) | |
| ); | |
| } | |
| void llm_graph_context::build_pooling( | |
| ggml_cgraph * gf, | |
| ggml_tensor * cls, | |
| ggml_tensor * cls_b, | |
| ggml_tensor * cls_out, | |
| ggml_tensor * cls_out_b) const { | |
| if (!cparams.embeddings) { | |
| return; | |
| } | |
| ggml_tensor * inp = res->t_embd; | |
| //// find result_norm tensor for input | |
| //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) { | |
| // inp = ggml_graph_node(gf, i); | |
| // if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) { | |
| // break; | |
| // } | |
| // inp = nullptr; | |
| //} | |
| GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor"); | |
| ggml_tensor * cur; | |
| switch (pooling_type) { | |
| case LLAMA_POOLING_TYPE_NONE: | |
| { | |
| cur = inp; | |
| } break; | |
| case LLAMA_POOLING_TYPE_MEAN: | |
| { | |
| ggml_tensor * inp_mean = build_inp_mean(); | |
| cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean); | |
| } break; | |
| case LLAMA_POOLING_TYPE_CLS: | |
| case LLAMA_POOLING_TYPE_LAST: | |
| { | |
| ggml_tensor * inp_cls = build_inp_cls(); | |
| cur = ggml_get_rows(ctx0, inp, inp_cls); | |
| } break; | |
| case LLAMA_POOLING_TYPE_RANK: | |
| { | |
| ggml_tensor * inp_cls = build_inp_cls(); | |
| inp = ggml_get_rows(ctx0, inp, inp_cls); | |
| if (cls) { | |
| // classification head | |
| // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566 | |
| cur = ggml_mul_mat(ctx0, cls, inp); | |
| if (cls_b) { | |
| cur = ggml_add(ctx0, cur, cls_b); | |
| } | |
| cur = ggml_tanh(ctx0, cur); | |
| // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en | |
| // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896 | |
| if (cls_out) { | |
| cur = ggml_mul_mat(ctx0, cls_out, cur); | |
| if (cls_out_b) { | |
| cur = ggml_add(ctx0, cur, cls_out_b); | |
| } | |
| } | |
| } else if (cls_out) { | |
| // Single layer classification head (direct projection) | |
| // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476 | |
| cur = ggml_mul_mat(ctx0, cls_out, inp); | |
| if (cls_out_b) { | |
| cur = ggml_add(ctx0, cur, cls_out_b); | |
| } | |
| } else { | |
| GGML_ABORT("RANK pooling requires either cls+cls_b or cls_out+cls_out_b"); | |
| } | |
| } break; | |
| default: | |
| { | |
| GGML_ABORT("unknown pooling type"); | |
| } | |
| } | |
| cb(cur, "result_embd_pooled", -1); | |
| res->t_embd_pooled = cur; | |
| ggml_build_forward_expand(gf, cur); | |
| } | |
| int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) { | |
| // TODO move to hparams if a T5 variant appears that uses a different value | |
| const int64_t max_distance = 128; | |
| if (bidirectional) { | |
| n_buckets >>= 1; | |
| } | |
| const int64_t max_exact = n_buckets >> 1; | |
| int32_t relative_position = x - y; | |
| int32_t relative_bucket = 0; | |
| if (bidirectional) { | |
| relative_bucket += (relative_position > 0) * n_buckets; | |
| relative_position = abs(relative_position); | |
| } else { | |
| relative_position = -std::min<int32_t>(relative_position, 0); | |
| } | |
| int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact)); | |
| relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1); | |
| relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large); | |
| return relative_bucket; | |
| } | |