Spaces:
Running
Running
| // | |
| // llama_context | |
| // | |
| llama_context::llama_context( | |
| const llama_model & model, | |
| llama_context_params params) : | |
| model(model), | |
| balloc(std::make_unique<llama_batch_allocr>(model.hparams.n_pos_per_embd())) { | |
| LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__); | |
| t_start_us = model.t_start_us; | |
| t_load_us = model.t_load_us; | |
| const auto & hparams = model.hparams; | |
| cparams.n_seq_max = std::max(1u, params.n_seq_max); | |
| if (cparams.n_seq_max > LLAMA_MAX_SEQ) { | |
| throw std::runtime_error("n_seq_max must be <= " + std::to_string(LLAMA_MAX_SEQ)); | |
| } | |
| cparams.n_threads = params.n_threads; | |
| cparams.n_threads_batch = params.n_threads_batch; | |
| cparams.yarn_ext_factor = params.yarn_ext_factor; | |
| cparams.yarn_attn_factor = params.yarn_attn_factor; | |
| cparams.yarn_beta_fast = params.yarn_beta_fast; | |
| cparams.yarn_beta_slow = params.yarn_beta_slow; | |
| cparams.defrag_thold = params.defrag_thold; | |
| cparams.embeddings = params.embeddings; | |
| cparams.offload_kqv = params.offload_kqv; | |
| cparams.flash_attn = params.flash_attn; | |
| cparams.no_perf = params.no_perf; | |
| cparams.pooling_type = params.pooling_type; | |
| cparams.warmup = false; | |
| cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; | |
| cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base; | |
| cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; | |
| cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx : | |
| hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn : | |
| hparams.n_ctx_train; | |
| cparams.cb_eval = params.cb_eval; | |
| cparams.cb_eval_user_data = params.cb_eval_user_data; | |
| auto rope_scaling_type = params.rope_scaling_type; | |
| if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) { | |
| rope_scaling_type = hparams.rope_scaling_type_train; | |
| } | |
| if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) { | |
| cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none | |
| } | |
| if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set' | |
| cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f; | |
| } | |
| cparams.yarn_attn_factor *= hparams.rope_attn_factor; | |
| if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { | |
| if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { | |
| cparams.pooling_type = LLAMA_POOLING_TYPE_NONE; | |
| } else { | |
| cparams.pooling_type = hparams.pooling_type; | |
| } | |
| } | |
| if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) { | |
| cparams.causal_attn = hparams.causal_attn; | |
| } else { | |
| cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL; | |
| } | |
| // with causal attention, the batch size is limited by the context size | |
| cparams.n_batch = cparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; | |
| // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask | |
| // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext) | |
| // ref: https://github.com/ggerganov/llama.cpp/pull/5021 | |
| // TODO: this padding is not needed for the cache-less context so we should probably move it to llama_context_kv_self | |
| if (cparams.n_batch < GGML_KQ_MASK_PAD) { | |
| LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD); | |
| cparams.n_batch = GGML_KQ_MASK_PAD; | |
| } | |
| cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); | |
| cparams.op_offload = params.op_offload; | |
| const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max; | |
| LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max); | |
| LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); | |
| LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n", __func__, n_ctx_per_seq); | |
| LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); | |
| LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); | |
| LLAMA_LOG_INFO("%s: causal_attn = %d\n", __func__, cparams.causal_attn); | |
| LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn); | |
| LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); | |
| LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); | |
| if (n_ctx_per_seq < hparams.n_ctx_train) { | |
| LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n", | |
| __func__, n_ctx_per_seq, hparams.n_ctx_train); | |
| } | |
| if (n_ctx_per_seq > hparams.n_ctx_train) { | |
| LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n", | |
| __func__, n_ctx_per_seq, hparams.n_ctx_train); | |
| } | |
| if (!params.swa_full && cparams.n_seq_max > 1 && hparams.is_swa_any()) { | |
| LLAMA_LOG_WARN("%s: requested n_seq_max (%u) > 1, but swa_full is not enabled -- performance may be degraded: %s\n", | |
| __func__, cparams.n_seq_max, "https://github.com/ggml-org/llama.cpp/pull/13845#issuecomment-2924800573"); | |
| } | |
| if (!hparams.vocab_only) { | |
| // GPU backends | |
| for (auto * dev : model.devices) { | |
| ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); | |
| if (backend == nullptr) { | |
| throw std::runtime_error(format("failed to initialize %s backend", ggml_backend_dev_name(dev))); | |
| } | |
| backends.emplace_back(backend); | |
| } | |
| // add ACCEL backends (such as BLAS) | |
| for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { | |
| ggml_backend_dev_t dev = ggml_backend_dev_get(i); | |
| if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) { | |
| ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); | |
| if (backend == nullptr) { | |
| throw std::runtime_error(format("failed to initialize %s backend", ggml_backend_dev_name(dev))); | |
| } | |
| backends.emplace_back(backend); | |
| } | |
| } | |
| // add CPU backend | |
| backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr); | |
| if (backend_cpu == nullptr) { | |
| throw std::runtime_error("failed to initialize CPU backend"); | |
| } | |
| backends.emplace_back(backend_cpu); | |
| // create a list of the set_n_threads functions in the backends | |
| for (auto & backend : backends) { | |
| ggml_backend_dev_t dev = ggml_backend_get_device(backend.get()); | |
| ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr; | |
| if (reg) { | |
| auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads"); | |
| if (ggml_backend_set_n_threads_fn) { | |
| set_n_threads_fns.emplace_back(backend.get(), ggml_backend_set_n_threads_fn); | |
| } | |
| } | |
| } | |
| llama_set_abort_callback(this, params.abort_callback, params.abort_callback_data); | |
| // graph outputs buffer | |
| { | |
| // resized during inference when a batch uses more outputs | |
| if ((uint32_t) output_reserve(params.n_seq_max) < params.n_seq_max) { | |
| throw std::runtime_error("failed to reserve initial output buffer"); | |
| } | |
| LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, | |
| ggml_backend_buffer_name (buf_output.get()), | |
| ggml_backend_buffer_get_size(buf_output.get()) / 1024.0 / 1024.0); | |
| } | |
| } | |
| // init the memory module | |
| if (!hparams.vocab_only) { | |
| llama_memory_params params_mem = { | |
| /*.type_k =*/ params.type_k, | |
| /*.type_v =*/ params.type_v, | |
| /*.swa_full =*/ params.swa_full, | |
| }; | |
| memory.reset(model.create_memory(params_mem, cparams)); | |
| } | |
| // init backends | |
| if (!hparams.vocab_only) { | |
| LLAMA_LOG_DEBUG("%s: enumerating backends\n", __func__); | |
| backend_buft.clear(); | |
| backend_ptrs.clear(); | |
| for (auto & backend : backends) { | |
| auto * buft = ggml_backend_get_default_buffer_type(backend.get()); | |
| auto backend_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get())); | |
| if (backend_type == GGML_BACKEND_DEVICE_TYPE_CPU && !model.devices.empty()) { | |
| // use the host buffer of the first device CPU for faster transfer of the intermediate state | |
| auto * dev = model.devices[0]; | |
| auto * host_buft = ggml_backend_dev_host_buffer_type(dev); | |
| if (host_buft) { | |
| buft = host_buft; | |
| } | |
| } | |
| backend_buft.push_back(buft); | |
| backend_ptrs.push_back(backend.get()); | |
| } | |
| LLAMA_LOG_DEBUG("%s: backend_ptrs.size() = %zu\n", __func__, backend_ptrs.size()); | |
| const size_t max_nodes = this->graph_max_nodes(); | |
| LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes); | |
| // buffer used to store the computation graph and the tensor meta data | |
| buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); | |
| // TODO: move these checks to ggml_backend_sched | |
| // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary | |
| bool pipeline_parallel = | |
| model.n_devices() > 1 && | |
| model.params.n_gpu_layers > (int) model.hparams.n_layer && | |
| model.params.split_mode == LLAMA_SPLIT_MODE_LAYER && | |
| cparams.offload_kqv && | |
| !model.has_tensor_overrides(); | |
| // pipeline parallelism requires support for async compute and events in all devices | |
| if (pipeline_parallel) { | |
| for (auto & backend : backends) { | |
| auto dev_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get())); | |
| if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU) { | |
| // ignore CPU backend | |
| continue; | |
| } | |
| auto * dev = ggml_backend_get_device(backend.get()); | |
| ggml_backend_dev_props props; | |
| ggml_backend_dev_get_props(dev, &props); | |
| if (!props.caps.async || !props.caps.events) { | |
| // device does not support async compute or events | |
| pipeline_parallel = false; | |
| break; | |
| } | |
| } | |
| } | |
| sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel, cparams.op_offload)); | |
| if (pipeline_parallel) { | |
| LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get())); | |
| } | |
| } | |
| // reserve worst-case graph | |
| if (!hparams.vocab_only && memory) { | |
| const uint32_t n_seqs = cparams.n_seq_max; | |
| const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); | |
| LLAMA_LOG_DEBUG("%s: worst-case: n_tokens = %d, n_seqs = %d, n_outputs = %d\n", __func__, n_tokens, n_seqs, n_outputs); | |
| int n_splits_pp = -1; | |
| int n_nodes_pp = -1; | |
| int n_splits_tg = -1; | |
| int n_nodes_tg = -1; | |
| // simulate full KV cache | |
| const auto mstate = memory->init_full(); | |
| if (!mstate) { | |
| throw std::runtime_error("failed to initialize KV cache"); | |
| } | |
| cross.v_embd.clear(); | |
| // reserve pp graph first so that buffers are only allocated once | |
| { | |
| auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mstate.get()); | |
| if (!gf) { | |
| throw std::runtime_error("failed to allocate compute pp buffers"); | |
| } | |
| n_splits_pp = ggml_backend_sched_get_n_splits(sched.get()); | |
| n_nodes_pp = ggml_graph_n_nodes(gf); | |
| } | |
| // reserve with tg graph to get the number of splits and nodes | |
| { | |
| auto * gf = graph_reserve(1, 1, 1, mstate.get()); | |
| if (!gf) { | |
| throw std::runtime_error("failed to allocate compute tg buffers"); | |
| } | |
| n_splits_tg = ggml_backend_sched_get_n_splits(sched.get()); | |
| n_nodes_tg = ggml_graph_n_nodes(gf); | |
| } | |
| // reserve again with pp graph to avoid ggml-alloc reallocations during inference | |
| { | |
| auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mstate.get()); | |
| if (!gf) { | |
| throw std::runtime_error("failed to allocate compute pp buffers"); | |
| } | |
| } | |
| for (size_t i = 0; i < backend_ptrs.size(); ++i) { | |
| ggml_backend_t backend = backend_ptrs[i]; | |
| ggml_backend_buffer_type_t buft = backend_buft[i]; | |
| size_t size = ggml_backend_sched_get_buffer_size(sched.get(), backend); | |
| if (size > 1) { | |
| LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, | |
| ggml_backend_buft_name(buft), | |
| size / 1024.0 / 1024.0); | |
| } | |
| } | |
| if (n_nodes_pp == n_nodes_tg) { | |
| LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, n_nodes_pp); | |
| } else { | |
| LLAMA_LOG_INFO("%s: graph nodes = %d (with bs=%d), %d (with bs=1)\n", __func__, n_nodes_pp, n_tokens, n_nodes_tg); | |
| } | |
| if (n_splits_pp == n_splits_tg) { | |
| LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits_pp); | |
| } else { | |
| LLAMA_LOG_INFO("%s: graph splits = %d (with bs=%d), %d (with bs=1)\n", __func__, n_splits_pp, n_tokens, n_splits_tg); | |
| } | |
| } | |
| } | |
| llama_context::~llama_context() { | |
| ggml_opt_free(opt_ctx); | |
| } | |
| void llama_context::synchronize() { | |
| ggml_backend_sched_synchronize(sched.get()); | |
| // FIXME: if multiple single tokens are evaluated without a synchronization, | |
| // the stats will be added to the prompt evaluation stats | |
| // this should only happen when using batch size 1 to evaluate a batch | |
| // add the evaluation to the stats | |
| if (n_queued_tokens == 1) { | |
| if (!cparams.no_perf) { | |
| t_eval_us += ggml_time_us() - t_compute_start_us; | |
| } | |
| n_eval++; | |
| } else if (n_queued_tokens > 1) { | |
| if (!cparams.no_perf) { | |
| t_p_eval_us += ggml_time_us() - t_compute_start_us; | |
| } | |
| n_p_eval += n_queued_tokens; | |
| } | |
| // get a more accurate load time, upon first eval | |
| if (n_queued_tokens > 0 && !has_evaluated_once) { | |
| t_load_us = ggml_time_us() - t_start_us; | |
| has_evaluated_once = true; | |
| } | |
| n_queued_tokens = 0; | |
| t_compute_start_us = 0; | |
| } | |
| const llama_model & llama_context::get_model() const { | |
| return model; | |
| } | |
| const llama_cparams & llama_context::get_cparams() const { | |
| return cparams; | |
| } | |
| ggml_backend_sched_t llama_context::get_sched() const { | |
| return sched.get(); | |
| } | |
| ggml_context * llama_context::get_ctx_compute() const { | |
| return ctx_compute.get(); | |
| } | |
| uint32_t llama_context::n_ctx() const { | |
| return cparams.n_ctx; | |
| } | |
| uint32_t llama_context::n_ctx_per_seq() const { | |
| return cparams.n_ctx / cparams.n_seq_max; | |
| } | |
| uint32_t llama_context::n_batch() const { | |
| return cparams.n_batch; | |
| } | |
| uint32_t llama_context::n_ubatch() const { | |
| return cparams.n_ubatch; | |
| } | |
| uint32_t llama_context::n_seq_max() const { | |
| return cparams.n_seq_max; | |
| } | |
| uint32_t llama_context::n_threads() const { | |
| return cparams.n_threads; | |
| } | |
| uint32_t llama_context::n_threads_batch() const { | |
| return cparams.n_threads_batch; | |
| } | |
| llama_memory_t llama_context::get_memory() const { | |
| return memory.get(); | |
| } | |
| // deprecated | |
| void llama_context::kv_self_defrag_sched() { | |
| if (!memory) { | |
| return; | |
| } | |
| memory_force_optimize = true; | |
| } | |
| // deprecated | |
| bool llama_context::kv_self_update(bool optimize) { | |
| if (!memory) { | |
| return false; | |
| } | |
| { | |
| // TODO: remove in the future | |
| optimize |= memory_force_optimize; | |
| memory_force_optimize = false; | |
| const auto mstate = memory->init_update(this, optimize); | |
| switch (mstate->get_status()) { | |
| case LLAMA_MEMORY_STATUS_SUCCESS: | |
| { | |
| // noop | |
| } break; | |
| case LLAMA_MEMORY_STATUS_NO_UPDATE: | |
| { | |
| // no updates need to be performed | |
| return false; | |
| } | |
| case LLAMA_MEMORY_STATUS_FAILED_PREPARE: | |
| case LLAMA_MEMORY_STATUS_FAILED_COMPUTE: | |
| { | |
| LLAMA_LOG_ERROR("%s: failed to prepare memory update\n", __func__); | |
| return false; | |
| } | |
| } | |
| if (!mstate->apply()) { | |
| LLAMA_LOG_ERROR("%s: failed to apply memory update\n", __func__); | |
| } | |
| } | |
| // if the memory module did any computation, we have to reserve a new worst-case graph | |
| { | |
| const auto mstate = memory->init_full(); | |
| if (!mstate) { | |
| throw std::runtime_error("failed to initialize memory state"); | |
| } | |
| const uint32_t n_seqs = cparams.n_seq_max; | |
| const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); | |
| auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mstate.get()); | |
| if (!gf) { | |
| LLAMA_LOG_ERROR("%s: failed to reserve graph after the memory update\n", __func__); | |
| } | |
| } | |
| return true; | |
| } | |
| enum llama_pooling_type llama_context::pooling_type() const { | |
| return cparams.pooling_type; | |
| } | |
| float * llama_context::get_logits() { | |
| return logits; | |
| } | |
| float * llama_context::get_logits_ith(int32_t i) { | |
| int64_t j = -1; | |
| try { | |
| if (logits == nullptr) { | |
| throw std::runtime_error("no logits"); | |
| } | |
| if (i < 0) { | |
| j = n_outputs + i; | |
| if (j < 0) { | |
| throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs)); | |
| } | |
| } else if ((size_t) i >= output_ids.size()) { | |
| throw std::runtime_error(format("out of range [0, %zu)", output_ids.size())); | |
| } else { | |
| j = output_ids[i]; | |
| } | |
| if (j < 0) { | |
| throw std::runtime_error(format("batch.logits[%d] != true", i)); | |
| } | |
| if (j >= n_outputs) { | |
| // This should not happen | |
| throw std::runtime_error(format("corrupt output buffer (j=%" PRId64 ", n_outputs=%d)", j, n_outputs)); | |
| } | |
| return logits + j*model.vocab.n_tokens(); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what()); | |
| GGML_ABORT("fatal error"); | |
| return nullptr; | |
| } | |
| } | |
| float * llama_context::get_embeddings() { | |
| return embd; | |
| } | |
| float * llama_context::get_embeddings_ith(int32_t i) { | |
| int64_t j = -1; | |
| try { | |
| if (embd == nullptr) { | |
| throw std::runtime_error("no embeddings"); | |
| } | |
| if (i < 0) { | |
| j = n_outputs + i; | |
| if (j < 0) { | |
| throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs)); | |
| } | |
| } else if ((size_t) i >= output_ids.size()) { | |
| throw std::runtime_error(format("out of range [0, %zu)", output_ids.size())); | |
| } else { | |
| j = output_ids[i]; | |
| } | |
| if (j < 0) { | |
| throw std::runtime_error(format("batch.logits[%d] != true", i)); | |
| } | |
| if (j >= n_outputs) { | |
| // This should not happen | |
| throw std::runtime_error(format("corrupt output buffer (j=%" PRId64 ", n_outputs=%d)", j, n_outputs)); | |
| } | |
| return embd + j*model.hparams.n_embd; | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what()); | |
| GGML_ABORT("fatal error"); | |
| return nullptr; | |
| } | |
| } | |
| float * llama_context::get_embeddings_seq(llama_seq_id seq_id) { | |
| auto it = embd_seq.find(seq_id); | |
| if (it == embd_seq.end()) { | |
| return nullptr; | |
| } | |
| return it->second.data(); | |
| } | |
| void llama_context::attach_threadpool( | |
| ggml_threadpool_t threadpool, | |
| ggml_threadpool_t threadpool_batch) { | |
| LLAMA_LOG_DEBUG("%s: call\n", __func__); | |
| this->threadpool = threadpool; | |
| this->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool; | |
| } | |
| void llama_context::detach_threadpool() { | |
| LLAMA_LOG_DEBUG("%s: call\n", __func__); | |
| this->threadpool = nullptr; | |
| this->threadpool_batch = nullptr; | |
| } | |
| void llama_context::set_n_threads(int32_t n_threads, int32_t n_threads_batch) { | |
| LLAMA_LOG_DEBUG("%s: n_threads = %d, n_threads_batch = %d\n", __func__, n_threads, n_threads_batch); | |
| cparams.n_threads = n_threads; | |
| cparams.n_threads_batch = n_threads_batch; | |
| } | |
| void llama_context::set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data) { | |
| LLAMA_LOG_DEBUG("%s: call\n", __func__); | |
| this->abort_callback = abort_callback; | |
| this->abort_callback_data = abort_callback_data; | |
| for (auto & backend : backends) { | |
| auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get())); | |
| auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback"); | |
| if (set_abort_callback_fn) { | |
| set_abort_callback_fn(backend.get(), this->abort_callback, this->abort_callback_data); | |
| } | |
| } | |
| } | |
| void llama_context::set_embeddings(bool value) { | |
| LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value); | |
| cparams.embeddings = value; | |
| } | |
| void llama_context::set_causal_attn(bool value) { | |
| LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value); | |
| cparams.causal_attn = value; | |
| } | |
| void llama_context::set_warmup(bool value) { | |
| LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value); | |
| cparams.warmup = value; | |
| } | |
| void llama_context::set_adapter_lora( | |
| llama_adapter_lora * adapter, | |
| float scale) { | |
| LLAMA_LOG_DEBUG("%s: adapter = %p, scale = %f\n", __func__, (void *) adapter, scale); | |
| loras[adapter] = scale; | |
| } | |
| bool llama_context::rm_adapter_lora( | |
| llama_adapter_lora * adapter) { | |
| LLAMA_LOG_DEBUG("%s: adapter = %p\n", __func__, (void *) adapter); | |
| auto pos = loras.find(adapter); | |
| if (pos != loras.end()) { | |
| loras.erase(pos); | |
| return true; | |
| } | |
| return false; | |
| } | |
| void llama_context::clear_adapter_lora() { | |
| LLAMA_LOG_DEBUG("%s: call\n", __func__); | |
| loras.clear(); | |
| } | |
| bool llama_context::apply_adapter_cvec( | |
| const float * data, | |
| size_t len, | |
| int32_t n_embd, | |
| int32_t il_start, | |
| int32_t il_end) { | |
| LLAMA_LOG_DEBUG("%s: il_start = %d, il_end = %d\n", __func__, il_start, il_end); | |
| return cvec.apply(model, data, len, n_embd, il_start, il_end); | |
| } | |
| llm_graph_result_ptr llama_context::process_ubatch(const llama_ubatch & ubatch, llm_graph_type gtype, llama_memory_state_i * mstate, ggml_status & ret) { | |
| if (mstate && !mstate->apply()) { | |
| LLAMA_LOG_ERROR("%s: failed to apply memory state\n", __func__); | |
| ret = GGML_STATUS_FAILED; | |
| return nullptr; | |
| } | |
| auto * gf = graph_init(); | |
| if (!gf) { | |
| LLAMA_LOG_ERROR("%s: failed to initialize graph\n", __func__); | |
| ret = GGML_STATUS_FAILED; | |
| return nullptr; | |
| } | |
| auto res = graph_build(ctx_compute.get(), gf, ubatch, gtype, mstate); | |
| if (!res) { | |
| LLAMA_LOG_ERROR("%s: failed to build graph\n", __func__); | |
| ret = GGML_STATUS_FAILED; | |
| return nullptr; | |
| } | |
| // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); | |
| if (!ggml_backend_sched_alloc_graph(sched.get(), gf)) { | |
| LLAMA_LOG_ERROR("%s: failed to allocate graph\n", __func__); | |
| ret = GGML_STATUS_ALLOC_FAILED; | |
| return nullptr; | |
| } | |
| res->set_inputs(&ubatch); | |
| const auto status = graph_compute(gf, ubatch.n_tokens > 1); | |
| if (status != GGML_STATUS_SUCCESS) { | |
| LLAMA_LOG_ERROR("%s: failed to compute graph, compute status: %d\n", __func__, status); | |
| ret = status; | |
| return nullptr; | |
| } | |
| ret = GGML_STATUS_SUCCESS; | |
| return res; | |
| } | |
| int llama_context::encode(const llama_batch & batch_inp) { | |
| GGML_ASSERT((!batch_inp.token && batch_inp.embd) || (batch_inp.token && !batch_inp.embd)); // NOLINT | |
| if (batch_inp.n_tokens == 0) { | |
| LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__); | |
| return -1; | |
| } | |
| const auto & hparams = model.hparams; | |
| const int64_t n_embd = hparams.n_embd; | |
| // note: during encode, we always pass the full sequence starting from pos = 0 | |
| if (!balloc->init(batch_inp, model.vocab, nullptr, n_embd, true)) { | |
| LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__); | |
| return -1; | |
| } | |
| const uint32_t n_tokens = balloc->get_n_tokens(); | |
| const llama_ubatch ubatch = balloc->split_simple(n_tokens); | |
| // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot | |
| GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens"); | |
| if (t_compute_start_us == 0) { | |
| t_compute_start_us = ggml_time_us(); | |
| } | |
| // TODO: this clear of the buffer can easily be forgotten - need something better | |
| embd_seq.clear(); | |
| n_queued_tokens += n_tokens; | |
| // reserve output buffer | |
| if (output_reserve(n_tokens) < n_tokens) { | |
| LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens); | |
| return -2; | |
| }; | |
| for (uint32_t i = 0; i < n_tokens; ++i) { | |
| output_ids[i] = i; | |
| } | |
| n_outputs = n_tokens; | |
| ggml_backend_sched_reset(sched.get()); | |
| ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); | |
| const auto causal_attn_org = cparams.causal_attn; | |
| // always use non-causal attention for encoder graphs | |
| // TODO: this is a tmp solution until we have a proper way to support enc-dec models | |
| // ref: https://github.com/ggml-org/llama.cpp/pull/12181#issuecomment-2730451223 | |
| cparams.causal_attn = false; | |
| ggml_status status; | |
| const auto res = process_ubatch(ubatch, LLM_GRAPH_TYPE_ENCODER, nullptr, status); | |
| cparams.causal_attn = causal_attn_org; | |
| if (!res) { | |
| switch (status) { | |
| case GGML_STATUS_ABORTED: return 2; | |
| case GGML_STATUS_ALLOC_FAILED: return -2; | |
| case GGML_STATUS_FAILED: return -3; | |
| case GGML_STATUS_SUCCESS: GGML_ABORT("should not happen"); | |
| } | |
| } | |
| auto * t_embd = res->get_embd_pooled() ? res->get_embd_pooled() : res->get_embd(); | |
| // extract embeddings | |
| if (t_embd) { | |
| ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd); | |
| GGML_ASSERT(backend_embd != nullptr); | |
| switch (cparams.pooling_type) { | |
| case LLAMA_POOLING_TYPE_NONE: | |
| { | |
| // extract token embeddings | |
| GGML_ASSERT(embd != nullptr); | |
| GGML_ASSERT(n_tokens*n_embd <= (int64_t) embd_size); | |
| ggml_backend_tensor_get_async(backend_embd, t_embd, embd, 0, n_tokens*n_embd*sizeof(float)); | |
| } break; | |
| case LLAMA_POOLING_TYPE_MEAN: | |
| case LLAMA_POOLING_TYPE_CLS: | |
| case LLAMA_POOLING_TYPE_LAST: | |
| { | |
| // extract sequence embeddings | |
| auto & embd_seq_out = embd_seq; | |
| for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) { | |
| const llama_seq_id seq_id = ubatch.seq_id_unq[s]; | |
| const int32_t seq_idx = ubatch.seq_idx[seq_id]; | |
| embd_seq_out[seq_id].resize(n_embd); | |
| ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_idx)*sizeof(float), n_embd*sizeof(float)); | |
| } | |
| } break; | |
| case LLAMA_POOLING_TYPE_RANK: | |
| { | |
| // extract the rerank score - n_cls_out floats per sequence | |
| auto & embd_seq_out = embd_seq; | |
| const uint32_t n_cls_out = hparams.n_cls_out; | |
| for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) { | |
| const llama_seq_id seq_id = ubatch.seq_id_unq[s]; | |
| const int32_t seq_idx = ubatch.seq_idx[seq_id]; | |
| embd_seq_out[seq_id].resize(n_cls_out); | |
| ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_cls_out*seq_idx)*sizeof(float), n_cls_out*sizeof(float)); | |
| } | |
| } break; | |
| case LLAMA_POOLING_TYPE_UNSPECIFIED: | |
| { | |
| GGML_ABORT("unknown pooling type"); | |
| } | |
| } | |
| } | |
| // Reset state for the next token before backend sync, to allow the CPU activities in the reset to | |
| // overlap with device computation. | |
| ggml_backend_sched_reset(sched.get()); | |
| // TODO: hacky solution | |
| if (model.arch == LLM_ARCH_T5 && t_embd) { | |
| //cross.t_embd = t_embd; | |
| synchronize(); | |
| cross.n_embd = t_embd->ne[0]; | |
| cross.n_enc = t_embd->ne[1]; | |
| cross.v_embd.resize(cross.n_embd*cross.n_enc); | |
| memcpy(cross.v_embd.data(), embd, ggml_nbytes(t_embd)); | |
| const auto & batch = balloc->get_batch(); | |
| // remember the sequence ids used during the encoding - needed for cross attention later | |
| cross.seq_ids_enc.resize(n_tokens); | |
| for (uint32_t i = 0; i < n_tokens; i++) { | |
| cross.seq_ids_enc[i].clear(); | |
| for (int s = 0; s < batch.n_seq_id[i]; s++) { | |
| const llama_seq_id seq_id = batch.seq_id[i][s]; | |
| cross.seq_ids_enc[i].insert(seq_id); | |
| } | |
| } | |
| } | |
| return 0; | |
| } | |
| int llama_context::decode(const llama_batch & batch_inp) { | |
| GGML_ASSERT((!batch_inp.token && batch_inp.embd) || (batch_inp.token && !batch_inp.embd)); // NOLINT | |
| if (!memory) { | |
| LLAMA_LOG_DEBUG("%s: cannot decode batches with this context (calling encode() instead)\n", __func__); | |
| return encode(batch_inp); | |
| } | |
| if (batch_inp.n_tokens == 0) { | |
| LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__); | |
| return -1; | |
| } | |
| const auto & vocab = model.vocab; | |
| const auto & hparams = model.hparams; | |
| const int32_t n_vocab = vocab.n_tokens(); | |
| const int64_t n_embd = hparams.n_embd; | |
| // when computing embeddings, all tokens are output | |
| const bool output_all = cparams.embeddings; | |
| if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, output_all)) { | |
| LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__); | |
| return -1; | |
| } | |
| const uint32_t n_tokens_all = balloc->get_n_tokens(); | |
| const uint32_t n_outputs_all = balloc->get_n_outputs(); | |
| if (output_all) { | |
| // require that all tokens are output | |
| if (n_outputs_all != n_tokens_all) { | |
| LLAMA_LOG_ERROR("%s: pooled embedding requires that all tokens are output (n_outputs_all = %d, n_tokens_all = %d)\n", | |
| __func__, n_outputs_all, n_tokens_all); | |
| return -1; | |
| } | |
| } | |
| GGML_ASSERT(n_tokens_all <= cparams.n_batch); | |
| GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens"); | |
| if (t_compute_start_us == 0) { | |
| t_compute_start_us = ggml_time_us(); | |
| } | |
| n_queued_tokens += n_tokens_all; | |
| // TODO: this clear of the buffer can easily be forgotten - need something better | |
| embd_seq.clear(); | |
| bool did_optimize = false; | |
| // handle any pending defrags/shifts | |
| kv_self_update(false); | |
| llama_memory_state_ptr mstate; | |
| while (true) { | |
| mstate = memory->init_batch(*balloc, cparams.n_ubatch, output_all); | |
| if (!mstate) { | |
| return -2; | |
| } | |
| switch (mstate->get_status()) { | |
| case LLAMA_MEMORY_STATUS_SUCCESS: | |
| { | |
| } break; | |
| case LLAMA_MEMORY_STATUS_NO_UPDATE: | |
| { | |
| LLAMA_LOG_ERROR("%s: unexpected memory state status: %d\n", __func__, mstate->get_status()); | |
| return -2; | |
| } | |
| case LLAMA_MEMORY_STATUS_FAILED_PREPARE: | |
| { | |
| if (!did_optimize) { | |
| did_optimize = true; | |
| if (kv_self_update(true)) { | |
| LLAMA_LOG_DEBUG("%s: retrying batch size %d after cache optimization\n", __func__, balloc->get_n_tokens()); | |
| continue; | |
| } | |
| } | |
| LLAMA_LOG_WARN("%s: failed to find a memory slot for batch of size %d\n", __func__, balloc->get_n_tokens()); | |
| return 1; | |
| } | |
| case LLAMA_MEMORY_STATUS_FAILED_COMPUTE: | |
| { | |
| LLAMA_LOG_ERROR("%s: compute failed while preparing batch of size %d\n", __func__, balloc->get_n_tokens()); | |
| return -2; | |
| } | |
| } | |
| break; | |
| } | |
| // reserve output buffer | |
| if (output_reserve(n_outputs_all) < n_outputs_all) { | |
| LLAMA_LOG_ERROR("%s: could not reserve space for batch with %d outputs\n", __func__, n_outputs_all); | |
| return -2; | |
| }; | |
| int64_t n_outputs_prev = 0; | |
| do { | |
| const auto & ubatch = mstate->get_ubatch(); | |
| // count the outputs in this ubatch | |
| { | |
| int32_t n_outputs_new = 0; | |
| if (n_outputs_all == n_tokens_all) { | |
| n_outputs_new = ubatch.n_tokens; | |
| } else { | |
| for (uint32_t i = 0; i < ubatch.n_tokens; i++) { | |
| n_outputs_new += (int32_t) (ubatch.output[i] != 0); | |
| } | |
| } | |
| // needs to happen before the graph is built | |
| n_outputs = n_outputs_new; | |
| } | |
| ggml_backend_sched_reset(sched.get()); | |
| ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); | |
| ggml_status status; | |
| const auto res = process_ubatch(ubatch, LLM_GRAPH_TYPE_DECODER, mstate.get(), status); | |
| if (!res) { | |
| // the last ubatch failed or was aborted -> remove all positions of that ubatch from the KV cache | |
| llama_pos pos_min[LLAMA_MAX_SEQ]; | |
| for (int s = 0; s < LLAMA_MAX_SEQ; ++s) { | |
| pos_min[s] = std::numeric_limits<llama_pos>::max(); | |
| } | |
| // TODO: fix sequence indexing | |
| for (uint32_t i = 0; i < ubatch.n_tokens; ++i) { | |
| const auto & seq_id = ubatch.seq_id[i][0]; | |
| pos_min[seq_id] = std::min(pos_min[seq_id], ubatch.pos[i]); | |
| } | |
| for (int s = 0; s < LLAMA_MAX_SEQ; ++s) { | |
| if (pos_min[s] == std::numeric_limits<llama_pos>::max()) { | |
| continue; | |
| } | |
| LLAMA_LOG_WARN("%s: removing KV cache entries for seq_id = %d, pos = [%d, +inf)\n", __func__, s, pos_min[s]); | |
| memory->seq_rm(s, pos_min[s], -1); | |
| } | |
| switch (status) { | |
| case GGML_STATUS_ABORTED: return 2; | |
| case GGML_STATUS_ALLOC_FAILED: return -2; | |
| case GGML_STATUS_FAILED: return -3; | |
| case GGML_STATUS_SUCCESS: GGML_ABORT("should not happen"); | |
| } | |
| } | |
| // plot the computation graph in dot format (for debugging purposes) | |
| //if (n_past%100 == 0) { | |
| // ggml_graph_dump_dot(gf, NULL, "llama.dot"); | |
| //} | |
| auto * t_logits = res->get_logits(); | |
| auto * t_embd = cparams.embeddings ? res->get_embd() : nullptr; | |
| if (t_embd && res->get_embd_pooled()) { | |
| t_embd = res->get_embd_pooled(); | |
| } | |
| // extract logits | |
| if (t_logits && n_outputs > 0) { | |
| ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(sched.get(), t_logits); | |
| GGML_ASSERT(backend_res != nullptr); | |
| GGML_ASSERT(logits != nullptr); | |
| float * logits_out = logits + n_outputs_prev*n_vocab; | |
| if (n_outputs) { | |
| GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all); | |
| GGML_ASSERT((n_outputs_prev + n_outputs)*n_vocab <= (int64_t) logits_size); | |
| ggml_backend_tensor_get_async(backend_res, t_logits, logits_out, 0, n_outputs*n_vocab*sizeof(float)); | |
| } | |
| } | |
| // extract embeddings | |
| if (t_embd && n_outputs > 0) { | |
| ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd); | |
| GGML_ASSERT(backend_embd != nullptr); | |
| switch (cparams.pooling_type) { | |
| case LLAMA_POOLING_TYPE_NONE: | |
| { | |
| // extract token embeddings | |
| GGML_ASSERT(embd != nullptr); | |
| float * embd_out = embd + n_outputs_prev*n_embd; | |
| if (n_outputs) { | |
| GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all); | |
| GGML_ASSERT((n_outputs_prev + n_outputs)*n_embd <= (int64_t) embd_size); | |
| ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_outputs*n_embd*sizeof(float)); | |
| } | |
| } break; | |
| case LLAMA_POOLING_TYPE_MEAN: | |
| case LLAMA_POOLING_TYPE_CLS: | |
| case LLAMA_POOLING_TYPE_LAST: | |
| { | |
| // extract sequence embeddings (cleared before processing each batch) | |
| auto & embd_seq_out = embd_seq; | |
| for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) { | |
| const llama_seq_id seq_id = ubatch.seq_id_unq[s]; | |
| const int32_t seq_idx = ubatch.seq_idx[seq_id]; | |
| embd_seq_out[seq_id].resize(n_embd); | |
| ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_idx)*sizeof(float), n_embd*sizeof(float)); | |
| } | |
| } break; | |
| case LLAMA_POOLING_TYPE_RANK: | |
| { | |
| // extract the rerank score - n_cls_out floats per sequence | |
| auto & embd_seq_out = embd_seq; | |
| const uint32_t n_cls_out = hparams.n_cls_out; | |
| for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) { | |
| const llama_seq_id seq_id = ubatch.seq_id_unq[s]; | |
| const int32_t seq_idx = ubatch.seq_idx[seq_id]; | |
| embd_seq_out[seq_id].resize(n_cls_out); | |
| ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_cls_out*seq_idx)*sizeof(float), n_cls_out*sizeof(float)); | |
| } | |
| } break; | |
| case LLAMA_POOLING_TYPE_UNSPECIFIED: | |
| { | |
| GGML_ABORT("unknown pooling type"); | |
| } | |
| } | |
| } | |
| n_outputs_prev += n_outputs; | |
| } while (mstate->next()); | |
| // set to total number of outputs in the batch, for use in llama_get_logits_ith | |
| n_outputs = n_outputs_all; | |
| // set output mappings | |
| if (n_outputs > 0) { | |
| bool sorted_output = true; | |
| auto & out_ids = balloc->get_out_ids(); | |
| GGML_ASSERT(out_ids.size() == (size_t) n_outputs); | |
| for (int64_t i = 0; i < n_outputs; ++i) { | |
| int64_t out_id = out_ids[i]; | |
| output_ids[out_id] = i; | |
| if (out_id != i) { | |
| sorted_output = false; | |
| } | |
| } | |
| // make the outputs have the same order they had in the user-provided batch | |
| // note: this is mostly relevant for recurrent models atm | |
| if (!sorted_output) { | |
| const uint32_t n_vocab = model.vocab.n_tokens(); | |
| const uint64_t n_embd = model.hparams.n_embd; | |
| GGML_ASSERT((size_t) n_outputs == out_ids.size()); | |
| // TODO: is there something more efficient which also minimizes swaps? | |
| // selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort) | |
| for (uint32_t i = 0; i < n_outputs - 1; ++i) { | |
| uint32_t j_min = i; | |
| for (uint32_t j = i + 1; j < n_outputs; ++j) { | |
| if (out_ids[j] < out_ids[j_min]) { | |
| j_min = j; | |
| } | |
| } | |
| if (j_min == i) { | |
| continue; | |
| } | |
| std::swap(out_ids[i], out_ids[j_min]); | |
| if (logits_size > 0) { | |
| for (uint32_t k = 0; k < n_vocab; k++) { | |
| std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]); | |
| } | |
| } | |
| if (embd_size > 0) { | |
| for (uint32_t k = 0; k < n_embd; k++) { | |
| std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]); | |
| } | |
| } | |
| } | |
| std::fill(output_ids.begin(), output_ids.end(), -1); | |
| for (uint32_t i = 0; i < n_outputs; ++i) { | |
| output_ids[out_ids[i]] = i; | |
| } | |
| } | |
| } | |
| // wait for the computation to finish (automatically done when obtaining the model output) | |
| //synchronize(); | |
| // Reset state for the next token before backend sync, to allow the CPU activities in the reset to | |
| // overlap with device computation. | |
| ggml_backend_sched_reset(sched.get()); | |
| return 0; | |
| } | |
| // | |
| // output | |
| // | |
| uint32_t llama_context::output_reserve(int32_t n_outputs) { | |
| const auto & hparams = model.hparams; | |
| const auto & vocab = model.vocab; | |
| const int64_t n_outputs_max = std::max<int64_t>(n_outputs, n_seq_max()); | |
| const auto n_batch = cparams.n_batch; | |
| const auto n_vocab = vocab.n_tokens(); | |
| const auto n_embd = hparams.n_embd; | |
| bool has_logits = true; | |
| bool has_embd = cparams.embeddings; | |
| // TODO: hacky enc-dec support | |
| if (model.arch == LLM_ARCH_T5) { | |
| has_logits = true; | |
| has_embd = true; | |
| } | |
| logits_size = has_logits ? n_vocab*n_outputs_max : 0; | |
| embd_size = has_embd ? n_embd*n_outputs_max : 0; | |
| if (output_ids.empty()) { | |
| // init, never resized afterwards | |
| output_ids.resize(n_batch); | |
| } | |
| const size_t prev_size = buf_output ? ggml_backend_buffer_get_size(buf_output.get()) : 0; | |
| const size_t new_size = (logits_size + embd_size) * sizeof(float); | |
| // alloc only when more than the current capacity is required | |
| // TODO: also consider shrinking the buffer | |
| if (!buf_output || prev_size < new_size) { | |
| if (buf_output) { | |
| // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark) | |
| LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); | |
| buf_output = nullptr; | |
| logits = nullptr; | |
| embd = nullptr; | |
| } | |
| auto * buft = ggml_backend_cpu_buffer_type(); | |
| // try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory | |
| auto * output_dev = model.dev_output(); | |
| auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr; | |
| if (output_dev_host_buft) { | |
| buft = output_dev_host_buft; | |
| } | |
| buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size)); | |
| if (buf_output == nullptr) { | |
| LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); | |
| return 0; | |
| } | |
| } | |
| float * output_base = (float *) ggml_backend_buffer_get_base(buf_output.get()); | |
| logits = has_logits ? output_base : nullptr; | |
| embd = has_embd ? output_base + logits_size : nullptr; | |
| // set all ids as invalid (negative) | |
| std::fill(output_ids.begin(), output_ids.end(), -1); | |
| this->n_outputs = 0; | |
| return n_outputs_max; | |
| } | |
| // | |
| // graph | |
| // | |
| int32_t llama_context::graph_max_nodes() const { | |
| return std::max<int32_t>(65536, 5*model.n_tensors()); | |
| } | |
| ggml_cgraph * llama_context::graph_init() { | |
| ggml_init_params params = { | |
| /*.mem_size =*/ buf_compute_meta.size(), | |
| /*.mem_buffer =*/ buf_compute_meta.data(), | |
| /*.no_alloc =*/ true, | |
| }; | |
| ctx_compute.reset(ggml_init(params)); | |
| return ggml_new_graph_custom(ctx_compute.get(), graph_max_nodes(), false); | |
| } | |
| ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_state_i * mstate) { | |
| LLAMA_LOG_DEBUG("%s: reserving a graph for ubatch with n_tokens = %4u, n_seqs = %2u, n_outputs = %4u\n", __func__, n_tokens, n_seqs, n_outputs); | |
| if (n_tokens % n_seqs != 0) { | |
| n_tokens = ((n_tokens + (n_seqs - 1)) / n_seqs) * n_seqs; // round to next multiple of n_seqs | |
| n_outputs = std::min(n_outputs, n_tokens); | |
| LLAMA_LOG_DEBUG("%s: making n_tokens a multiple of n_seqs - n_tokens = %u, n_seqs = %u, n_outputs = %u\n", __func__, n_tokens, n_seqs, n_outputs); | |
| } | |
| // store the n_outputs as it is, and restore it afterwards | |
| // TODO: not sure if needed, might simplify in the future by removing this | |
| const auto save_n_outputs = this->n_outputs; | |
| this->n_outputs = n_outputs; | |
| llama_batch_allocr balloc(model.hparams.n_pos_per_embd()); | |
| llama_ubatch ubatch = balloc.ubatch_reserve(n_tokens/n_seqs, n_seqs); | |
| auto * gf = graph_init(); | |
| auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT, mstate); | |
| this->n_outputs = save_n_outputs; | |
| if (!res) { | |
| LLAMA_LOG_ERROR("%s: failed to build worst-case graph\n", __func__); | |
| return nullptr; | |
| } | |
| ggml_backend_sched_reset(sched.get()); | |
| // initialize scheduler with the specified graph | |
| if (!ggml_backend_sched_reserve(sched.get(), gf)) { | |
| LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); | |
| return nullptr; | |
| } | |
| return gf; | |
| } | |
| llm_graph_result_ptr llama_context::graph_build( | |
| ggml_context * ctx, | |
| ggml_cgraph * gf, | |
| const llama_ubatch & ubatch, | |
| llm_graph_type gtype, | |
| const llama_memory_state_i * mstate) { | |
| return model.build_graph( | |
| { | |
| /*.ctx =*/ ctx, | |
| /*.arch =*/ model.arch, | |
| /*.hparams =*/ model.hparams, | |
| /*.cparams =*/ cparams, | |
| /*.ubatch =*/ ubatch, | |
| /*.sched =*/ sched.get(), | |
| /*.backend_cpu =*/ backend_cpu, | |
| /*.cvec =*/ &cvec, | |
| /*.loras =*/ &loras, | |
| /*.mstate =*/ mstate, | |
| /*.cross =*/ &cross, | |
| /*.n_outputs =*/ n_outputs, | |
| /*.cb =*/ graph_get_cb(), | |
| }, gf, gtype); | |
| } | |
| ggml_status llama_context::graph_compute( | |
| ggml_cgraph * gf, | |
| bool batched) { | |
| int n_threads = batched ? cparams.n_threads_batch : cparams.n_threads; | |
| ggml_threadpool_t tp = batched ? threadpool_batch : threadpool; | |
| if (backend_cpu != nullptr) { | |
| auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend_cpu)); | |
| auto * set_threadpool_fn = (decltype(ggml_backend_cpu_set_threadpool) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_set_threadpool"); | |
| set_threadpool_fn(backend_cpu, tp); | |
| } | |
| // set the number of threads for all the backends | |
| for (const auto & set_n_threads_fn : set_n_threads_fns) { | |
| set_n_threads_fn.second(set_n_threads_fn.first, n_threads); | |
| } | |
| auto status = ggml_backend_sched_graph_compute_async(sched.get(), gf); | |
| if (status != GGML_STATUS_SUCCESS) { | |
| LLAMA_LOG_ERROR("%s: ggml_backend_sched_graph_compute_async failed with error %d\n", __func__, status); | |
| } | |
| // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(sched)); | |
| return status; | |
| } | |
| llm_graph_cb llama_context::graph_get_cb() const { | |
| return [&](const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il) { | |
| if (il >= 0) { | |
| ggml_format_name(cur, "%s-%d", name, il); | |
| } else { | |
| ggml_set_name(cur, name); | |
| } | |
| if (!cparams.offload_kqv) { | |
| if (strcmp(name, "kqv_merged_cont") == 0) { | |
| // all nodes between the KV store and the attention output are run on the CPU | |
| ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend_cpu); | |
| } | |
| } | |
| // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends | |
| // FIXME: fix in ggml_backend_sched | |
| const bool full_offload = model.params.n_gpu_layers > (int) model.hparams.n_layer; | |
| if (ubatch.n_tokens < 32 || full_offload) { | |
| if (il != -1 && strcmp(name, "norm") == 0) { | |
| const auto & dev_layer = model.dev_layer(il); | |
| for (const auto & backend : backends) { | |
| if (ggml_backend_get_device(backend.get()) == dev_layer) { | |
| if (ggml_backend_supports_op(backend.get(), cur)) { | |
| ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend.get()); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| }; | |
| } | |
| // | |
| // state save/load | |
| // | |
| class llama_io_write_dummy : public llama_io_write_i { | |
| public: | |
| llama_io_write_dummy() = default; | |
| void write(const void * /* src */, size_t size) override { | |
| size_written += size; | |
| } | |
| void write_tensor(const ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override { | |
| size_written += size; | |
| } | |
| size_t n_bytes() override { | |
| return size_written; | |
| } | |
| private: | |
| size_t size_written = 0; | |
| }; | |
| class llama_io_write_buffer : public llama_io_write_i { | |
| public: | |
| llama_io_write_buffer( | |
| uint8_t * p, size_t len) : ptr(p), buf_size(len) {} | |
| void write(const void * src, size_t size) override { | |
| if (size > buf_size) { | |
| throw std::runtime_error("unexpectedly reached end of buffer"); | |
| } | |
| memcpy(ptr, src, size); | |
| ptr += size; | |
| size_written += size; | |
| buf_size -= size; | |
| } | |
| void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override { | |
| if (size > buf_size) { | |
| throw std::runtime_error("unexpectedly reached end of buffer"); | |
| } | |
| ggml_backend_tensor_get(tensor, ptr, offset, size); | |
| ptr += size; | |
| size_written += size; | |
| buf_size -= size; | |
| } | |
| size_t n_bytes() override { | |
| return size_written; | |
| } | |
| private: | |
| uint8_t * ptr; | |
| size_t buf_size = 0; | |
| size_t size_written = 0; | |
| }; | |
| class llama_io_read_buffer : public llama_io_read_i { | |
| public: | |
| llama_io_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {} | |
| const uint8_t * read(size_t size) override { | |
| const uint8_t * base_ptr = ptr; | |
| if (size > buf_size) { | |
| throw std::runtime_error("unexpectedly reached end of buffer"); | |
| } | |
| ptr += size; | |
| size_read += size; | |
| buf_size -= size; | |
| return base_ptr; | |
| } | |
| void read_to(void * dst, size_t size) override { | |
| memcpy(dst, read(size), size); | |
| } | |
| size_t n_bytes() override { | |
| return size_read; | |
| } | |
| private: | |
| const uint8_t * ptr; | |
| size_t buf_size = 0; | |
| size_t size_read = 0; | |
| }; | |
| class llama_io_write_file : public llama_io_write_i { | |
| public: | |
| llama_io_write_file(llama_file * f) : file(f) {} | |
| void write(const void * src, size_t size) override { | |
| file->write_raw(src, size); | |
| size_written += size; | |
| } | |
| void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override { | |
| temp_buffer.resize(size); | |
| ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size); | |
| write(temp_buffer.data(), temp_buffer.size()); | |
| } | |
| size_t n_bytes() override { | |
| return size_written; | |
| } | |
| private: | |
| llama_file * file; | |
| size_t size_written = 0; | |
| std::vector<uint8_t> temp_buffer; | |
| }; | |
| class llama_io_read_file : public llama_io_read_i { | |
| public: | |
| llama_io_read_file(llama_file * f) : file(f) {} | |
| void read_to(void * dst, size_t size) override { | |
| file->read_raw(dst, size); | |
| size_read += size; | |
| } | |
| const uint8_t * read(size_t size) override { | |
| temp_buffer.resize(size); | |
| read_to(temp_buffer.data(), size); | |
| return temp_buffer.data(); | |
| } | |
| size_t n_bytes() override { | |
| return size_read; | |
| } | |
| private: | |
| llama_file * file; | |
| size_t size_read = 0; | |
| std::vector<uint8_t> temp_buffer; | |
| }; | |
| size_t llama_context::state_get_size() { | |
| llama_io_write_dummy io; | |
| try { | |
| return state_write_data(io); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what()); | |
| return 0; | |
| } | |
| } | |
| size_t llama_context::state_get_data(uint8_t * dst, size_t size) { | |
| llama_io_write_buffer io(dst, size); | |
| try { | |
| return state_write_data(io); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what()); | |
| return 0; | |
| } | |
| } | |
| size_t llama_context::state_set_data(const uint8_t * src, size_t size) { | |
| llama_io_read_buffer io(src, size); | |
| try { | |
| return state_read_data(io); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what()); | |
| return 0; | |
| } | |
| } | |
| size_t llama_context::state_seq_get_size(llama_seq_id seq_id) { | |
| llama_io_write_dummy io; | |
| try { | |
| return state_seq_write_data(io, seq_id); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what()); | |
| return 0; | |
| } | |
| } | |
| size_t llama_context::state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) { | |
| llama_io_write_buffer io(dst, size); | |
| try { | |
| return state_seq_write_data(io, seq_id); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what()); | |
| return 0; | |
| } | |
| } | |
| size_t llama_context::state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) { | |
| llama_io_read_buffer io(src, size); | |
| try { | |
| return state_seq_read_data(io, seq_id); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what()); | |
| return 0; | |
| } | |
| } | |
| bool llama_context::state_load_file(const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
| llama_file file(filepath, "rb"); | |
| // sanity checks | |
| { | |
| const uint32_t magic = file.read_u32(); | |
| const uint32_t version = file.read_u32(); | |
| if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { | |
| LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); | |
| return false; | |
| } | |
| } | |
| // load the prompt | |
| { | |
| const uint32_t n_token_count = file.read_u32(); | |
| if (n_token_count > n_token_capacity) { | |
| LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); | |
| return false; | |
| } | |
| file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); | |
| *n_token_count_out = n_token_count; | |
| } | |
| // restore the context state | |
| { | |
| const size_t n_state_size_cur = file.size() - file.tell(); | |
| llama_io_read_file io( &file); | |
| const size_t n_read = state_read_data(io); | |
| if (n_read != n_state_size_cur) { | |
| LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read); | |
| return false; | |
| } | |
| } | |
| return true; | |
| } | |
| bool llama_context::state_save_file(const char * filepath, const llama_token * tokens, size_t n_token_count) { | |
| llama_file file(filepath, "wb"); | |
| file.write_u32(LLAMA_SESSION_MAGIC); | |
| file.write_u32(LLAMA_SESSION_VERSION); | |
| // save the prompt | |
| file.write_u32((uint32_t) n_token_count); | |
| file.write_raw(tokens, sizeof(llama_token) * n_token_count); | |
| // save the context state using stream saving | |
| llama_io_write_file io(&file); | |
| state_write_data(io); | |
| return true; | |
| } | |
| size_t llama_context::state_seq_load_file(llama_seq_id seq_id, const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
| llama_file file(filepath, "rb"); | |
| // version checks | |
| { | |
| const uint32_t magic = file.read_u32(); | |
| const uint32_t version = file.read_u32(); | |
| if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) { | |
| LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version); | |
| return 0; | |
| } | |
| } | |
| // load the prompt | |
| { | |
| const uint32_t n_token_count = file.read_u32(); | |
| if (n_token_count > n_token_capacity) { | |
| LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); | |
| return 0; | |
| } | |
| file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); | |
| *n_token_count_out = n_token_count; | |
| } | |
| // restore the context state | |
| { | |
| const size_t state_size = file.size() - file.tell(); | |
| llama_io_read_file io(&file); | |
| const size_t nread = state_seq_read_data(io, seq_id); | |
| if (!nread) { | |
| LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__); | |
| return 0; | |
| } | |
| GGML_ASSERT(nread <= state_size); | |
| GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell()); | |
| } | |
| return file.tell(); | |
| } | |
| size_t llama_context::state_seq_save_file(llama_seq_id seq_id, const char * filepath, const llama_token * tokens, size_t n_token_count) { | |
| llama_file file(filepath, "wb"); | |
| file.write_u32(LLAMA_STATE_SEQ_MAGIC); | |
| file.write_u32(LLAMA_STATE_SEQ_VERSION); | |
| // save the prompt | |
| file.write_u32((uint32_t) n_token_count); | |
| file.write_raw(tokens, sizeof(llama_token) * n_token_count); | |
| // save the context state using stream saving | |
| llama_io_write_file io(&file); | |
| state_seq_write_data(io, seq_id); | |
| const size_t res = file.tell(); | |
| GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + io.n_bytes()); | |
| return res; | |
| } | |
| size_t llama_context::state_write_data(llama_io_write_i & io) { | |
| LLAMA_LOG_DEBUG("%s: writing state\n", __func__); | |
| // write model info | |
| { | |
| LLAMA_LOG_DEBUG("%s: - writing model info\n", __func__); | |
| const std::string arch_str = llm_arch_name(model.arch); | |
| io.write_string(arch_str); | |
| // TODO: add more model-specific info which should prevent loading the session file if not identical | |
| } | |
| // write output ids | |
| { | |
| LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__); | |
| const auto n_outputs = this->n_outputs; | |
| const auto & output_ids = this->output_ids; | |
| std::vector<int32_t> w_output_pos; | |
| w_output_pos.resize(n_outputs); | |
| // build a more compact representation of the output ids | |
| for (size_t i = 0; i < n_batch(); ++i) { | |
| // map an output id to a position in the batch | |
| int64_t pos = output_ids[i]; | |
| if (pos >= 0) { | |
| GGML_ASSERT(pos < n_outputs); | |
| w_output_pos[pos] = i; | |
| } | |
| } | |
| io.write(&n_outputs, sizeof(n_outputs)); | |
| if (n_outputs) { | |
| io.write(w_output_pos.data(), n_outputs * sizeof(int32_t)); | |
| } | |
| } | |
| // write logits | |
| { | |
| LLAMA_LOG_DEBUG("%s: - writing logits\n", __func__); | |
| const uint64_t logits_size = std::min((uint64_t) this->logits_size, (uint64_t) n_outputs * model.vocab.n_tokens()); | |
| io.write(&logits_size, sizeof(logits_size)); | |
| if (logits_size) { | |
| io.write(logits, logits_size * sizeof(float)); | |
| } | |
| } | |
| // write embeddings | |
| { | |
| LLAMA_LOG_DEBUG("%s: - writing embeddings\n", __func__); | |
| const uint64_t embd_size = std::min((uint64_t) this->embd_size, (uint64_t) n_outputs * model.hparams.n_embd); | |
| io.write(&embd_size, sizeof(embd_size)); | |
| if (embd_size) { | |
| io.write(embd, embd_size * sizeof(float)); | |
| } | |
| } | |
| if (memory != nullptr) { | |
| LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__); | |
| memory->state_write(io); | |
| } | |
| return io.n_bytes(); | |
| } | |
| size_t llama_context::state_read_data(llama_io_read_i & io) { | |
| LLAMA_LOG_DEBUG("%s: reading state\n", __func__); | |
| // read model info | |
| { | |
| LLAMA_LOG_DEBUG("%s: - reading model info\n", __func__); | |
| const std::string cur_arch_str = llm_arch_name(model.arch); | |
| std::string arch_str; | |
| io.read_string(arch_str); | |
| if (cur_arch_str != arch_str) { | |
| throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str())); | |
| } | |
| // TODO: add more info which needs to be identical but which is not verified otherwise | |
| } | |
| // read output ids | |
| { | |
| LLAMA_LOG_DEBUG("%s: - reading output ids\n", __func__); | |
| auto n_outputs = this->n_outputs; | |
| io.read_to(&n_outputs, sizeof(n_outputs)); | |
| if (n_outputs > output_reserve(n_outputs)) { | |
| throw std::runtime_error("could not reserve outputs"); | |
| } | |
| std::vector<int32_t> output_pos; | |
| if (n_outputs) { | |
| output_pos.resize(n_outputs); | |
| io.read_to(output_pos.data(), n_outputs * sizeof(int32_t)); | |
| for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) { | |
| int32_t id = output_pos[i]; | |
| if ((uint32_t) id >= n_batch()) { | |
| throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, n_batch())); | |
| } | |
| this->output_ids[id] = i; | |
| } | |
| this->n_outputs = n_outputs; | |
| } | |
| } | |
| // read logits | |
| { | |
| LLAMA_LOG_DEBUG("%s: - reading logits\n", __func__); | |
| uint64_t logits_size; | |
| io.read_to(&logits_size, sizeof(logits_size)); | |
| if (this->logits_size < logits_size) { | |
| throw std::runtime_error("logits buffer too small"); | |
| } | |
| if (logits_size) { | |
| io.read_to(this->logits, logits_size * sizeof(float)); | |
| } | |
| } | |
| // read embeddings | |
| { | |
| LLAMA_LOG_DEBUG("%s: - reading embeddings\n", __func__); | |
| uint64_t embd_size; | |
| io.read_to(&embd_size, sizeof(embd_size)); | |
| if (this->embd_size < embd_size) { | |
| throw std::runtime_error("embeddings buffer too small"); | |
| } | |
| if (embd_size) { | |
| io.read_to(this->embd, embd_size * sizeof(float)); | |
| } | |
| } | |
| if (memory) { | |
| LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__); | |
| memory->state_read(io); | |
| } | |
| return io.n_bytes(); | |
| } | |
| size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) { | |
| GGML_UNUSED(seq_id); | |
| if (memory) { | |
| memory->state_write(io, seq_id); | |
| } | |
| return io.n_bytes(); | |
| } | |
| size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) { | |
| GGML_UNUSED(seq_id); | |
| if (memory) { | |
| memory->state_read(io, seq_id); | |
| } | |
| return io.n_bytes(); | |
| } | |
| // | |
| // perf | |
| // | |
| llama_perf_context_data llama_context::perf_get_data() const { | |
| llama_perf_context_data data = {}; | |
| data.t_start_ms = 1e-3 * t_start_us; | |
| data.t_load_ms = 1e-3 * t_load_us; | |
| data.t_p_eval_ms = 1e-3 * t_p_eval_us; | |
| data.t_eval_ms = 1e-3 * t_eval_us; | |
| data.n_p_eval = std::max(1, n_p_eval); | |
| data.n_eval = std::max(1, n_eval); | |
| return data; | |
| } | |
| void llama_context::perf_reset() { | |
| t_start_us = ggml_time_us(); | |
| t_eval_us = n_eval = 0; | |
| t_p_eval_us = n_p_eval = 0; | |
| } | |
| // | |
| // training | |
| // | |
| static void llama_set_param(struct ggml_tensor * tensor, llama_opt_param_filter param_filter, void * userdata) { | |
| if (!tensor || tensor->type != GGML_TYPE_F32) { | |
| return; | |
| } | |
| if (!param_filter(tensor, userdata)) { | |
| return; | |
| } | |
| if (strcmp(tensor->name, "token_embd.weight") == 0) { | |
| return; // FIXME | |
| } | |
| if (strcmp(tensor->name, "rope_freqs.weight") == 0) { | |
| return; // FIXME | |
| } | |
| ggml_set_param(tensor); | |
| } | |
| void llama_context::opt_init(struct llama_model * model, struct llama_opt_params lopt_params) { | |
| GGML_ASSERT(!opt_ctx); | |
| model->hparams.n_ctx_train = lopt_params.n_ctx_train > 0 ? lopt_params.n_ctx_train : n_ctx(); | |
| const uint32_t n_batch = std::min(this->n_batch(), model->hparams.n_ctx_train); | |
| const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch); | |
| GGML_ASSERT(model->hparams.n_ctx_train % n_batch == 0); | |
| GGML_ASSERT(n_batch % n_ubatch == 0); | |
| ggml_opt_params opt_params = ggml_opt_default_params(sched.get(), GGML_OPT_LOSS_TYPE_CROSS_ENTROPY); | |
| opt_params.opt_period = n_batch / n_ubatch; | |
| opt_params.get_opt_pars = lopt_params.get_opt_pars; | |
| opt_params.get_opt_pars_ud = lopt_params.get_opt_pars_ud; | |
| opt_ctx = ggml_opt_init(opt_params); | |
| llama_opt_param_filter param_filter = lopt_params.param_filter; | |
| void * param_filter_ud = lopt_params.param_filter_ud; | |
| //llama_set_param(model->tok_embd, param_filter, param_filter_ud); // FIXME | |
| llama_set_param(model->type_embd, param_filter, param_filter_ud); | |
| llama_set_param(model->pos_embd, param_filter, param_filter_ud); | |
| llama_set_param(model->tok_norm, param_filter, param_filter_ud); | |
| llama_set_param(model->tok_norm_b, param_filter, param_filter_ud); | |
| llama_set_param(model->output_norm, param_filter, param_filter_ud); | |
| llama_set_param(model->output_norm_b, param_filter, param_filter_ud); | |
| llama_set_param(model->output, param_filter, param_filter_ud); | |
| llama_set_param(model->output_b, param_filter, param_filter_ud); | |
| llama_set_param(model->output_norm_enc, param_filter, param_filter_ud); | |
| llama_set_param(model->cls, param_filter, param_filter_ud); | |
| llama_set_param(model->cls_b, param_filter, param_filter_ud); | |
| llama_set_param(model->cls_out, param_filter, param_filter_ud); | |
| llama_set_param(model->cls_out_b, param_filter, param_filter_ud); | |
| for (struct llama_layer & layer : model->layers) { | |
| for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) { | |
| llama_set_param(reinterpret_cast<struct ggml_tensor **>(&layer)[i], param_filter, param_filter_ud); | |
| } | |
| } | |
| } | |
| void llama_context::opt_epoch_iter( | |
| ggml_opt_dataset_t dataset, | |
| ggml_opt_result_t result, | |
| const std::vector<llama_token> & tokens, | |
| const std::vector<llama_token> & labels_sparse, | |
| llama_batch & batch, | |
| ggml_opt_epoch_callback callback, | |
| bool train, | |
| int64_t idata_in_loop, | |
| int64_t ndata_in_loop, | |
| int64_t t_loop_start) { | |
| GGML_ASSERT(opt_ctx); | |
| const uint32_t n_ctx = llama_model_n_ctx_train(&model); | |
| const uint32_t n_batch = std::min(this->n_batch(), n_ctx); | |
| const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch); | |
| memory->clear(true); | |
| for (uint32_t pos_ctx = 0; pos_ctx < n_ctx; pos_ctx += n_batch) { | |
| batch.n_tokens = n_batch; | |
| for (uint32_t pos_batch = 0; pos_batch < n_batch; ++pos_batch) { | |
| batch.token [pos_batch] = tokens[pos_ctx + pos_batch]; | |
| batch.pos [pos_batch] = pos_ctx + pos_batch; | |
| batch.n_seq_id[pos_batch] = 1; | |
| batch.seq_id [pos_batch][0] = 0; | |
| batch.logits [pos_batch] = true; | |
| } | |
| if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd, true)) { | |
| LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__); | |
| return; | |
| } | |
| const uint32_t n_tokens_all = balloc->get_n_tokens(); | |
| n_queued_tokens += n_tokens_all; | |
| embd_seq.clear(); | |
| uint32_t n_outputs_all = n_tokens_all; | |
| auto mstate = memory->init_batch(*balloc, cparams.n_ubatch, true); | |
| if (!mstate || mstate->get_status() != LLAMA_MEMORY_STATUS_SUCCESS) { | |
| LLAMA_LOG_ERROR("%s: could not initialize batch\n", __func__); | |
| break; | |
| } | |
| // reserve output buffer | |
| if (output_reserve(n_outputs_all) < n_outputs_all) { | |
| LLAMA_LOG_ERROR("%s: could not reserve space for batch with %d outputs\n", __func__, n_outputs_all); | |
| GGML_ABORT("TODO: handle this error"); | |
| }; | |
| uint32_t pos_batch = 0; | |
| do { | |
| const auto & ubatch = mstate->get_ubatch(); | |
| n_outputs = ubatch.n_tokens; | |
| if (!mstate->apply()) { | |
| LLAMA_LOG_ERROR("%s: failed to update the memory state\n", __func__); | |
| break; | |
| } | |
| auto * gf = graph_init(); | |
| auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT, mstate.get()); | |
| struct ggml_context * ctx_compute_opt; | |
| { | |
| const size_t size_gf = ggml_graph_size(gf); | |
| const size_t size_meta = 4*size_gf*ggml_tensor_overhead() + 2*ggml_graph_overhead_custom(size_gf, /*grads = */ true); | |
| struct ggml_init_params params = { | |
| /*.mem_size =*/ size_meta, | |
| /*.mem_buffer =*/ nullptr, | |
| /*.no_alloc =*/ true, | |
| }; | |
| ctx_compute_opt = ggml_init(params); | |
| } | |
| ggml_opt_prepare_alloc(opt_ctx, ctx_compute_opt, gf, res->get_tokens(), res->get_logits()); | |
| ggml_opt_alloc(opt_ctx, train); | |
| res->set_inputs(&ubatch); | |
| { | |
| struct ggml_tensor * labels = ggml_opt_labels(opt_ctx); | |
| GGML_ASSERT(labels->ne[1] == n_ubatch); | |
| ggml_set_zero(labels); | |
| const float onef = 1.0f; | |
| for (uint32_t pos_ubatch = 0; pos_ubatch < n_ubatch; ++pos_ubatch) { | |
| const uint32_t ilabel = pos_ctx + pos_batch + pos_ubatch; | |
| GGML_ASSERT(labels_sparse[ilabel] < labels->ne[0]); | |
| ggml_backend_tensor_set(labels, &onef, (pos_ubatch*labels->ne[0] + labels_sparse[ilabel])*sizeof(float), sizeof(float)); | |
| } | |
| } | |
| ggml_opt_eval(opt_ctx, result); | |
| if (callback) { | |
| callback(train, opt_ctx, dataset, result, idata_in_loop + (pos_ctx + pos_batch)/n_ubatch + 1, ndata_in_loop, t_loop_start); | |
| } | |
| ggml_free(ctx_compute_opt); | |
| pos_batch += ubatch.n_tokens; | |
| } while (mstate->next()); | |
| } | |
| } | |
| void llama_context::opt_epoch( | |
| ggml_opt_dataset_t dataset, | |
| ggml_opt_result_t result_train, | |
| ggml_opt_result_t result_eval, | |
| int64_t idata_split, | |
| ggml_opt_epoch_callback callback_train, | |
| ggml_opt_epoch_callback callback_eval) { | |
| const uint32_t n_ctx = this->n_ctx(); | |
| const uint32_t n_batch = std::min(cparams.n_batch, n_ctx); | |
| const uint32_t n_ubatch = std::min(cparams.n_ubatch, n_batch); | |
| const int64_t ndata = ggml_opt_dataset_ndata(dataset); | |
| GGML_ASSERT(idata_split >= 0); | |
| GGML_ASSERT(idata_split <= ndata); | |
| const uint32_t ubatch_per_ctx = n_ctx / n_ubatch; | |
| struct llama_batch batch = llama_batch_init(n_batch, 0, 1); | |
| std::vector<llama_token> tokens(n_ctx); | |
| std::vector<llama_token> labels_sparse(n_ctx); | |
| int64_t idata = 0; | |
| int64_t t_loop_start = ggml_time_us(); | |
| int64_t ndata_in_loop = idata_split*ubatch_per_ctx; | |
| for (; idata < idata_split; ++idata) { | |
| constexpr bool train = true; | |
| const int64_t idata_in_loop = idata*ubatch_per_ctx; | |
| ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata); | |
| opt_epoch_iter(dataset, result_train, tokens, labels_sparse, batch, | |
| callback_train, train, idata_in_loop, ndata_in_loop, t_loop_start); | |
| } | |
| t_loop_start = ggml_time_us(); | |
| ndata_in_loop = (ndata - idata_split)*ubatch_per_ctx; | |
| for (; idata < ndata; ++idata) { | |
| constexpr bool train = false; | |
| const int64_t idata_in_loop = (idata - idata_split)*ubatch_per_ctx; | |
| ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata); | |
| opt_epoch_iter(dataset, result_eval, tokens, labels_sparse, batch, | |
| callback_eval, train, idata_in_loop, ndata_in_loop, t_loop_start); | |
| } | |
| llama_batch_free(batch); | |
| } | |
| // | |
| // interface implementation | |
| // | |
| llama_context_params llama_context_default_params() { | |
| llama_context_params result = { | |
| /*.n_ctx =*/ 512, | |
| /*.n_batch =*/ 2048, | |
| /*.n_ubatch =*/ 512, | |
| /*.n_seq_max =*/ 1, | |
| /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default | |
| /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, | |
| /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, | |
| /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED, | |
| /*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED, | |
| /*.rope_freq_base =*/ 0.0f, | |
| /*.rope_freq_scale =*/ 0.0f, | |
| /*.yarn_ext_factor =*/ -1.0f, | |
| /*.yarn_attn_factor =*/ 1.0f, | |
| /*.yarn_beta_fast =*/ 32.0f, | |
| /*.yarn_beta_slow =*/ 1.0f, | |
| /*.yarn_orig_ctx =*/ 0, | |
| /*.defrag_thold =*/ -1.0f, | |
| /*.cb_eval =*/ nullptr, | |
| /*.cb_eval_user_data =*/ nullptr, | |
| /*.type_k =*/ GGML_TYPE_F16, | |
| /*.type_v =*/ GGML_TYPE_F16, | |
| /*.abort_callback =*/ nullptr, | |
| /*.abort_callback_data =*/ nullptr, | |
| /*.embeddings =*/ false, | |
| /*.offload_kqv =*/ true, | |
| /*.flash_attn =*/ false, | |
| /*.no_perf =*/ true, | |
| /*.op_offload =*/ true, | |
| /*.swa_full =*/ true, | |
| }; | |
| return result; | |
| } | |
| llama_context * llama_init_from_model( | |
| llama_model * model, | |
| llama_context_params params) { | |
| if (!model) { | |
| LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__); | |
| return nullptr; | |
| } | |
| if (params.n_batch == 0 && params.n_ubatch == 0) { | |
| LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__); | |
| return nullptr; | |
| } | |
| if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) { | |
| LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__); | |
| return nullptr; | |
| } | |
| if (params.flash_attn && model->arch == LLM_ARCH_GROK) { | |
| LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__); | |
| params.flash_attn = false; | |
| } | |
| if (ggml_is_quantized(params.type_v) && !params.flash_attn) { | |
| LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__); | |
| return nullptr; | |
| } | |
| try { | |
| auto * ctx = new llama_context(*model, params); | |
| return ctx; | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: failed to initialize the context: %s\n", __func__, err.what()); | |
| } | |
| return nullptr; | |
| } | |
| // deprecated | |
| llama_context * llama_new_context_with_model( | |
| llama_model * model, | |
| llama_context_params params) { | |
| return llama_init_from_model(model, params); | |
| } | |
| void llama_free(llama_context * ctx) { | |
| delete ctx; | |
| } | |
| uint32_t llama_n_ctx(const llama_context * ctx) { | |
| return ctx->n_ctx(); | |
| } | |
| uint32_t llama_n_batch(const llama_context * ctx) { | |
| return ctx->n_batch(); | |
| } | |
| uint32_t llama_n_ubatch(const llama_context * ctx) { | |
| return ctx->n_ubatch(); | |
| } | |
| uint32_t llama_n_seq_max(const llama_context * ctx) { | |
| return ctx->n_seq_max(); | |
| } | |
| const llama_model * llama_get_model(const llama_context * ctx) { | |
| return &ctx->get_model(); | |
| } | |
| // deprecated | |
| llama_kv_cache * llama_get_kv_self(llama_context * ctx) { | |
| return dynamic_cast<llama_kv_cache *>(ctx->get_memory()); | |
| } | |
| // deprecated | |
| void llama_kv_self_update(llama_context * ctx) { | |
| ctx->kv_self_update(false); | |
| } | |
| enum llama_pooling_type llama_pooling_type(const llama_context * ctx) { | |
| return ctx->pooling_type(); | |
| } | |
| void llama_attach_threadpool( | |
| llama_context * ctx, | |
| ggml_threadpool_t threadpool, | |
| ggml_threadpool_t threadpool_batch) { | |
| ctx->attach_threadpool(threadpool, threadpool_batch); | |
| } | |
| void llama_detach_threadpool(llama_context * ctx) { | |
| ctx->detach_threadpool(); | |
| } | |
| void llama_set_n_threads(llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) { | |
| ctx->set_n_threads(n_threads, n_threads_batch); | |
| } | |
| int32_t llama_n_threads(llama_context * ctx) { | |
| return ctx->n_threads(); | |
| } | |
| int32_t llama_n_threads_batch(llama_context * ctx) { | |
| return ctx->n_threads_batch(); | |
| } | |
| void llama_set_abort_callback(llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { | |
| ctx->set_abort_callback(abort_callback, abort_callback_data); | |
| } | |
| void llama_set_embeddings(llama_context * ctx, bool embeddings) { | |
| ctx->set_embeddings(embeddings); | |
| } | |
| void llama_set_causal_attn(llama_context * ctx, bool causal_attn) { | |
| ctx->set_causal_attn(causal_attn); | |
| } | |
| void llama_set_warmup(llama_context * ctx, bool warmup) { | |
| ctx->set_warmup(warmup); | |
| } | |
| void llama_synchronize(llama_context * ctx) { | |
| ctx->synchronize(); | |
| } | |
| float * llama_get_logits(llama_context * ctx) { | |
| ctx->synchronize(); | |
| return ctx->get_logits(); | |
| } | |
| float * llama_get_logits_ith(llama_context * ctx, int32_t i) { | |
| ctx->synchronize(); | |
| return ctx->get_logits_ith(i); | |
| } | |
| float * llama_get_embeddings(llama_context * ctx) { | |
| ctx->synchronize(); | |
| return ctx->get_embeddings(); | |
| } | |
| float * llama_get_embeddings_ith(llama_context * ctx, int32_t i) { | |
| ctx->synchronize(); | |
| return ctx->get_embeddings_ith(i); | |
| } | |
| float * llama_get_embeddings_seq(llama_context * ctx, llama_seq_id seq_id) { | |
| ctx->synchronize(); | |
| return ctx->get_embeddings_seq(seq_id); | |
| } | |
| // llama adapter API | |
| int32_t llama_set_adapter_lora( | |
| llama_context * ctx, | |
| llama_adapter_lora * adapter, | |
| float scale) { | |
| ctx->set_adapter_lora(adapter, scale); | |
| return 0; | |
| } | |
| int32_t llama_rm_adapter_lora( | |
| llama_context * ctx, | |
| llama_adapter_lora * adapter) { | |
| bool res = ctx->rm_adapter_lora(adapter); | |
| return res ? 0 : -1; | |
| } | |
| void llama_clear_adapter_lora(llama_context * ctx) { | |
| ctx->clear_adapter_lora(); | |
| } | |
| int32_t llama_apply_adapter_cvec( | |
| llama_context * ctx, | |
| const float * data, | |
| size_t len, | |
| int32_t n_embd, | |
| int32_t il_start, | |
| int32_t il_end) { | |
| bool res = ctx->apply_adapter_cvec(data, len, n_embd, il_start, il_end); | |
| return res ? 0 : -1; | |
| } | |
| // | |
| // memory | |
| // | |
| llama_memory_t llama_get_memory(const struct llama_context * ctx) { | |
| return ctx->get_memory(); | |
| } | |
| void llama_memory_clear(llama_memory_t mem, bool data) { | |
| if (!mem) { | |
| return; | |
| } | |
| mem->clear(data); | |
| } | |
| bool llama_memory_seq_rm( | |
| llama_memory_t mem, | |
| llama_seq_id seq_id, | |
| llama_pos p0, | |
| llama_pos p1) { | |
| if (!mem) { | |
| return true; | |
| } | |
| return mem->seq_rm(seq_id, p0, p1); | |
| } | |
| void llama_memory_seq_cp( | |
| llama_memory_t mem, | |
| llama_seq_id seq_id_src, | |
| llama_seq_id seq_id_dst, | |
| llama_pos p0, | |
| llama_pos p1) { | |
| if (!mem) { | |
| return; | |
| } | |
| mem->seq_cp(seq_id_src, seq_id_dst, p0, p1); | |
| } | |
| void llama_memory_seq_keep( | |
| llama_memory_t mem, | |
| llama_seq_id seq_id) { | |
| if (!mem) { | |
| return; | |
| } | |
| mem->seq_keep(seq_id); | |
| } | |
| void llama_memory_seq_add( | |
| llama_memory_t mem, | |
| llama_seq_id seq_id, | |
| llama_pos p0, | |
| llama_pos p1, | |
| llama_pos delta) { | |
| if (!mem) { | |
| return; | |
| } | |
| mem->seq_add(seq_id, p0, p1, delta); | |
| } | |
| void llama_memory_seq_div( | |
| llama_memory_t mem, | |
| llama_seq_id seq_id, | |
| llama_pos p0, | |
| llama_pos p1, | |
| int d) { | |
| if (!mem) { | |
| return; | |
| } | |
| mem->seq_div(seq_id, p0, p1, d); | |
| } | |
| llama_pos llama_memory_seq_pos_min( | |
| llama_memory_t mem, | |
| llama_seq_id seq_id) { | |
| if (!mem) { | |
| return -1; | |
| } | |
| return mem->seq_pos_min(seq_id); | |
| } | |
| llama_pos llama_memory_seq_pos_max( | |
| llama_memory_t mem, | |
| llama_seq_id seq_id) { | |
| if (!mem) { | |
| return -1; | |
| } | |
| return mem->seq_pos_max(seq_id); | |
| } | |
| bool llama_memory_can_shift(llama_memory_t mem) { | |
| if (!mem) { | |
| return false; | |
| } | |
| return mem->get_can_shift(); | |
| } | |
| // | |
| // kv cache | |
| // | |
| // deprecated | |
| int32_t llama_kv_self_n_tokens(const llama_context * ctx) { | |
| const auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return 0; | |
| } | |
| int32_t res = 0; | |
| for (uint32_t s = 0; s < ctx->get_cparams().n_seq_max; s++) { | |
| const llama_pos p0 = kv->seq_pos_min(s); | |
| const llama_pos p1 = kv->seq_pos_max(s); | |
| if (p0 >= 0) { | |
| res += (p1 - p0) + 1; | |
| } | |
| } | |
| return res; | |
| } | |
| // deprecated | |
| // note: this is the same as above - will be removed anyway, so it's ok | |
| int32_t llama_kv_self_used_cells(const llama_context * ctx) { | |
| const auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return 0; | |
| } | |
| int32_t res = 0; | |
| for (uint32_t s = 0; s < ctx->get_cparams().n_seq_max; s++) { | |
| const llama_pos p0 = kv->seq_pos_min(s); | |
| const llama_pos p1 = kv->seq_pos_max(s); | |
| if (p0 >= 0) { | |
| res += (p1 - p0) + 1; | |
| } | |
| } | |
| return res; | |
| } | |
| // deprecated | |
| void llama_kv_self_clear(llama_context * ctx) { | |
| auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return; | |
| } | |
| llama_memory_clear(kv, true); | |
| } | |
| // deprecated | |
| bool llama_kv_self_seq_rm( | |
| llama_context * ctx, | |
| llama_seq_id seq_id, | |
| llama_pos p0, | |
| llama_pos p1) { | |
| auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return true; | |
| } | |
| return llama_memory_seq_rm(kv, seq_id, p0, p1); | |
| } | |
| // deprecated | |
| void llama_kv_self_seq_cp( | |
| llama_context * ctx, | |
| llama_seq_id seq_id_src, | |
| llama_seq_id seq_id_dst, | |
| llama_pos p0, | |
| llama_pos p1) { | |
| auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return; | |
| } | |
| llama_memory_seq_cp(kv, seq_id_src, seq_id_dst, p0, p1); | |
| } | |
| // deprecated | |
| void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) { | |
| auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return; | |
| } | |
| llama_memory_seq_keep(kv, seq_id); | |
| } | |
| // deprecated | |
| void llama_kv_self_seq_add( | |
| llama_context * ctx, | |
| llama_seq_id seq_id, | |
| llama_pos p0, | |
| llama_pos p1, | |
| llama_pos delta) { | |
| auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return; | |
| } | |
| llama_memory_seq_add(kv, seq_id, p0, p1, delta); | |
| } | |
| // deprecated | |
| void llama_kv_self_seq_div( | |
| llama_context * ctx, | |
| llama_seq_id seq_id, | |
| llama_pos p0, | |
| llama_pos p1, | |
| int d) { | |
| auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return; | |
| } | |
| llama_memory_seq_div(kv, seq_id, p0, p1, d); | |
| } | |
| // deprecated | |
| llama_pos llama_kv_self_seq_pos_min(llama_context * ctx, llama_seq_id seq_id) { | |
| auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return -1; | |
| } | |
| return llama_memory_seq_pos_min(kv, seq_id); | |
| } | |
| // deprecated | |
| llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) { | |
| auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return -1; | |
| } | |
| return llama_memory_seq_pos_max(kv, seq_id); | |
| } | |
| // deprecated | |
| void llama_kv_self_defrag(llama_context * ctx) { | |
| // force defrag | |
| ctx->kv_self_defrag_sched(); | |
| } | |
| // deprecated | |
| bool llama_kv_self_can_shift(const llama_context * ctx) { | |
| auto * kv = llama_get_memory(ctx); | |
| if (!kv) { | |
| return false; | |
| } | |
| return llama_memory_can_shift(kv); | |
| } | |
| // llama state API | |
| // deprecated | |
| size_t llama_get_state_size(llama_context * ctx) { | |
| return llama_state_get_size(ctx); | |
| } | |
| // deprecated | |
| size_t llama_copy_state_data(llama_context * ctx, uint8_t * dst) { | |
| return llama_state_get_data(ctx, dst, -1); | |
| } | |
| // deprecated | |
| size_t llama_set_state_data(llama_context * ctx, const uint8_t * src) { | |
| return llama_state_set_data(ctx, src, -1); | |
| } | |
| // deprecated | |
| bool llama_load_session_file(llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
| return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); | |
| } | |
| // deprecated | |
| bool llama_save_session_file(llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { | |
| return llama_state_save_file(ctx, path_session, tokens, n_token_count); | |
| } | |
| // Returns the *actual* size of the state. | |
| // Intended to be used when saving to state to a buffer. | |
| size_t llama_state_get_size(llama_context * ctx) { | |
| return ctx->state_get_size(); | |
| } | |
| size_t llama_state_get_data(llama_context * ctx, uint8_t * dst, size_t size) { | |
| ctx->synchronize(); | |
| return ctx->state_get_data(dst, size); | |
| } | |
| // Sets the state reading from the specified source address | |
| size_t llama_state_set_data(llama_context * ctx, const uint8_t * src, size_t size) { | |
| ctx->synchronize(); | |
| return ctx->state_set_data(src, size); | |
| } | |
| bool llama_state_load_file(llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
| ctx->synchronize(); | |
| try { | |
| return ctx->state_load_file(path_session, tokens_out, n_token_capacity, n_token_count_out); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what()); | |
| return false; | |
| } | |
| } | |
| bool llama_state_save_file(llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { | |
| ctx->synchronize(); | |
| try { | |
| return ctx->state_save_file(path_session, tokens, n_token_count); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what()); | |
| return false; | |
| } | |
| } | |
| size_t llama_state_seq_get_size(llama_context * ctx, llama_seq_id seq_id) { | |
| return ctx->state_seq_get_size(seq_id); | |
| } | |
| size_t llama_state_seq_get_data(llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) { | |
| ctx->synchronize(); | |
| return ctx->state_seq_get_data(seq_id, dst, size); | |
| } | |
| size_t llama_state_seq_set_data(llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id seq_id) { | |
| ctx->synchronize(); | |
| return ctx->state_seq_set_data(seq_id, src, size); | |
| } | |
| size_t llama_state_seq_save_file(llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { | |
| ctx->synchronize(); | |
| try { | |
| return ctx->state_seq_save_file(seq_id, filepath, tokens, n_token_count); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what()); | |
| return 0; | |
| } | |
| } | |
| size_t llama_state_seq_load_file(llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
| ctx->synchronize(); | |
| try { | |
| return ctx->state_seq_load_file(dest_seq_id, filepath, tokens_out, n_token_capacity, n_token_count_out); | |
| } catch (const std::exception & err) { | |
| LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what()); | |
| return 0; | |
| } | |
| } | |
| /// | |
| int32_t llama_encode( | |
| llama_context * ctx, | |
| llama_batch batch) { | |
| const int ret = ctx->encode(batch); | |
| if (ret != 0) { | |
| LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret); | |
| } | |
| return ret; | |
| } | |
| int32_t llama_decode( | |
| llama_context * ctx, | |
| llama_batch batch) { | |
| const int ret = ctx->decode(batch); | |
| if (ret != 0 && ret != 1) { | |
| LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); | |
| } | |
| return ret; | |
| } | |
| // | |
| // perf | |
| // | |
| llama_perf_context_data llama_perf_context(const llama_context * ctx) { | |
| llama_perf_context_data data = {}; | |
| if (ctx == nullptr) { | |
| return data; | |
| } | |
| data = ctx->perf_get_data(); | |
| return data; | |
| } | |
| void llama_perf_context_print(const llama_context * ctx) { | |
| const auto data = llama_perf_context(ctx); | |
| const double t_end_ms = 1e-3 * ggml_time_us(); | |
| LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, data.t_load_ms); | |
| LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", | |
| __func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval); | |
| LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", | |
| __func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval); | |
| LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval)); | |
| } | |
| void llama_perf_context_reset(llama_context * ctx) { | |
| ctx->perf_reset(); | |
| } | |
| // | |
| // training | |
| // | |
| bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata) { | |
| GGML_UNUSED(tensor); | |
| GGML_UNUSED(userdata); | |
| return true; | |
| } | |
| void llama_opt_init(struct llama_context * ctx, struct llama_model * model, struct llama_opt_params lopt_params) { | |
| ctx->opt_init(model, lopt_params); | |
| } | |
| void llama_opt_epoch( | |
| struct llama_context * ctx, | |
| ggml_opt_dataset_t dataset, | |
| ggml_opt_result_t result_train, | |
| ggml_opt_result_t result_eval, | |
| int64_t idata_split, | |
| ggml_opt_epoch_callback callback_train, | |
| ggml_opt_epoch_callback callback_eval) { | |
| ctx->opt_epoch( | |
| dataset, | |
| result_train, | |
| result_eval, | |
| idata_split, | |
| callback_train, | |
| callback_eval); | |
| } | |