File size: 12,196 Bytes
d10b47b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8b504
d10b47b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7bebe6
 
 
 
90cefa0
 
e7bebe6
 
 
 
 
d10b47b
0d2e888
bd93c1b
d10b47b
 
ad8b504
d10b47b
 
 
 
 
 
 
 
 
 
 
 
90cefa0
 
 
d10b47b
e0e73fa
 
 
 
 
 
 
 
825889e
e0e73fa
 
 
 
 
90cefa0
 
d10b47b
 
90cefa0
d10b47b
90cefa0
d10b47b
 
90cefa0
d10b47b
 
 
77d7613
 
 
d10b47b
77d7613
d10b47b
e7bebe6
d10b47b
 
 
e7bebe6
d10b47b
 
f6b0b76
d1e619e
 
f6b0b76
 
d10b47b
5ab06d6
d10b47b
 
 
90cefa0
d10b47b
 
90cefa0
d10b47b
 
 
 
 
 
 
 
 
d1e619e
a76ef69
d10b47b
825889e
d10b47b
 
 
f6b0b76
d10b47b
e7bebe6
d10b47b
 
 
 
 
 
 
 
 
 
77d7613
d10b47b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90cefa0
d10b47b
90cefa0
d10b47b
 
 
 
 
 
90cefa0
d10b47b
 
 
 
4e46f41
90cefa0
4e46f41
d10b47b
90cefa0
d10b47b
 
5ab06d6
 
 
90cefa0
5ab06d6
90cefa0
5ab06d6
 
90cefa0
5ab06d6
 
 
 
 
90cefa0
d10b47b
 
 
 
d7e9115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d10b47b
 
 
 
 
 
 
90cefa0
d10b47b
90cefa0
e7bebe6
 
 
 
90cefa0
e7bebe6
 
 
 
90cefa0
e7bebe6
d10b47b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#version 450

#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require

#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require

#extension GL_KHR_memory_scope_semantics : enable
#extension GL_KHR_cooperative_matrix : enable
#extension GL_NV_cooperative_matrix2 : enable
#extension GL_EXT_buffer_reference : enable
#extension GL_KHR_shader_subgroup_ballot : enable
#extension GL_KHR_shader_subgroup_vote : enable
#extension GL_EXT_null_initializer : enable

#include "types.comp"
#include "dequant_funcs_cm2.comp"
#include "flash_attn_base.comp"

layout (binding = 0) readonly buffer Q {uint8_t data_q[];};
layout (binding = 1) readonly buffer K {uint8_t data_k[];};
layout (binding = 2) readonly buffer V {uint8_t data_v[];};
layout (binding = 3) readonly buffer M {uint8_t data_m[];};

ACC_TYPE maxReduce(const in ACC_TYPE x, const in ACC_TYPE y) {
    return max(x, y);
}

ACC_TYPE smearReduce(const in ACC_TYPE x, const in ACC_TYPE y) {
    return x;
}

// Replace matrix elements >= numRows or numCols with 'replace'
ACC_TYPE replacePadding(const in uint32_t row, const in uint32_t col, const in ACC_TYPE elem, const in ACC_TYPE replace, const in uint32_t numRows, const in uint32_t numCols) {
    if (row >= numRows || col >= numCols) {
        return replace;
    }
    return elem;
}

ACC_TYPE Exp(const in uint32_t row, const in uint32_t col, const in ACC_TYPE elem)
{
    return exp(elem);
}

ACC_TYPE Max(const in uint32_t row, const in uint32_t col, const in ACC_TYPE elem0, const in ACC_TYPE elem1)
{
    return max(elem0, elem1);
}

#if defined(BLOCK_SIZE)
#define DECODEFUNC , DEQUANTFUNC
#else
#define DECODEFUNC
#endif

// Store the output when doing grouped query attention.
// Rows index by Q's dimension 2, and the first N rows are valid.
D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TYPE elem, const in uint32_t o_offset, const in uint32_t iq2, const in uint32_t N)
{
    if (r < N && c < HSV) {
        uint32_t offset = (iq2 + r) * HSV + c;
        data_o[o_offset + offset] = D_TYPE(elem);
    }
    return elem;
}

void main() {
#ifdef NEEDS_INIT_IQ_SHMEM
    init_iq_shmem(gl_WorkGroupSize);
#endif

    init_indices();

    tensorLayoutNV<2, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutQ = createTensorLayoutNV(2, gl_CooperativeMatrixClampModeConstantNV);
    tensorLayoutNV<2, Clamp> tensorLayoutK = createTensorLayoutNV(2, Clamp);
    tensorLayoutNV<2, Clamp> tensorLayoutV = createTensorLayoutNV(2, Clamp);

    tensorViewNV<2, false, 1, 0> tensorViewTranspose = createTensorViewNV(2, false, 1, 0);

#if defined(BLOCK_SIZE)
    tensorLayoutK = setTensorLayoutBlockSizeNV(tensorLayoutK, 1, BLOCK_SIZE);
    tensorLayoutV = setTensorLayoutBlockSizeNV(tensorLayoutV, 1, BLOCK_SIZE);
#endif

    tensorLayoutQ = setTensorLayoutDimensionNV(tensorLayoutQ, N, HSK);
    tensorLayoutK = setTensorLayoutDimensionNV(tensorLayoutK, KV, HSK);
    tensorLayoutV = setTensorLayoutDimensionNV(tensorLayoutV, KV, HSV);

    // hint to the compiler that strides are aligned for the aligned variant of the shader
    if (Clamp != gl_CooperativeMatrixClampModeConstantNV)
    {
        q_stride &= ~7;
#if !defined(BLOCK_SIZE)
        k_stride &= ~7;
        v_stride &= ~7;
#endif
        m_stride &= ~7;
    }
    tensorLayoutQ = setTensorLayoutStrideNV(tensorLayoutQ, q_stride, 1);
    tensorLayoutK = setTensorLayoutStrideNV(tensorLayoutK, k_stride, 1);
    tensorLayoutV = setTensorLayoutStrideNV(tensorLayoutV, v_stride, 1);

    coopmat<Q_TYPE, gl_ScopeWorkgroup, Br, HSK, gl_MatrixUseAccumulator> Q;
    coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK, gl_MatrixUseA> Qf16;

    uint32_t q_offset = iq2*p.nb02+iq3*p.nb03;
    coopMatLoadTensorNV(Q, data_q, q_offset, sliceTensorLayoutNV(tensorLayoutQ, i * Br, Br, 0, HSK));

    Qf16 = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK, gl_MatrixUseA>(Q);
    Qf16 *= float16_t(p.scale);

    coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> O = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(0);

    coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> L, M;

    // Use -FLT_MAX/2 rather than -inf to reduce the possibility of NaNs, e.g. when computing Mold-M.
    const float NEG_FLT_MAX_OVER_2 = uintBitsToFloat(0xFEFFFFFF);

    L = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0);
    M = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(NEG_FLT_MAX_OVER_2);

    coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> slopeMat = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(1.0);

    // ALiBi
    if (p.max_bias > 0.0f) {
        coopMatPerElementNV(slopeMat, slopeMat, perElemOpComputeSlope, iq2);
    }

    uint32_t m_offset = 0;
    if (p.nem2 != 1 || p.nem3 != 1) {
        m_offset = ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * p.nem1 * KV * 2 /*sizeof(float16_t)*/;
    }

    [[dont_unroll]]
    for (uint32_t j = start_j; j < end_j; ++j) {

        coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> S = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0);

        coopmat<float16_t, gl_ScopeWorkgroup, HSK, Bc, gl_MatrixUseB> K_T;

        uint32_t k_offset = ik2*p.nb12 + ik3*p.nb13;
        coopMatLoadTensorNV(K_T, data_k, k_offset, sliceTensorLayoutNV(tensorLayoutK, j * Bc, Bc, 0, HSK), tensorViewTranspose DECODEFUNC);
        S = coopMatMulAdd(Qf16, K_T, S);

        if (p.logit_softcap != 0.0f) {
            [[unroll]]
            for (int k = 0; k < S.length(); ++k) {
                S[k] = ACC_TYPE(p.logit_softcap)*tanh(S[k]);
            }
        }

        if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
            tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp);
            tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, p.nem1, KV);
            tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1);

            coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> mv;

            coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc));

            S += slopeMat*coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(mv);
        }

        // Clear padding elements to -inf, so they don't contribute to rowmax
        if (Clamp != 0 &&
            ((j + 1) * Bc > KV ||
             (i + 1) * Br > N)) {

            uint R = ((i + 1) * Br >  N) ?  (N % Br) : Br;
            uint C = ((j + 1) * Bc > KV) ? (KV % Bc) : Bc;

            coopMatPerElementNV(S, S, replacePadding, ACC_TYPE(NEG_FLT_MAX_OVER_2), R, C);
        }

        coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> rowmax, P, rowsum, eM;

        coopMatReduceNV(rowmax, S, gl_CooperativeMatrixReduceRowNV, maxReduce);

        coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> Mold = M;

        // M = max(rowmax, Mold)
        // P = e^(S - M)
        // eM = e^(Mold - M)
        coopMatPerElementNV(M, rowmax, Max, Mold);
        coopMatPerElementNV(P, S - M, Exp);
        coopMatPerElementNV(eM, Mold - M, Exp);

        // Clear padding elements to 0, so they don't contribute to rowsum
        if (Clamp != 0 &&
            ((j + 1) * Bc > KV ||
             (i + 1) * Br > N)) {

            uint R = ((i + 1) * Br >  N) ?  (N % Br) : Br;
            uint C = ((j + 1) * Bc > KV) ? (KV % Bc) : Bc;

            coopMatPerElementNV(P, P, replacePadding, ACC_TYPE(0.0), R, C);
        }

        coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseA> P_A = coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseA>(P);

        // compute rowsum by multiplying by matrix of all ones.
        coopmat<float16_t, gl_ScopeWorkgroup, Bc, Bc, gl_MatrixUseB> One = coopmat<float16_t, gl_ScopeWorkgroup, Bc, Bc, gl_MatrixUseB>(1.0);

        rowsum = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0.0);
        rowsum = coopMatMulAdd(P_A, One, rowsum);

        coopmat<float16_t, gl_ScopeWorkgroup, Bc, HSV, gl_MatrixUseB> V;
        uint32_t v_offset = iv2*p.nb22 + iv3*p.nb23;
        coopMatLoadTensorNV(V,  data_v, v_offset, sliceTensorLayoutNV(tensorLayoutV, j * Bc, Bc, 0, HSV) DECODEFUNC);

        L = eM*L + rowsum;

        // This is the "diagonal" matrix in the paper, but since we do componentwise
        // multiply rather than matrix multiply it has the diagonal element smeared
        // across the row
        coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> eMdiag;

        // resize eM by using smear/reduce
        coopMatReduceNV(eMdiag, eM, gl_CooperativeMatrixReduceRowNV, smearReduce);

        // multiply with fp16 accumulation, then add to O.
        coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> PV = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(0);
        PV = coopMatMulAdd(P_A, V, PV);

        O = eMdiag * O + coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(PV);
    }

    // If there is split_k, then the split_k resolve shader does the final
    // division by L. Store the intermediate O value and per-row m and L values.
    if (p.k_num > 1) {
        coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(O);

        uint32_t o_offset = HSV * p.ne1 * (split_k_index + iq3 * p.k_num);
        coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N);

        o_offset = HSV * p.ne1 * p.ne3 * p.k_num + p.ne1 * (split_k_index + iq3 * p.k_num) * 2;
        coopMatPerElementNV(L, L, perElemOpStoreCol0, o_offset, iq2, N);
        coopMatPerElementNV(M, M, perElemOpStoreCol0, o_offset + p.ne1, iq2, N);
        return;
    }

    coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> Ldiag;

    // resize L by using smear/reduce
    coopMatReduceNV(Ldiag, L, gl_CooperativeMatrixReduceRowNV, smearReduce);

    if ((p.mask_n_head_log2 & SINK_ENABLE_BIT) != 0) {
        coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> S;
        coopMatPerElementNV(S, S, perElemOpGetSink, iq2);

        coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> Mr;

        // resize M by using smear/reduce
        coopMatReduceNV(Mr, M, gl_CooperativeMatrixReduceRowNV, smearReduce);

        // O, Ldiag, Mr all have the same type so all element locations match
        [[unroll]] for (uint32_t i = 0; i < Ldiag.length(); ++i) {
            ACC_TYPE sink = S[i];

            ACC_TYPE ms = ACC_TYPE(1.0f);
            ACC_TYPE vs = ACC_TYPE(1.0f);

            if (sink > Mr[i]) {
                ms = exp(Mr[i] - sink);

                O[i] *= ms;
            } else {
                vs = exp(sink - Mr[i]);
            }

            Ldiag[i] = Ldiag[i]*ms + vs;
        }
    }

    [[unroll]]
    for (int k = 0; k < Ldiag.length(); ++k) {
        Ldiag[k] = ACC_TYPE(1.0) / Ldiag[k];
    }

    O = Ldiag*O;

    uint32_t o_offset = iq3*p.ne2*p.ne1*HSV;

    coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(O);
    if (p.gqa_ratio > 1) {
        coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N);
    } else {
        tensorLayoutNV<3, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutD = createTensorLayoutNV(3, gl_CooperativeMatrixClampModeConstantNV);
        tensorLayoutD = setTensorLayoutDimensionNV(tensorLayoutD, p.ne2, p.ne1, HSV);

        // permute dimensions
        tensorViewNV<3, false, 1, 0, 2> tensorViewPermute = createTensorViewNV(3, false, 1, 0, 2);

        coopMatStoreTensorNV(O_D, data_o, o_offset, sliceTensorLayoutNV(tensorLayoutD, i * Br, Br, iq2, N, 0, HSV), tensorViewPermute);
    }
}