Spaces:
Running
Running
File size: 8,809 Bytes
14fd317 2e59a96 14fd317 2e59a96 14fd317 4da3fb6 0a9c73a 14fd317 0a9c73a 14fd317 0a9c73a 14fd317 0a9c73a 14fd317 0a9c73a 14fd317 feee739 14fd317 0a9c73a 14fd317 0a9c73a 14fd317 0a9c73a 14fd317 0a9c73a 14fd317 0a9c73a 14fd317 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#include "ggml-impl.h"
#include "common.hpp"
#include "dequantize.hpp"
#include "getrows.hpp"
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void k_get_rows(
const void * src0, const int32_t * src1, dst_t * dst,
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
size_t s10, size_t s11, size_t s12,
const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
item_ct1.get_local_id(2)) *
2;
const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
item_ct1.get_local_id(0)) /
ne12;
const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
item_ct1.get_local_id(0)) %
ne12;
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int iybs = i00 - i00%qk; // dst block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
dfloat2 v;
dequantize_kernel(src0_row, ib, iqs, v);
dst_row[iybs + iqs + 0] = v.x();
dst_row[iybs + iqs + y_offset] = v.y();
}
template<typename src0_t, typename dst_t>
static void k_get_rows_float(
const src0_t * src0, const int32_t * src1, dst_t * dst,
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
size_t s10, size_t s11, size_t s12,
const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
item_ct1.get_local_id(2);
const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
item_ct1.get_local_id(0)) /
ne12;
const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
item_ct1.get_local_id(0)) %
ne12;
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = src0_row[i00];
}
template <int qk, int qr, dequantize_kernel_t dq>
static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const void *src0_dd,
const int32_t *src1_dd, float *dst_dd,
queue_ptr stream) {
GGML_TENSOR_BINARY_OP_LOCALS
const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
// strides in elements
//const size_t s0 = nb0 / ggml_element_size(dst);
const size_t s1 = nb1 / ggml_element_size(dst);
const size_t s2 = nb2 / ggml_element_size(dst);
const size_t s3 = nb3 / ggml_element_size(dst);
const size_t s10 = nb10 / ggml_element_size(src1);
const size_t s11 = nb11 / ggml_element_size(src1);
const size_t s12 = nb12 / ggml_element_size(src1);
//const size_t s13 = nb13 / ggml_element_size(src1);
GGML_ASSERT(ne00 % 2 == 0);
sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
k_get_rows<qk, qr, dq>(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2, s3, nb01, nb02, nb03, s10, s11, s12,
item_ct1);
});
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
}
template <typename src0_t>
static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const src0_t *src0_dd, const int32_t *src1_dd,
float *dst_dd, queue_ptr stream) {
GGML_TENSOR_BINARY_OP_LOCALS
const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
// strides in elements
//const size_t s0 = nb0 / ggml_element_size(dst);
const size_t s1 = nb1 / ggml_element_size(dst);
const size_t s2 = nb2 / ggml_element_size(dst);
const size_t s3 = nb3 / ggml_element_size(dst);
const size_t s10 = nb10 / ggml_element_size(src1);
const size_t s11 = nb11 / ggml_element_size(src1);
const size_t s12 = nb12 / ggml_element_size(src1);
//const size_t s13 = nb13 / ggml_element_size(src1);
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
sycl_parallel_for(
stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) {
k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
});
}
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
}
void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->nb[0] == ggml_type_size(dst->src[0]->type));
GGML_ASSERT(dst->src[1]->nb[0] == ggml_type_size(dst->src[1]->type));
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
const int32_t * src1_i32 = (const int32_t *) dst->src[1]->data;
/* TODO: Refactor and remove duplicates */
switch (dst->src[0]->type) {
case GGML_TYPE_F16:
get_rows_sycl_float(ctx, dst->src[0], dst->src[1], dst, (const sycl::half *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_F32:
get_rows_sycl_float(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_Q4_0:
get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_Q4_1:
get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_Q5_0:
get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_Q5_1:
get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_Q8_0:
get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
default:
// TODO: k-quants
GGML_LOG_ERROR("%s: unsupported type: %s\n", __func__, ggml_type_name(dst->src[0]->type));
GGML_ABORT("fatal error");
}
}
|