File size: 50,089 Bytes
f58e658
add5c0f
b5c106e
f58e658
 
add5c0f
 
 
 
 
 
 
77ff985
f58e658
add5c0f
 
f58e658
 
 
 
 
 
 
 
 
 
 
 
 
 
add5c0f
d2ce872
add5c0f
 
d2ce872
 
 
add5c0f
 
d2ce872
 
 
add5c0f
 
d2ce872
 
b5c106e
add5c0f
b5c106e
 
add5c0f
 
 
f58e658
 
b5c106e
add5c0f
 
f58e658
 
b5c106e
add5c0f
 
 
f58e658
 
49a9b40
add5c0f
49a9b40
add5c0f
49a9b40
 
b5c106e
add5c0f
 
f58e658
 
b5c106e
add5c0f
 
f58e658
 
b5c106e
add5c0f
 
f58e658
 
b5c106e
add5c0f
 
f58e658
 
b5c106e
add5c0f
 
f58e658
 
b5c106e
add5c0f
 
f58e658
 
b5c106e
add5c0f
 
f58e658
 
b5c106e
add5c0f
 
f58e658
 
b5c106e
add5c0f
 
 
f58e658
add5c0f
 
 
 
f58e658
add5c0f
f58e658
 
b5c106e
add5c0f
 
 
f58e658
add5c0f
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
 
f58e658
add5c0f
 
 
f58e658
 
b5c106e
add5c0f
 
 
f58e658
add5c0f
 
 
 
f58e658
 
 
b5c106e
add5c0f
 
 
f58e658
 
 
b5c106e
add5c0f
 
 
f58e658
 
 
add5c0f
 
 
 
f58e658
 
 
add5c0f
 
 
 
f58e658
add5c0f
f58e658
add5c0f
 
 
 
f58e658
 
 
b5c106e
add5c0f
 
 
b5c106e
 
f58e658
add5c0f
 
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
f58e658
 
d2ce872
add5c0f
 
 
 
d2ce872
 
 
add5c0f
 
 
 
d2ce872
 
 
add5c0f
 
 
 
d2ce872
 
b5c106e
add5c0f
 
 
 
f58e658
 
49a9b40
add5c0f
 
 
 
49a9b40
 
b5c106e
add5c0f
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
 
 
f58e658
 
b5c106e
add5c0f
 
 
 
 
 
f58e658
 
f798922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add5c0f
 
 
 
 
 
2e59a96
add5c0f
 
 
 
 
 
 
f58e658
 
b5c106e
 
f58e658
 
 
 
add5c0f
f58e658
2e59a96
 
b5c106e
f58e658
 
 
b5c106e
 
f58e658
 
add5c0f
f58e658
2e59a96
 
 
 
f58e658
 
add5c0f
 
d2ce872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add5c0f
d2ce872
 
 
 
 
 
add5c0f
d2ce872
 
 
 
 
 
 
add5c0f
 
d2ce872
 
 
 
 
 
 
 
 
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ce872
 
 
 
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ce872
 
 
 
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ce872
 
 
 
 
 
 
add5c0f
 
b5c106e
 
 
 
0a9c73a
b5c106e
 
 
f58e658
0a9c73a
 
add5c0f
 
 
 
 
b5c106e
 
 
 
 
add5c0f
 
 
b5c106e
 
 
 
 
 
add5c0f
 
 
b5c106e
 
 
 
 
f58e658
 
add5c0f
 
b5c106e
 
 
 
0a9c73a
b5c106e
 
 
add5c0f
0a9c73a
 
b5c106e
 
 
 
 
add5c0f
 
b5c106e
 
 
 
 
 
add5c0f
 
b5c106e
 
 
 
 
f58e658
 
add5c0f
f58e658
b5c106e
f58e658
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
add5c0f
 
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
f58e658
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
b5c106e
add5c0f
 
 
 
 
 
 
 
 
 
 
 
f58e658
add5c0f
 
 
 
 
 
 
 
 
 
 
b5c106e
f58e658
add5c0f
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
f58e658
add5c0f
 
 
 
 
 
 
 
 
 
 
 
b5c106e
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f58e658
 
add5c0f
 
 
 
 
 
 
f58e658
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9c73a
 
f58e658
 
0a9c73a
 
 
 
 
f58e658
 
 
 
 
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f58e658
 
f798922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5c106e
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
49a9b40
 
 
 
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
fa23a38
4da3fb6
0a9c73a
f58e658
 
b5c106e
4da3fb6
b5c106e
 
 
d2ce872
4da3fb6
d2ce872
 
 
 
4da3fb6
d2ce872
 
 
 
4da3fb6
d2ce872
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f798922
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
#include "common.hpp"
#include "ggml-sycl/presets.hpp"
#include "ggml.h"
#include "element_wise.hpp"

#define SYCL_GLOBAL_ID_LOOP(K, ITEM) \
    for (auto i = ITEM.get_global_id(0); i < (size_t)K; i += ITEM.get_global_range(0))

#define SYCL_LOCAL_ID_CALC(ITEM, IDX) \
    (ITEM.get_local_range(IDX) * ITEM.get_group(IDX) + ITEM.get_local_id(IDX))


static void acc_f32(const float * x, const float * y, float * dst, const int ne,
    const int ne10, const int ne11, const int ne12,
    const int nb1, const int nb2, int offset, const sycl::nd_item<1> &item_ct1) {
    const int i = SYCL_LOCAL_ID_CALC(item_ct1, 0);
    if (i >= ne) {
        return;
    }
    int src1_idx = i - offset;
    int oz = src1_idx / nb2;
    int oy = (src1_idx - (oz * nb2)) / nb1;
    int ox = src1_idx % nb1;
    if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
        dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
    } else {
        dst[i] = x[i];
    }
}

/* Unary OP funcs */
template<typename T>
static __dpct_inline__ T op_sgn(T x) {
    return x > static_cast<T>(0.f) ? static_cast<T>(1.f) : ((x < static_cast<T>(0.f) ? static_cast<T>(-1.f) : static_cast<T>(0.f)));
}

template<typename T>
static __dpct_inline__ T op_abs(T x) {
    return sycl::fabs(x);
}

template<typename T>
static __dpct_inline__ T op_elu(T x) {
    return (x > static_cast<T>(0.f)) ? x : sycl::expm1(x);
}

template<typename T>
static __dpct_inline__ T op_gelu(T x) {
    const T GELU_COEF_A    = static_cast<T>(0.044715f);
    const T SQRT_2_OVER_PI = static_cast<T>(0.79788456080286535587989211986876f);
    return static_cast<T>(0.5f) * x *
           (static_cast<T>(1.0f) +
            sycl::tanh(SQRT_2_OVER_PI * x * (static_cast<T>(1.0f) + GELU_COEF_A * x * x)));
}

template<typename T>
static __dpct_inline__ T op_silu(T x) {
    return x / (static_cast<T>(1.0f) + sycl::native::exp(-x));
}

template<typename T>
static __dpct_inline__ T op_gelu_quick(T x) {
    const T GELU_QUICK_COEF_LOCAL = static_cast<T>(-1.702f);
    return x * (static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(GELU_QUICK_COEF_LOCAL * x)));
}

template<typename T>
static __dpct_inline__ T op_gelu_erf(T x) {
    const T SQRT_2_INV = static_cast<T>(0.70710678118654752440084436210484f);
    return static_cast<T>(0.5f) * x * (static_cast<T>(1.0f) + sycl::erf(x * SQRT_2_INV));
}

template<typename T>
static __dpct_inline__ T op_tanh(T x) {
    return sycl::tanh(x);
}

template<typename T>
static __dpct_inline__ T op_relu(T x) {
    return sycl::fmax(x, static_cast<T>(0));
}

template<typename T>
static __dpct_inline__ T op_sigmoid(T x) {
    return static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(-x));
}

template<typename T>
static __dpct_inline__ T op_sqrt(T x) {
    return sycl::sqrt(x);
}

template<typename T>
static __dpct_inline__ T op_sin(T x) {
    return sycl::sin(x);
}

template<typename T>
static __dpct_inline__ T op_cos(T x) {
    return sycl::cos(x);
}

template<typename T>
static __dpct_inline__ T op_hardsigmoid(T x) {
    return sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
}

template<typename T>
static __dpct_inline__ T op_hardswish(T x) {
    return x * sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
}

template<typename T>
static __dpct_inline__ T op_exp(T x) {
    return sycl::exp(x);
}

template<typename T>
static __dpct_inline__ T op_log(T x) {
    if (x <= static_cast<T>(0)) {
        return neg_infinity<T>();
    }
    return sycl::log(x);
}

template<typename T>
static __dpct_inline__ T op_neg(T x) {
    return -x;
}

template<typename T>
static __dpct_inline__ T op_step(T x) {
    return (x > static_cast<T>(0.0f)) ? static_cast<T>(1.0f) : static_cast<T>(0.0f);
}

template<typename T>
static __dpct_inline__ T op_leaky_relu(T x, float negative_slope) {
    T neg_slope_T = static_cast<T>(negative_slope);
    return sycl::fmax(x, static_cast<T>(0)) +
           sycl::fmin(x, static_cast<T>(0.0f)) * neg_slope_T;
}

template<typename T>
static __dpct_inline__ T op_sqr(T x) {
    return x * x;
}

template<typename T>
static __dpct_inline__ T op_clamp(T x, float min_val, float max_val) {
    return x < static_cast<T>(min_val) ? static_cast<T>(min_val) : (x > static_cast<T>(max_val) ? static_cast<T>(max_val) : x);
}

template<typename T>
static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_sgn(x[i]);
    }
}

template<typename T>
static void unary_op_abs_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_abs(x[i]);
    }
}

template<typename T>
static void unary_op_elu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_elu(x[i]);
    }
}

template<typename T>
static void unary_op_gelu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_gelu(x[i]);
    }
}

template<typename T>
static void unary_op_silu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_silu(x[i]);
    }
}

template<typename T>
static void unary_op_gelu_quick_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_gelu_quick(x[i]);
    }
}

template<typename T>
static void unary_op_gelu_erf_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_gelu_erf(x[i]);
    }
}

template<typename T>
static void unary_op_tanh_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_tanh(x[i]);
    }
}

template<typename T>
static void unary_op_relu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_relu(x[i]);
    }
}

template<typename T>
static void unary_op_sigmoid_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_sigmoid(x[i]);
    }
}

template<typename T>
static void unary_op_sqrt_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_sqrt(x[i]);
    }
}

template<typename T>
static void unary_op_sin_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_sin(x[i]);
    }
}

template<typename T>
static void unary_op_cos_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_cos(x[i]);
    }
}

template<typename T>
static void unary_op_hardsigmoid_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_hardsigmoid(x[i]);
    }
}

template<typename T>
static void unary_op_hardswish_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_hardswish(x[i]);
    }
}

template<typename T>
static void unary_op_exp_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_exp(x[i]);
    }
}

template<typename T>
static void unary_op_log_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_log(x[i]);
    }
}

template<typename T>
static void unary_op_neg_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_neg(x[i]);
    }
}

template<typename T>
static void unary_op_step_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_step(x[i]);
    }
}

template<typename T>
static void unary_op_leaky_relu_kernel(const T * x, T * dst, const int k, float negative_slope, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_leaky_relu(x[i], negative_slope);
    }
}

template<typename T>
static void unary_op_sqr_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_sqr(x[i]);
    }
}

template<typename T>
static void unary_op_clamp_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1, float min_val, float max_val) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = op_clamp(x[i], min_val, max_val);
    }
}

template<typename  T>
static void upscale(const T  *x, T *dst, const int nb00, const int nb01,
                        const int nb02, const int nb03, const int ne10, const int ne11,
                        const int ne12, const int ne13, const float sf0, const float sf1,
                        const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
    int index = item_ct1.get_local_id(0) +
               item_ct1.get_group(0) * item_ct1.get_local_range(0);
    if (index >= ne10 * ne11 * ne12 * ne13) {
        return;
    }
    // operation
    int i10 = index % ne10;
    int i11 = (index / ne10) % ne11;
    int i12 = (index / (ne10 * ne11)) % ne12;
    int i13 = (index / (ne10 * ne11 * ne12)) % ne13;

    int i00 = static_cast<int>(i10 / sf0);
    int i01 = static_cast<int>(i11 / sf1);
    int i02 = static_cast<int>(i12 / sf2);
    int i03 = static_cast<int>(i13 / sf3);

    dst[index] = *(const T *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
}

template <typename T>
static void pad(const T  *x, T *dst, const int ne0, const int ne00, const int ne01, const int ne02,
                    const sycl::nd_item<3> &item_ct1) {
    int nidx = SYCL_LOCAL_ID_CALC(item_ct1, 2);
    if (nidx >= ne0) {
        return;
    }

    // operation
    int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
                     item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
    if (nidx < ne00 && item_ct1.get_group(1) < (size_t) ne01 && item_ct1.get_group(0) < (size_t) ne02) {
        int offset_src = nidx + item_ct1.get_group(1) * ne00 +
                         item_ct1.get_group(0) * ne00 * ne01;
            dst[offset_dst] = x[offset_src];
    } else {
        dst[offset_dst] = static_cast<T>(0.0f);
    }
}

template<typename T>
static void clamp(const T * x, T * dst, const float min, const float max, const int k,
                      const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        dst[i] = x[i] < static_cast<T>(min) ? static_cast<T>(min) : (x[i] > static_cast<T>(max) ? static_cast<T>(max) : x[i]);
    }
}

template<typename T>
static void gated_op_fused_geglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        const int64_t j0 = (i / n) * o0 + (i % n);
        const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
        dst[i] = op_gelu(x[j0]) * g[j1];
    }
}

template<typename T>
static void gated_op_fused_reglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        const int64_t j0 = (i / n) * o0 + (i % n);
        const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
        dst[i] = op_relu(x[j0]) * g[j1];
    }
}

template<typename T>
static void gated_op_fused_swiglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1)  {
        const int64_t j0 = (i / n) * o0 + (i % n);
        const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
        dst[i] = op_silu(x[j0]) * g[j1];
    }
}

template<typename T>
static void gated_op_fused_geglu_erf(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        const int64_t j0 = (i / n) * o0 + (i % n);
        const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
        dst[i] = op_gelu_erf(x[j0]) * g[j1];
    }
}

template<typename T>
static void gated_op_fused_geglu_quick(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
    SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
        const int64_t j0 = (i / n) * o0 + (i % n);
        const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
        dst[i] = op_gelu_quick(x[j0]) * g[j1];
    }
}

namespace ggml_sycl_detail {
static void acc_f32_sycl(const float *x, const float *y, float *dst,
                         const int n_elements, const int ne10, const int ne11,
                         const int ne12, const int nb1, const int nb2,
                         const int offset, queue_ptr stream) {
    int num_blocks = ceil_div(n_elements, SYCL_ACC_BLOCK_SIZE);
    sycl_parallel_for(stream,
        sycl::nd_range<1>(sycl::range<1>(num_blocks) *
                              sycl::range<1>(SYCL_ACC_BLOCK_SIZE),
                          sycl::range<1>(SYCL_ACC_BLOCK_SIZE)),
        [=](sycl::nd_item<1> item_ct1) {
            acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
                    item_ct1);
        });
}

template<typename T>
static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01,
                             const int nb02, const int nb03, const int ne10, const int ne11,
                             const int ne12, const int ne13, const float sf0, const float sf1,
                             const float sf2, const float sf3, queue_ptr stream) {
    int dst_size = ne10 * ne11 * ne12 * ne13;
    int num_blocks = ceil_div(dst_size, SYCL_UPSCALE_BLOCK_SIZE);
    sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
    sycl_parallel_for<1>(
        stream, sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
            upscale(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
        });
}

template<typename T>
static void pad_sycl(const T *x, T *dst, const int ne00,
                         const int ne01, const int ne02, const int ne0,
                         const int ne1, const int ne2, queue_ptr stream) {
    int num_blocks = ceil_div(ne0, SYCL_PAD_BLOCK_SIZE);
    sycl::range<3> gridDim(ne2, ne1, num_blocks);
    sycl_parallel_for(stream,
                      sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
                                        sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
                      [=](sycl::nd_item<3> item_ct1) { pad(x, dst, ne0, ne00, ne01, ne02, item_ct1); });
}

template<typename KernelInvoker, typename... Args>
static inline void dispatch_ggml_sycl_op_unary(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
#if defined (GGML_SYCL_F16)
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
    GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
    GGML_ASSERT(dst->src[0]->type == dst->type);
    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));
    switch (dst->type) {
#if defined (GGML_SYCL_F16)
        case GGML_TYPE_F16:
            {
                auto data_pts = cast_data<sycl::half>(dst);
                kernel_invoker(data_pts.src, data_pts.dst, (int)ggml_nelements(dst->src[0]), main_stream, std::forward<Args>(args)...);
                break;
            }
#endif
        case GGML_TYPE_F32:
            {
                auto data_pts = cast_data<float>(dst);
                kernel_invoker(data_pts.src, data_pts.dst, (int)ggml_nelements(dst->src[0]), main_stream, std::forward<Args>(args)...);
                break;
            }
        default:
            GGML_ABORT("GGML tensor type not supported!\n");
    }
}

template<typename KernelInvoker, typename... Args>
static inline void dispatch_ggml_sycl_op_fused_glu(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
#if defined (GGML_SYCL_F16)
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
    GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
    GGML_ASSERT(dst->src[0]->type == dst->type);
    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));
    const ggml_tensor * src0 = dst->src[0];
    const ggml_tensor * src1 = dst->src[1];
    const int64_t nc = src1 ? src0->ne[0] : src0->ne[0] / 2;;
    GGML_ASSERT(dst->ne[0] == nc);
    GGML_ASSERT(ggml_is_contiguous_1(dst->src[0]));
    GGML_ASSERT(ggml_is_contiguous(dst));
    const int32_t swapped = ((const int32_t *) dst->op_params)[1];
    void * src0_d = src0->data;
    void * src1_d = src1 ? src1->data : src0->data;
    const int64_t src0_o = src0->nb[1];
    const int64_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
    void * dst_d = dst->data;
    if (src1) {
        GGML_ASSERT(ggml_is_contiguous_1(src1));
        GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
        GGML_ASSERT(src1->ne[0] == nc);
        GGML_ASSERT(src0->type == src1->type);
    }
    switch (dst->type) {
#if defined (GGML_SYCL_F16)
        case GGML_TYPE_F16:
            {
                sycl::half * src0_p = (sycl::half *) src0_d;
                sycl::half * src1_p = (sycl::half *) src1_d;

                    if (!src1) {
                        src0_p += swapped ? nc : 0;
                        src1_p += swapped ? 0 : nc;
                    }
                kernel_invoker(src0_p,
                               src1_p,
                               (sycl::half *) dst_d,
                               ggml_nelements(dst),
                               nc,
                               src0_o / sizeof(sycl::half),
                               src1_o / sizeof(sycl::half),
                               main_stream,
                               std::forward<Args>(args)...);
                break;
            }
#endif
        case GGML_TYPE_F32:
            {
                float * src0_p = (float *) src0_d;
                float * src1_p = (float *) src1_d;

                    if (!src1) {
                        src0_p += swapped ? nc : 0;
                        src1_p += swapped ? 0 : nc;
                    }

                kernel_invoker(src0_p,
                               src1_p,
                               (float *) dst_d,
                               ggml_nelements(dst),
                               nc,
                               src0_o / sizeof(float),
                               src1_o / sizeof(float),
                               main_stream,
                               std::forward<Args>(args)...);
                break;
            }
        default:
            GGML_ABORT("GGML tensor type not supported!\n");
    }
}

template<typename KernelInvoker, typename... Args>
static inline void dispatch_ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
#if defined (GGML_SYCL_F16)
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
    GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
    GGML_ASSERT(dst->src[0]->type == dst->type);

    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));

    const float sf0 = (float) dst->ne[0] / dst->src[0]->ne[0];
    const float sf1 = (float) dst->ne[1] / dst->src[0]->ne[1];
    const float sf2 = (float) dst->ne[2] / dst->src[0]->ne[2];
    const float sf3 = (float) dst->ne[3] / dst->src[0]->ne[3];
    switch (dst->type) {
#if defined (GGML_SYCL_F16)
        case GGML_TYPE_F16:
            {
                auto data_pts = cast_data<sycl::half>(dst);
                kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->nb[0], (int)dst->src[0]->nb[1], (int)dst->src[0]->nb[2],
                               (int)dst->src[0]->nb[3], (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], sf0, sf1, sf2, sf3,
                               main_stream, std::forward<Args>(args)...);
                break;
            }
#endif
        case GGML_TYPE_F32:
            {
                auto data_pts = cast_data<float>(dst);
                kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->nb[0], (int)dst->src[0]->nb[1], (int)dst->src[0]->nb[2],
                               (int)dst->src[0]->nb[3], (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], sf0, sf1, sf2, sf3,
                               main_stream, std::forward<Args>(args)...);
                break;
            }
        default:
            GGML_ABORT("GGML tensor type not supported!\n");
    }
}

template<typename KernelInvoker, typename... Args>
static inline void dispatch_ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
#if defined (GGML_SYCL_F16)
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
    GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
    GGML_ASSERT(dst->src[0]->type == dst->type);
    GGML_ASSERT(dst->src[0]->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));
    switch (dst->type) {
#if defined (GGML_SYCL_F16)
        case GGML_TYPE_F16:
            {
                auto data_pts = cast_data<sycl::half>(dst);
                kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
                               (int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
                break;
            }
#endif
        case GGML_TYPE_F32:
            {
                auto data_pts = cast_data<float>(dst);
                kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
                               (int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
                break;
            }
        default:
            GGML_ABORT("GGML tensor type not supported!\n");
    }
}

} // namespace ggml_sycl_detail



static inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, 256);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
                                  sycl::range<1>(256)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_sgn_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, 256);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
                                  sycl::range<1>(256)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_abs_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, 256);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
                                  sycl::range<1>(256)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_elu_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_SILU_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SILU_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_SILU_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_silu_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_gelu_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_gelu_quick_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_gelu_erf_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_TANH_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_TANH_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_TANH_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_tanh_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_RELU_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_RELU_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_RELU_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_relu_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_HARDSIGMOID_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_HARDSIGMOID_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_HARDSIGMOID_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_hardsigmoid_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_HARDSWISH_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_HARDSWISH_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_HARDSWISH_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_hardswish_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_EXP_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_EXP_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_EXP_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_exp_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_EXP_BLOCK_SIZE); // Using EXP block size
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_EXP_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_EXP_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_log_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_NEG_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_NEG_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_NEG_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_neg_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_NEG_BLOCK_SIZE); // Using NEG block size
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_NEG_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_NEG_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_step_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_SIGMOID_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIGMOID_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_SIGMOID_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_sigmoid_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_SQRT_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SQRT_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_SQRT_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_sqrt_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_SIN_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIN_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_SIN_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_sin_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_SIN_BLOCK_SIZE); // Using SIN block size
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIN_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_SIN_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_cos_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    float negative_slope;
    memcpy(&negative_slope, dst->op_params, sizeof(float));
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream, float slope) {
            const int num_blocks = ceil_div(k_elements, SYCL_RELU_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_RELU_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_RELU_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_leaky_relu_kernel(src, dst_ptr, k_elements, slope, item_ct1);
                });
        }, negative_slope);
}

static inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
            const int num_blocks = ceil_div(k_elements, SYCL_SQR_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SQR_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_SQR_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    unary_op_sqr_kernel(src, dst_ptr, k_elements, item_ct1);
                });
        });
}

static inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_upscale(ctx, dst,
        [](const auto* src, auto* dst_ptr, int nb00, int nb01, int nb02, int nb03,
           int ne10, int ne11, int ne12, int ne13, float sf0, float sf1, float sf2, float sf3,
           queue_ptr stream) {
            ggml_sycl_detail::upscale_sycl(src, dst_ptr, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, stream);
        });
}

static inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_pad(ctx, dst,
        [](const auto* src, auto* dst_ptr, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2,
           queue_ptr stream) {
            ggml_sycl_detail::pad_sycl(src, dst_ptr, ne00, ne01, ne02, ne0, ne1, ne2, stream);
        });
}

static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    float min_val;
    float max_val;
    memcpy(&min_val, dst->op_params, sizeof(float));
    memcpy(&max_val, (float *) dst->op_params + 1, sizeof(float));
    ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
        [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream, float min_arg, float max_arg) {
            const int num_blocks = ceil_div(k_elements, SYCL_CLAMP_BLOCK_SIZE);
            sycl_parallel_for(stream,
                sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_CLAMP_BLOCK_SIZE),
                                  sycl::range<1>(SYCL_CLAMP_BLOCK_SIZE)),
                [=](sycl::nd_item<1> item_ct1) {
                    clamp(src, dst_ptr, min_arg, max_arg, k_elements, item_ct1);
                });
        }, min_val, max_val);
}

static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));
    const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
    const float * src1_dd = static_cast<const float*>(dst->src[1]->data);
    float *       dst_dd  = static_cast<float *>(dst->data);

    int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
    int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
    // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
    int offset = dst->op_params[3] / 4; // offset in bytes

    ggml_sycl_detail::acc_f32_sycl(src0_dd, src1_dd, dst_dd, (int)ggml_nelements(dst), (int)dst->src[1]->ne[0], (int)dst->src[1]->ne[1], (int)dst->src[1]->ne[2], nb1, nb2, offset, main_stream);
}

static inline void ggml_sycl_op_geglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
        [](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
            const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
            sycl_parallel_for(main_stream,
                    sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
                gated_op_fused_geglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
            });
        });
}

static inline void ggml_sycl_op_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
        [](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
            const uint32_t num_blocks = ceil_div((uint32_t)k, SYCL_RELU_BLOCK_SIZE); // Using RELU block size for reglu
            sycl_parallel_for(main_stream,
                    sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_RELU_BLOCK_SIZE)), sycl::range<1>(SYCL_RELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
                gated_op_fused_reglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
            });
        });
}

static inline void ggml_sycl_op_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
        [](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
            const uint32_t num_blocks = ceil_div((uint32_t)k, SYCL_SILU_BLOCK_SIZE); // Using SILU block size for swiglu
            sycl_parallel_for(main_stream,
                    sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_SILU_BLOCK_SIZE)), sycl::range<1>(SYCL_SILU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
                gated_op_fused_swiglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
            });
        });
}

static inline void ggml_sycl_op_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
        [](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
            const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
            sycl_parallel_for(main_stream,
                    sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
                gated_op_fused_geglu_erf(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
            });
        });
}

static inline void ggml_sycl_op_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
        [](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
            const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
            sycl_parallel_for(main_stream,
                    sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
                gated_op_fused_geglu_quick(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
            });
        });
}


void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_sqrt(ctx, dst);
}

void ggml_sycl_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_sin(ctx, dst);
}

void ggml_sycl_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_cos(ctx, dst);
}

void ggml_sycl_acc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
    ggml_sycl_op_acc(ctx, dst);
}

void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_gelu(ctx, dst);
}

void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_silu(ctx, dst);
}

void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_gelu_quick(ctx, dst);
}

void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_gelu_erf(ctx, dst);
}

void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_tanh(ctx, dst);
}

void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_relu(ctx, dst);
}

void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_sigmoid(ctx, dst);
}

void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_hardsigmoid(ctx, dst);
}

void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_hardswish(ctx, dst);
}

void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_exp(ctx, dst);
}

void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_log(ctx, dst);
}

void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_neg(ctx, dst);
}

void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_step(ctx, dst);
}

void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_leaky_relu(ctx, dst);
}

void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_sqr(ctx, dst);
}

void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_upscale(ctx, dst);
}

void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_pad(ctx, dst);
}

void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_clamp(ctx, dst);
}

void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_sgn(ctx, dst);
}

void ggml_sycl_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_abs(ctx, dst);
}

void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_elu(ctx, dst);
}

void ggml_sycl_geglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_geglu(ctx, dst);
}

void ggml_sycl_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_reglu(ctx, dst);
}

void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_swiglu(ctx, dst);
}

void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_geglu_erf(ctx, dst);
}

void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
    ggml_sycl_op_geglu_quick(ctx, dst);
}