File size: 48,019 Bytes
0754d43
 
 
 
fea8f94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0754d43
 
 
 
fea8f94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0754d43
 
 
 
 
 
 
 
 
 
 
7941e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4087e
7941e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb13b88
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb13b88
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
fb13b88
0754d43
 
 
 
 
 
 
 
 
 
fb13b88
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
0754d43
 
 
 
 
 
 
 
 
 
fea8f94
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ec79f
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a74c6b
 
 
 
 
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
 
 
 
0754d43
 
 
 
 
 
 
 
 
fea8f94
 
 
 
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
 
 
 
0754d43
 
 
 
 
 
 
 
 
fea8f94
 
 
 
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
 
 
 
0754d43
 
 
 
 
 
 
 
 
fea8f94
 
 
 
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c0dfa
 
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
 
 
 
 
 
0754d43
 
 
fea8f94
0754d43
 
2458d68
 
 
fea8f94
0754d43
 
fea8f94
 
 
 
 
 
 
 
 
 
 
0754d43
 
2458d68
 
fea8f94
0754d43
 
fea8f94
0754d43
fea8f94
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
#pragma once

#include "ggml-cpu-impl.h"

#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif // __ARM_FEATURE_SVE

#if defined(__ARM_NEON) && !defined(__CUDACC__) && !defined(__MUSACC__)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
//   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#endif

#if defined(__F16C__)
#include <immintrin.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

//
// simd mappings
//

// FP16 to FP32 conversion

// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
//
// for old CUDA compilers (<= 11), we use uint16_t: ref https://github.com/ggml-org/llama.cpp/pull/10616
// for     MUSA compilers        , we use uint16_t: ref https://github.com/ggml-org/llama.cpp/pull/11843
//
#if defined(__ARM_NEON) && !(defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11) && !defined(__MUSACC__)
    #define GGML_CPU_COMPUTE_FP16_TO_FP32(x) neon_compute_fp16_to_fp32(x)
    #define GGML_CPU_COMPUTE_FP32_TO_FP16(x) neon_compute_fp32_to_fp16(x)

    #define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)

    static inline float neon_compute_fp16_to_fp32(ggml_fp16_t h) {
        __fp16 tmp;
        memcpy(&tmp, &h, sizeof(ggml_fp16_t));
        return (float)tmp;
    }

    static inline ggml_fp16_t neon_compute_fp32_to_fp16(float f) {
        ggml_fp16_t res;
        __fp16 tmp = f;
        memcpy(&res, &tmp, sizeof(ggml_fp16_t));
        return res;
    }
#elif defined(__F16C__)
    #ifdef _MSC_VER
        #define GGML_CPU_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
        #define GGML_CPU_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
    #else
        #define GGML_CPU_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
        #define GGML_CPU_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
    #endif
#elif defined(__POWER9_VECTOR__)
    #define GGML_CPU_COMPUTE_FP16_TO_FP32(x) power_compute_fp16_to_fp32(x)
    #define GGML_CPU_COMPUTE_FP32_TO_FP16(x) power_compute_fp32_to_fp16(x)
    /* the inline asm below is about 12% faster than the lookup method */
    #define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
    #define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)

    static inline float power_compute_fp16_to_fp32(ggml_fp16_t h) {
        float f;
        double d;
        __asm__(
            "mtfprd %0,%2\n"
            "xscvhpdp %0,%0\n"
            "frsp %1,%0\n" :
            /* temp */ "=d"(d),
            /* out */  "=f"(f):
            /* in */   "r"(h));
        return f;
    }

    static inline ggml_fp16_t power_compute_fp32_to_fp16(float f) {
        double d;
        ggml_fp16_t r;
        __asm__( /* xscvdphp can work on double or single precision */
            "xscvdphp %0,%2\n"
            "mffprd %1,%0\n" :
            /* temp */ "=d"(d),
            /* out */  "=r"(r):
            /* in */   "f"(f));
        return r;
    }
#elif defined(__riscv) && defined(__riscv_zfhmin)
    static inline float riscv_compute_fp16_to_fp32(ggml_fp16_t h) {
        float f;
        __asm__(
            "fmv.h.x %[f], %[h]\n\t"
            "fcvt.s.h %[f], %[f]"
            : [f] "=&f" (f)
            : [h] "r" (h)
        );
        return f;
    }

    static inline ggml_fp16_t riscv_compute_fp32_to_fp16(float f) {
        ggml_fp16_t res;
        __asm__(
            "fcvt.h.s %[f], %[f]\n\t"
            "fmv.x.h %[h], %[f]"
            : [h] "=&r" (res)
            : [f] "f" (f)
        );
        return res;
    }

    #define GGML_CPU_COMPUTE_FP16_TO_FP32(x) riscv_compute_fp16_to_fp32(x)
    #define GGML_CPU_COMPUTE_FP32_TO_FP16(x) riscv_compute_fp32_to_fp16(x)
    #define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
    #define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
#elif defined(__NNPA__)
    #define GGML_CPU_COMPUTE_FP16_TO_FP32(x) nnpa_compute_fp16_to_fp32(x)
    #define GGML_CPU_COMPUTE_FP32_TO_FP16(x) nnpa_compute_fp32_to_fp16(x)

    #define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
    #define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)

    static inline float nnpa_compute_fp16_to_fp32(ggml_fp16_t h) {
        uint16x8_t v_h = vec_splats(h);
        uint16x8_t v_hd = vec_convert_from_fp16(v_h, 0);
        return vec_extend_to_fp32_hi(v_hd, 0)[0];
    }

    static inline ggml_fp16_t nnpa_compute_fp32_to_fp16(float f) {
        float32x4_t v_f = vec_splats(f);
        float32x4_t v_zero = vec_splats(0.0f);
        uint16x8_t v_hd = vec_round_from_fp32(v_f, v_zero, 0);
        uint16x8_t v_h = vec_convert_to_fp16(v_hd, 0);
        return vec_extract(v_h, 0);
    }
#endif

// precomputed f32 table for f16 (256 KB)
// defined in ggml-cpu.c, initialized in ggml_cpu_init()
extern float ggml_table_f32_f16[1 << 16];

// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_CPU_FP16_TO_FP32 and GGML_CPU_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_CPU_FP16_TO_FP32)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
    uint16_t s;
    memcpy(&s, &f, sizeof(uint16_t));
    return ggml_table_f32_f16[s];
}

#define GGML_CPU_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#endif

#if !defined(GGML_CPU_FP32_TO_FP16)
#define GGML_CPU_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif


// we define a common set of C macros which map to specific intrinsics based on the current architecture
// we then implement the fundamental computation operations below using only these macros
// adding support for new architectures requires to define the corresponding SIMD macros
//
// GGML_F32_STEP / GGML_F16_STEP
//   number of elements to process in a single step
//
// GGML_F32_EPR / GGML_F16_EPR
//   number of elements to fit in a single register
//

#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_FMA)

#define GGML_SIMD

// F32 SVE
#define GGML_F32_EPR 8
#define DEFAULT_PG svptrue_b32()

#define GGML_F32xt                        svfloat32_t
#define GGML_F32xt_ZERO                   svdup_n_f32(0.0f)
#define GGML_F32xt_SET1(x)                svdup_n_f32(x)
#define GGML_F32xt_LOAD_IMPL(pg, a, ...)  svld1_f32(pg, a)
#define GGML_F32xt_LOAD(...)              GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_STORE_IMPL(pg,a,b)     svst1_f32(pg, a, b)
#define GGML_F32xt_STORE(...)             GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_FMA_IMPL(pg, a, b, c)  svmad_f32_m(pg, b, c, a)
#define GGML_F32xt_FMA(...)               GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_ADD_IMPL(pg, a, b)     svadd_f32_m(pg, a, b)
#define GGML_F32xt_ADD(...)               GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_MUL_IMPL(pg, a, b)     svmul_f32_m(pg, a, b)
#define GGML_F32xt_MUL(...)               GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a)
#define GGML_F32xt_REDUCE_ONE(...)        GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8)  \
{                                                      \
    sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2);        \
    sum3 = svadd_f32_m(DEFAULT_PG, sum3, sum4);        \
    sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum6);        \
    sum7 = svadd_f32_m(DEFAULT_PG, sum7, sum8);        \
    sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum3);        \
    sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum7);        \
    sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5);        \
    (res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1);  \
}
#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__)

#define GGML_F32_VEC        GGML_F32xt
#define GGML_F32_VEC_ZERO   GGML_F32xt_ZERO
#define GGML_F32_VEC_SET1   GGML_F32xt_SET1
#define GGML_F32_VEC_LOAD   GGML_F32xt_LOAD
#define GGML_F32_VEC_STORE  GGML_F32xt_STORE
#define GGML_F32_VEC_FMA    GGML_F32xt_FMA
#define GGML_F32_VEC_ADD    GGML_F32xt_ADD
#define GGML_F32_VEC_MUL    GGML_F32xt_MUL
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE

// F16 NEON

#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
    #define GGML_F16_STEP 32
    #define GGML_F16_EPR  8

    #define GGML_F16x8              float16x8_t
    #define GGML_F16x8_ZERO         vdupq_n_f16(0.0f)
    #define GGML_F16x8_SET1(x)      vdupq_n_f16(x)
    #define GGML_F16x8_LOAD(x)      vld1q_f16((const __fp16 *)(x))
    #define GGML_F16x8_STORE        vst1q_f16
    #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
    #define GGML_F16x8_ADD          vaddq_f16
    #define GGML_F16x8_MUL          vmulq_f16
    #define GGML_F16x8_REDUCE(res, x)                               \
    do {                                                            \
        int offset = GGML_F16_ARR >> 1;                             \
        for (int i = 0; i < offset; ++i) {                          \
            (x)[i] = vaddq_f16((x)[i], (x)[offset+i]);              \
        }                                                           \
        offset >>= 1;                                               \
        for (int i = 0; i < offset; ++i) {                          \
            (x)[i] = vaddq_f16((x)[i], (x)[offset+i]);              \
        }                                                           \
        offset >>= 1;                                               \
        for (int i = 0; i < offset; ++i) {                          \
            (x)[i] = vaddq_f16((x)[i], (x)[offset+i]);              \
        }                                                           \
        const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
        const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
        (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1));         \
    } while (0)

    #define GGML_F16_VEC                GGML_F16x8
    #define GGML_F16_VEC_ZERO           GGML_F16x8_ZERO
    #define GGML_F16_VEC_SET1           GGML_F16x8_SET1
    #define GGML_F16_VEC_LOAD(p, i)     GGML_F16x8_LOAD(p)
    #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
    #define GGML_F16_VEC_FMA            GGML_F16x8_FMA
    #define GGML_F16_VEC_ADD            GGML_F16x8_ADD
    #define GGML_F16_VEC_MUL            GGML_F16x8_MUL
    #define GGML_F16_VEC_REDUCE         GGML_F16x8_REDUCE
#else
    // if FP16 vector arithmetic is not supported, we use FP32 instead
    // and take advantage of the vcvt_ functions to convert to/from FP16

    #define GGML_F16_STEP 16
    #define GGML_F16_EPR  4

    #define GGML_F32Cx4              float32x4_t
    #define GGML_F32Cx4_ZERO         vdupq_n_f32(0.0f)
    #define GGML_F32Cx4_SET1(x)      vdupq_n_f32(x)
    #define GGML_F32Cx4_LOAD(x)      vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
    #define GGML_F32Cx4_STORE(x, y)  vst1_f16(x, vcvt_f16_f32(y))
    #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
    #define GGML_F32Cx4_ADD          vaddq_f32
    #define GGML_F32Cx4_MUL          vmulq_f32
    #define GGML_F32Cx4_REDUCE       GGML_F32x4_REDUCE

    #define GGML_F16_VEC                GGML_F32Cx4
    #define GGML_F16_VEC_ZERO           GGML_F32Cx4_ZERO
    #define GGML_F16_VEC_SET1           GGML_F32Cx4_SET1
    #define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx4_LOAD(p)
    #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
    #define GGML_F16_VEC_FMA            GGML_F32Cx4_FMA
    #define GGML_F16_VEC_ADD            GGML_F32Cx4_ADD
    #define GGML_F16_VEC_MUL            GGML_F32Cx4_MUL
    #define GGML_F16_VEC_REDUCE         GGML_F32Cx4_REDUCE
#endif

#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)

#define GGML_SIMD

// F32 NEON

#define GGML_F32_STEP 16
#define GGML_F32_EPR  4

#define GGML_F32x4              float32x4_t
#define GGML_F32x4_ZERO         vdupq_n_f32(0.0f)
#define GGML_F32x4_SET1(x)      vdupq_n_f32(x)
#define GGML_F32x4_LOAD         vld1q_f32
#define GGML_F32x4_STORE        vst1q_f32
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32x4_ADD          vaddq_f32
#define GGML_F32x4_MUL          vmulq_f32
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
#define GGML_F32x4_REDUCE(res, x)                       \
{                                                       \
    int offset = GGML_F32_ARR >> 1;                     \
    for (int i = 0; i < offset; ++i) {                  \
        (x)[i] = vaddq_f32((x)[i], (x)[offset+i]);      \
    }                                                   \
    offset >>= 1;                                       \
    for (int i = 0; i < offset; ++i) {                  \
        (x)[i] = vaddq_f32((x)[i], (x)[offset+i]);      \
    }                                                   \
    offset >>= 1;                                       \
    for (int i = 0; i < offset; ++i) {                  \
        (x)[i] = vaddq_f32((x)[i], (x)[offset+i]);      \
    }                                                   \
    (res) = (ggml_float) GGML_F32x4_REDUCE_ONE((x)[0]); \
}

#define GGML_F32_VEC        GGML_F32x4
#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE

// F16 NEON

#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
    #define GGML_F16_STEP 32
    #define GGML_F16_EPR  8

    #define GGML_F16x8              float16x8_t
    #define GGML_F16x8_ZERO         vdupq_n_f16(0.0f)
    #define GGML_F16x8_SET1(x)      vdupq_n_f16(x)
    #define GGML_F16x8_LOAD(x)      vld1q_f16((const __fp16 *)(x))
    #define GGML_F16x8_STORE        vst1q_f16
    #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
    #define GGML_F16x8_ADD          vaddq_f16
    #define GGML_F16x8_MUL          vmulq_f16
    #define GGML_F16x8_REDUCE(res, x)                               \
    do {                                                            \
        int offset = GGML_F16_ARR >> 1;                             \
        for (int i = 0; i < offset; ++i) {                          \
            (x)[i] = vaddq_f16((x)[i], (x)[offset+i]);              \
        }                                                           \
        offset >>= 1;                                               \
        for (int i = 0; i < offset; ++i) {                          \
            (x)[i] = vaddq_f16((x)[i], (x)[offset+i]);              \
        }                                                           \
        offset >>= 1;                                               \
        for (int i = 0; i < offset; ++i) {                          \
            (x)[i] = vaddq_f16((x)[i], (x)[offset+i]);              \
        }                                                           \
        const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
        const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
        (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1));         \
    } while (0)

    #define GGML_F16_VEC                GGML_F16x8
    #define GGML_F16_VEC_ZERO           GGML_F16x8_ZERO
    #define GGML_F16_VEC_SET1           GGML_F16x8_SET1
    #define GGML_F16_VEC_LOAD(p, i)     GGML_F16x8_LOAD(p)
    #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
    #define GGML_F16_VEC_FMA            GGML_F16x8_FMA
    #define GGML_F16_VEC_ADD            GGML_F16x8_ADD
    #define GGML_F16_VEC_MUL            GGML_F16x8_MUL
    #define GGML_F16_VEC_REDUCE         GGML_F16x8_REDUCE
#else
    // if FP16 vector arithmetic is not supported, we use FP32 instead
    // and take advantage of the vcvt_ functions to convert to/from FP16

    #define GGML_F16_STEP 16
    #define GGML_F16_EPR  4

    #define GGML_F32Cx4              float32x4_t
    #define GGML_F32Cx4_ZERO         vdupq_n_f32(0.0f)
    #define GGML_F32Cx4_SET1(x)      vdupq_n_f32(x)
    #define GGML_F32Cx4_LOAD(x)      vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
    #define GGML_F32Cx4_STORE(x, y)  vst1_f16(x, vcvt_f16_f32(y))
    #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
    #define GGML_F32Cx4_ADD          vaddq_f32
    #define GGML_F32Cx4_MUL          vmulq_f32
    #define GGML_F32Cx4_REDUCE       GGML_F32x4_REDUCE

    #define GGML_F16_VEC                GGML_F32Cx4
    #define GGML_F16_VEC_ZERO           GGML_F32Cx4_ZERO
    #define GGML_F16_VEC_SET1           GGML_F32Cx4_SET1
    #define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx4_LOAD(p)
    #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
    #define GGML_F16_VEC_FMA            GGML_F32Cx4_FMA
    #define GGML_F16_VEC_ADD            GGML_F32Cx4_ADD
    #define GGML_F16_VEC_MUL            GGML_F32Cx4_MUL
    #define GGML_F16_VEC_REDUCE         GGML_F32Cx4_REDUCE
#endif

#elif defined(__AVX512F__)

#define GGML_SIMD

// F32 AVX512

#define GGML_F32_STEP 64
#define GGML_F32_EPR  16

#define GGML_F32x16         __m512
#define GGML_F32x16_ZERO    _mm512_setzero_ps()
#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
#define GGML_F32x16_LOAD    _mm512_loadu_ps
#define GGML_F32x16_STORE   _mm512_storeu_ps
// _mm512_fmadd_ps is defined in AVX512F so no guard is required
#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32x16_ADD     _mm512_add_ps
#define GGML_F32x16_MUL     _mm512_mul_ps
#define GGML_F32x16_REDUCE(res, x)                                    \
do {                                                                  \
    int offset = GGML_F32_ARR >> 1;                                   \
    for (int i = 0; i < offset; ++i) {                                \
        x[i] = _mm512_add_ps(x[i], x[offset+i]);                      \
    }                                                                 \
    offset >>= 1;                                                     \
    for (int i = 0; i < offset; ++i) {                                \
        x[i] = _mm512_add_ps(x[i], x[offset+i]);                      \
    }                                                                 \
    offset >>= 1;                                                     \
    for (int i = 0; i < offset; ++i) {                                \
        x[i] = _mm512_add_ps(x[i], x[offset+i]);                      \
    }                                                                 \
    res = (ggml_float) _mm512_reduce_add_ps(x[0]);                    \
} while (0)

// TODO: is this optimal ?

#define GGML_F32_VEC        GGML_F32x16
#define GGML_F32_VEC_ZERO   GGML_F32x16_ZERO
#define GGML_F32_VEC_SET1   GGML_F32x16_SET1
#define GGML_F32_VEC_LOAD   GGML_F32x16_LOAD
#define GGML_F32_VEC_STORE  GGML_F32x16_STORE
#define GGML_F32_VEC_FMA    GGML_F32x16_FMA
#define GGML_F32_VEC_ADD    GGML_F32x16_ADD
#define GGML_F32_VEC_MUL    GGML_F32x16_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE

// F16 AVX512

// F16 AVX

#define GGML_F16_STEP 64
#define GGML_F16_EPR  16

// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead

#define GGML_F32Cx16             __m512
#define GGML_F32Cx16_ZERO        _mm512_setzero_ps()
#define GGML_F32Cx16_SET1(x)     _mm512_set1_ps(x)

// unlike  _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
// so F16C guard isn't required
#define GGML_F32Cx16_LOAD(x)     _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))

#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32Cx16_ADD         _mm512_add_ps
#define GGML_F32Cx16_MUL         _mm512_mul_ps
#define GGML_F32Cx16_REDUCE(res, x)                               \
do {                                                              \
    int offset = GGML_F32_ARR >> 1;                               \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = _mm512_add_ps(x[i], x[offset+i]);                  \
    }                                                             \
    offset >>= 1;                                                 \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = _mm512_add_ps(x[i], x[offset+i]);                  \
    }                                                             \
    offset >>= 1;                                                 \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = _mm512_add_ps(x[i], x[offset+i]);                  \
    }                                                             \
    res = (ggml_float) _mm512_reduce_add_ps(x[0]);                \
} while (0)

#define GGML_F16_VEC                GGML_F32Cx16
#define GGML_F16_VEC_ZERO           GGML_F32Cx16_ZERO
#define GGML_F16_VEC_SET1           GGML_F32Cx16_SET1
#define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx16_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
#define GGML_F16_VEC_FMA            GGML_F32Cx16_FMA
#define GGML_F16_VEC_ADD            GGML_F32Cx16_ADD
#define GGML_F16_VEC_MUL            GGML_F32Cx16_MUL

#define GGML_F16_VEC_REDUCE         GGML_F32Cx16_REDUCE
#elif defined(__AVX__)

#define GGML_SIMD

// F32 AVX

#define GGML_F32_STEP 32
#define GGML_F32_EPR  8

#define GGML_F32x8         __m256
#define GGML_F32x8_ZERO    _mm256_setzero_ps()
#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
#define GGML_F32x8_LOAD    _mm256_loadu_ps
#define GGML_F32x8_STORE   _mm256_storeu_ps
#if defined(__FMA__)
    #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
#else
    #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
#endif
#define GGML_F32x8_ADD     _mm256_add_ps
#define GGML_F32x8_MUL     _mm256_mul_ps
#define GGML_F32x8_REDUCE(res, x)                                 \
do {                                                              \
    int offset = GGML_F32_ARR >> 1;                               \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = _mm256_add_ps(x[i], x[offset+i]);                  \
    }                                                             \
    offset >>= 1;                                                 \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = _mm256_add_ps(x[i], x[offset+i]);                  \
    }                                                             \
    offset >>= 1;                                                 \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = _mm256_add_ps(x[i], x[offset+i]);                  \
    }                                                             \
    const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]),    \
                                 _mm256_extractf128_ps(x[0], 1)); \
    const __m128 t1 = _mm_hadd_ps(t0, t0);                        \
    res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1));        \
} while (0)
// TODO: is this optimal ?

#define GGML_F32_VEC        GGML_F32x8
#define GGML_F32_VEC_ZERO   GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1   GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD   GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE  GGML_F32x8_STORE
#define GGML_F32_VEC_FMA    GGML_F32x8_FMA
#define GGML_F32_VEC_ADD    GGML_F32x8_ADD
#define GGML_F32_VEC_MUL    GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE

// F16 AVX

#define GGML_F16_STEP 32
#define GGML_F16_EPR  8

// F16 arithmetic is not supported by AVX, so we use F32 instead

#define GGML_F32Cx8             __m256
#define GGML_F32Cx8_ZERO        _mm256_setzero_ps()
#define GGML_F32Cx8_SET1(x)     _mm256_set1_ps(x)

#if defined(__F16C__)
// the  _mm256_cvt intrinsics require F16C
#define GGML_F32Cx8_LOAD(x)     _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
#else
static inline __m256 __avx_f32cx8_load(const ggml_fp16_t * x) {
    float tmp[8];

    for (int i = 0; i < 8; i++) {
        tmp[i] = GGML_CPU_FP16_TO_FP32(x[i]);
    }

    return _mm256_loadu_ps(tmp);
}
static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
    float arr[8];

    _mm256_storeu_ps(arr, y);

    for (int i = 0; i < 8; i++)
        x[i] = GGML_CPU_FP32_TO_FP16(arr[i]);
}
#define GGML_F32Cx8_LOAD(x)     __avx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
#endif

#define GGML_F32Cx8_FMA         GGML_F32x8_FMA
#define GGML_F32Cx8_ADD         _mm256_add_ps
#define GGML_F32Cx8_MUL         _mm256_mul_ps
#define GGML_F32Cx8_REDUCE      GGML_F32x8_REDUCE

#define GGML_F16_VEC                GGML_F32Cx8
#define GGML_F16_VEC_ZERO           GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1           GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA            GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD            GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL            GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE         GGML_F32Cx8_REDUCE

#elif defined(__POWER9_VECTOR__)

#define GGML_SIMD

// F32 POWER9

#define GGML_F32_STEP 32
#define GGML_F32_EPR  4

#define GGML_F32x4              vector float
#define GGML_F32x4_ZERO         {0.0f}
#define GGML_F32x4_SET1         vec_splats
#define GGML_F32x4_LOAD(p)      vec_xl(0, p)
#define GGML_F32x4_STORE(p, r)  vec_xst(r, 0, p)
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
#define GGML_F32x4_ADD          vec_add
#define GGML_F32x4_MUL          vec_mul
#define GGML_F32x4_REDUCE(res, x)              \
{                                              \
    int offset = GGML_F32_ARR >> 1;            \
    for (int i = 0; i < offset; ++i) {         \
        x[i] = vec_add(x[i], x[offset+i]);     \
    }                                          \
    offset >>= 1;                              \
    for (int i = 0; i < offset; ++i) {         \
        x[i] = vec_add(x[i], x[offset+i]);     \
    }                                          \
    offset >>= 1;                              \
    for (int i = 0; i < offset; ++i) {         \
        x[i] = vec_add(x[i], x[offset+i]);     \
    }                                          \
    res = vec_extract(x[0], 0) +               \
          vec_extract(x[0], 1) +               \
          vec_extract(x[0], 2) +               \
          vec_extract(x[0], 3);                \
}

#define GGML_F32_VEC        GGML_F32x4
#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE

// F16 POWER9
#define GGML_F16_STEP       GGML_F32_STEP
#define GGML_F16_EPR        GGML_F32_EPR
#define GGML_F16_VEC        GGML_F32x4
#define GGML_F16_VEC_ZERO   GGML_F32x4_ZERO
#define GGML_F16_VEC_SET1   GGML_F32x4_SET1
#define GGML_F16_VEC_FMA    GGML_F32x4_FMA
#define GGML_F16_VEC_ADD    GGML_F32x4_ADD
#define GGML_F16_VEC_MUL    GGML_F32x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
// Use vec_xl, not vec_ld, in case the load address is not aligned.
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ?                   \
  vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  vec_extract_fp32_from_shortl(vec_xl(0, p))
static inline unsigned char ggml_endian_byte(int i) {
       uint16_t tmp_val = 1;
       return ((unsigned char *)&tmp_val)[i];
}
#define GGML_ENDIAN_BYTE(i) ggml_endian_byte(i)
#define GGML_F16_VEC_STORE(p, r, i)                             \
  if (i & 0x1)                                                  \
    vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)],  \
                                   r[i - GGML_ENDIAN_BYTE(0)]), \
            0, p - GGML_F16_EPR)

#elif defined(__wasm_simd128__)

#define GGML_SIMD

// F32 WASM

#define GGML_F32_STEP 16
#define GGML_F32_EPR  4

#define GGML_F32x4              v128_t
#define GGML_F32x4_ZERO         wasm_f32x4_splat(0.0f)
#define GGML_F32x4_SET1(x)      wasm_f32x4_splat(x)
#define GGML_F32x4_LOAD         wasm_v128_load
#define GGML_F32x4_STORE        wasm_v128_store
#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
#define GGML_F32x4_ADD          wasm_f32x4_add
#define GGML_F32x4_MUL          wasm_f32x4_mul
#define GGML_F32x4_REDUCE(res, x)                  \
{                                                  \
    int offset = GGML_F32_ARR >> 1;                \
    for (int i = 0; i < offset; ++i) {             \
        x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
    }                                              \
    offset >>= 1;                                  \
    for (int i = 0; i < offset; ++i) {             \
        x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
    }                                              \
    offset >>= 1;                                  \
    for (int i = 0; i < offset; ++i) {             \
        x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
    }                                              \
    res = wasm_f32x4_extract_lane(x[0], 0) +       \
          wasm_f32x4_extract_lane(x[0], 1) +       \
          wasm_f32x4_extract_lane(x[0], 2) +       \
          wasm_f32x4_extract_lane(x[0], 3);        \
}

#define GGML_F32_VEC        GGML_F32x4
#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE

// F16 WASM

#define GGML_F16_STEP 16
#define GGML_F16_EPR  4

inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
    float tmp[4];

    tmp[0] = GGML_CPU_FP16_TO_FP32(p[0]);
    tmp[1] = GGML_CPU_FP16_TO_FP32(p[1]);
    tmp[2] = GGML_CPU_FP16_TO_FP32(p[2]);
    tmp[3] = GGML_CPU_FP16_TO_FP32(p[3]);

    return wasm_v128_load(tmp);
}

inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
    float tmp[4];

    wasm_v128_store(tmp, x);

    p[0] = GGML_CPU_FP32_TO_FP16(tmp[0]);
    p[1] = GGML_CPU_FP32_TO_FP16(tmp[1]);
    p[2] = GGML_CPU_FP32_TO_FP16(tmp[2]);
    p[3] = GGML_CPU_FP32_TO_FP16(tmp[3]);
}

#define GGML_F16x4             v128_t
#define GGML_F16x4_ZERO        wasm_f32x4_splat(0.0f)
#define GGML_F16x4_SET1(x)     wasm_f32x4_splat(x)
#define GGML_F16x4_LOAD(x)     __wasm_f16x4_load(x)
#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
#define GGML_F16x4_FMA         GGML_F32x4_FMA
#define GGML_F16x4_ADD         wasm_f32x4_add
#define GGML_F16x4_MUL         wasm_f32x4_mul
#define GGML_F16x4_REDUCE(res, x)                           \
{                                                           \
    int offset = GGML_F16_ARR >> 1;                         \
    for (int i = 0; i < offset; ++i) {                      \
        x[i] = wasm_f32x4_add(x[i], x[offset+i]);           \
    }                                                       \
    offset >>= 1;                                           \
    for (int i = 0; i < offset; ++i) {                      \
        x[i] = wasm_f32x4_add(x[i], x[offset+i]);           \
    }                                                       \
    offset >>= 1;                                           \
    for (int i = 0; i < offset; ++i) {                      \
        x[i] = wasm_f32x4_add(x[i], x[offset+i]);           \
    }                                                       \
    res = (ggml_float) (wasm_f32x4_extract_lane(x[0], 0) +  \
          wasm_f32x4_extract_lane(x[0], 1) +                \
          wasm_f32x4_extract_lane(x[0], 2) +                \
          wasm_f32x4_extract_lane(x[0], 3));                \
}

#define GGML_F16_VEC                GGML_F16x4
#define GGML_F16_VEC_ZERO           GGML_F16x4_ZERO
#define GGML_F16_VEC_SET1           GGML_F16x4_SET1
#define GGML_F16_VEC_LOAD(p, i)     GGML_F16x4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
#define GGML_F16_VEC_FMA            GGML_F16x4_FMA
#define GGML_F16_VEC_ADD            GGML_F16x4_ADD
#define GGML_F16_VEC_MUL            GGML_F16x4_MUL
#define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE

#elif defined(__SSE3__)

#define GGML_SIMD

// F32 SSE

#define GGML_F32_STEP 32
#define GGML_F32_EPR  4

#define GGML_F32x4         __m128
#define GGML_F32x4_ZERO    _mm_setzero_ps()
#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
#define GGML_F32x4_LOAD    _mm_loadu_ps
#define GGML_F32x4_STORE   _mm_storeu_ps
#if defined(__FMA__)
    // TODO: Does this work?
    #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
#else
    #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
#endif
#define GGML_F32x4_ADD     _mm_add_ps
#define GGML_F32x4_MUL     _mm_mul_ps
#define GGML_F32x4_REDUCE(res, x)                                 \
{                                                                 \
    int offset = GGML_F32_ARR >> 1;                               \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = _mm_add_ps(x[i], x[offset+i]);                     \
    }                                                             \
    offset >>= 1;                                                 \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = _mm_add_ps(x[i], x[offset+i]);                     \
    }                                                             \
    offset >>= 1;                                                 \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = _mm_add_ps(x[i], x[offset+i]);                     \
    }                                                             \
    const __m128 t0 = _mm_hadd_ps(x[0], x[0]);                    \
    res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0));        \
}
// TODO: is this optimal ?

#define GGML_F32_VEC        GGML_F32x4
#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE

// F16 SSE

#define GGML_F16_STEP 32
#define GGML_F16_EPR  4

static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) {
    float tmp[4];

    tmp[0] = GGML_CPU_FP16_TO_FP32(x[0]);
    tmp[1] = GGML_CPU_FP16_TO_FP32(x[1]);
    tmp[2] = GGML_CPU_FP16_TO_FP32(x[2]);
    tmp[3] = GGML_CPU_FP16_TO_FP32(x[3]);

    return _mm_loadu_ps(tmp);
}

static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) {
    float arr[4];

    _mm_storeu_ps(arr, y);

    x[0] = GGML_CPU_FP32_TO_FP16(arr[0]);
    x[1] = GGML_CPU_FP32_TO_FP16(arr[1]);
    x[2] = GGML_CPU_FP32_TO_FP16(arr[2]);
    x[3] = GGML_CPU_FP32_TO_FP16(arr[3]);
}

#define GGML_F32Cx4             __m128
#define GGML_F32Cx4_ZERO        _mm_setzero_ps()
#define GGML_F32Cx4_SET1(x)     _mm_set1_ps(x)
#define GGML_F32Cx4_LOAD(x)     __sse_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
#define GGML_F32Cx4_FMA         GGML_F32x4_FMA
#define GGML_F32Cx4_ADD         _mm_add_ps
#define GGML_F32Cx4_MUL         _mm_mul_ps
#define GGML_F32Cx4_REDUCE      GGML_F32x4_REDUCE

#define GGML_F16_VEC                 GGML_F32Cx4
#define GGML_F16_VEC_ZERO            GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1            GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i)      GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i)  GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA             GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD             GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL             GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE          GGML_F32Cx4_REDUCE

#elif defined(__loongarch_asx)

#define GGML_SIMD

// F32 LASX
#define GGML_F32_STEP 32
#define GGML_F32_EPR  8

#define GGML_F32x8         __m256
#define GGML_F32x8_ZERO    (__m256)__lasx_xvldi(0)
#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
#define GGML_F32x8_STORE(x,y)   __lasx_xvst((y), (x), 0)
#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
#define GGML_F32x8_ADD     __lasx_xvfadd_s
#define GGML_F32x8_MUL     __lasx_xvfmul_s
#define GGML_F32x8_REDUCE(res, x)                                 \
do {                                                              \
    int offset = GGML_F32_ARR >> 1;                               \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = __lasx_xvfadd_s(x[i], x[offset+i]);                  \
    }                                                             \
    offset >>= 1;                                                 \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = __lasx_xvfadd_s(x[i], x[offset+i]);                  \
    }                                                             \
    offset >>= 1;                                                 \
    for (int i = 0; i < offset; ++i) {                            \
        x[i] = __lasx_xvfadd_s(x[i], x[offset+i]);                  \
    }                                                             \
    float *tmp_p = (float *)&x[0]; \
    res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7];  \
} while (0)
// TODO: is this optimal ?

#define GGML_F32_VEC        GGML_F32x8
#define GGML_F32_VEC_ZERO   GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1   GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD   GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE  GGML_F32x8_STORE
#define GGML_F32_VEC_FMA    GGML_F32x8_FMA
#define GGML_F32_VEC_ADD    GGML_F32x8_ADD
#define GGML_F32_VEC_MUL    GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE

// F16 LASX

#define GGML_F16_STEP 32
#define GGML_F16_EPR  8

// F16 arithmetic is not supported by LASX, so we use F32 instead

#define GGML_F32Cx8          __m256
#define GGML_F32Cx8_ZERO    (__m256)__lasx_xvldi(0)
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))

static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
    __m256i a;
    memcpy(&a, x, sizeof(ggml_fp16_t) * 8);
    a = __lasx_xvpermi_d(a, 0 | (1 << 4));
    return __lasx_xvfcvtl_s_h(a);
}

static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
    __m256i a = __lasx_xvfcvt_h_s(y, y);
    a = __lasx_xvpermi_d(a, 0 | (2 << 2));
    memcpy(x, &a, sizeof(ggml_fp16_t) * 8);
}
#define GGML_F32Cx8_LOAD(x)     __lasx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)

#define GGML_F32Cx8_FMA         GGML_F32x8_FMA
#define GGML_F32Cx8_ADD         __lasx_xvfadd_s
#define GGML_F32Cx8_MUL         __lasx_xvfmul_s
#define GGML_F32Cx8_REDUCE      GGML_F32x8_REDUCE

#define GGML_F16_VEC                GGML_F32Cx8
#define GGML_F16_VEC_ZERO           GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1           GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA            GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD            GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL            GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE         GGML_F32Cx8_REDUCE

#elif defined(__loongarch_sx)

#define GGML_SIMD

// F32 LSX

#define GGML_F32_STEP 32
#define GGML_F32_EPR  4

#define GGML_F32x4         __m128
#define GGML_F32x4_ZERO    __lsx_vldi(0)
#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
#define GGML_F32x4_STORE(x, y)   __lsx_vst(y, x, 0)
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
#define GGML_F32x4_ADD     __lsx_vfadd_s
#define GGML_F32x4_MUL     __lsx_vfmul_s
#define GGML_F32x4_REDUCE(res, x)                                                     \
{                                                                                     \
    int offset = GGML_F32_ARR >> 1;                                                   \
    for (int i = 0; i < offset; ++i) {                                                \
        x[i] = __lsx_vfadd_s(x[i], x[offset + i]);                                    \
    }                                                                                 \
    offset >>= 1;                                                                     \
    for (int i = 0; i < offset; ++i) {                                                \
        x[i] = __lsx_vfadd_s(x[i], x[offset + i]);                                    \
    }                                                                                 \
    offset >>= 1;                                                                     \
    for (int i = 0; i < offset; ++i) {                                                \
        x[i] = __lsx_vfadd_s(x[i], x[offset + i]);                                    \
    }                                                                                 \
    __m128i tmp     = __lsx_vsrli_d((__m128i) x[0], 32);                              \
    tmp             = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]);                    \
    tmp             = __lsx_vpickev_w(__lsx_vldi(0), tmp);                            \
    const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88);                                     \
    tmp             = __lsx_vsrli_d((__m128i) t0, 32);                                \
    tmp             = (__m128i) __lsx_vfadd_s((__m128) tmp, t0);                      \
    tmp             = __lsx_vpickev_w(__lsx_vldi(0), tmp);                            \
    res             = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
}

#define GGML_F32_VEC        GGML_F32x4
#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE

// F16 LSX

#define GGML_F16_STEP 32
#define GGML_F16_EPR  4

static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
    float tmp[4];

    tmp[0] = GGML_CPU_FP16_TO_FP32(x[0]);
    tmp[1] = GGML_CPU_FP16_TO_FP32(x[1]);
    tmp[2] = GGML_CPU_FP16_TO_FP32(x[2]);
    tmp[3] = GGML_CPU_FP16_TO_FP32(x[3]);

    return __lsx_vld(tmp, 0);
}

static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
    float arr[4];

    __lsx_vst(y, arr, 0);

    x[0] = GGML_CPU_FP32_TO_FP16(arr[0]);
    x[1] = GGML_CPU_FP32_TO_FP16(arr[1]);
    x[2] = GGML_CPU_FP32_TO_FP16(arr[2]);
    x[3] = GGML_CPU_FP32_TO_FP16(arr[3]);
}

#define GGML_F32Cx4             __m128
#define GGML_F32Cx4_ZERO        __lsx_vldi(0)
#define GGML_F32Cx4_SET1(x)     __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32Cx4_LOAD(x)     __lsx_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
#define GGML_F32Cx4_FMA         GGML_F32x4_FMA
#define GGML_F32Cx4_ADD         __lsx_vfadd_s
#define GGML_F32Cx4_MUL         __lsx_vfmul_s
#define GGML_F32Cx4_REDUCE      GGML_F32x4_REDUCE

#define GGML_F16_VEC                 GGML_F32Cx4
#define GGML_F16_VEC_ZERO            GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1            GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i)      GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i)  GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA             GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD             GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL             GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE          GGML_F32Cx4_REDUCE

#elif defined(__VXE__) || defined(__VXE2__)

#define GGML_SIMD

// F32 s390x

#define GGML_F32_STEP 32
#define GGML_F32_EPR  4

#define GGML_F32x4              float32x4_t
#define GGML_F32x4_ZERO         vec_splats(0.0f)
#define GGML_F32x4_SET1         vec_splats
#define GGML_F32x4_LOAD(p)      vec_xl(0, p)
#define GGML_F32x4_STORE(p, r)  vec_xst(r, 0, p)
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
#define GGML_F32x4_ADD          vec_add
#define GGML_F32x4_MUL          vec_mul
#define GGML_F32x4_REDUCE(res, x)                   \
{                                                   \
    int offset = GGML_F32_ARR >> 1;                 \
    for (int i = 0; i < offset; ++i) {              \
        x[i] = vec_add(x[i], x[offset + i]);        \
    }                                               \
    offset >>= 1;                                   \
    for (int i = 0; i < offset; ++i) {              \
        x[i] = vec_add(x[i], x[offset + i]);        \
    }                                               \
    offset >>= 1;                                   \
    for (int i = 0; i < offset; ++i) {              \
        x[i] = vec_add(x[i], x[offset + i]);        \
    }                                               \
    float32x4_t tmp = x[0] + vec_reve(x[0]);        \
    res = tmp[0] + tmp[1];                          \
}

#define GGML_F32_VEC        GGML_F32x4
#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE

// F16 s390x
#define GGML_F16_STEP GGML_F32_STEP
#define GGML_F16_EPR  GGML_F32_EPR

static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
#if defined(__NNPA__)
    uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)x);
    uint16x8_t v_xd = vec_convert_from_fp16(v_x, 0);
    return vec_extend_to_fp32_hi(v_xd, 0);
#else
    float tmp[4];

    for (int i = 0; i < 4; i++) {
        tmp[i] = GGML_CPU_FP16_TO_FP32(x[i]);
    }

    // note: keep type-cast here to prevent compiler bugs
    // see: https://github.com/ggml-org/llama.cpp/issues/12846
    return vec_xl(0, (const float *)(tmp));
#endif
}

static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
#if defined(__NNPA__)
    float32x4_t v_zero = vec_splats(0.0f);
    uint16x8_t v_xd = vec_round_from_fp32(v_y, v_zero, 0);
    uint16x8_t v_x = vec_convert_to_fp16(v_xd, 0);

    x[0] = vec_extract(v_x, 0);
    x[1] = vec_extract(v_x, 1);
    x[2] = vec_extract(v_x, 2);
    x[3] = vec_extract(v_x, 3);
#else
    float arr[4];

    // note: keep type-cast here to prevent compiler bugs
    // see: https://github.com/ggml-org/llama.cpp/issues/12846
    vec_xst(v_y, 0, (float *)(arr));

    for (int i = 0; i < 4; i++) {
        x[i] = GGML_CPU_FP32_TO_FP16(arr[i]);
    }
#endif
}

#define GGML_F16_VEC                GGML_F32x4
#define GGML_F16_VEC_ZERO           GGML_F32x4_ZERO
#define GGML_F16_VEC_SET1           GGML_F32x4_SET1
#define GGML_F16_VEC_LOAD(p, i)     __lzs_f16cx4_load(p)
#define GGML_F16_VEC_STORE(p, r, i) __lzs_f16cx4_store(p, r[i])
#define GGML_F16_VEC_FMA            GGML_F32x4_FMA
#define GGML_F16_VEC_ADD            GGML_F32x4_ADD
#define GGML_F16_VEC_MUL            GGML_F32x4_MUL
#define GGML_F16_VEC_REDUCE         GGML_F32x4_REDUCE

#endif

// GGML_F32_ARR / GGML_F16_ARR
//   number of registers to use per step
#ifdef GGML_SIMD
#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
#endif

#ifdef __cplusplus
}
#endif