Spaces:
Running
Running
File size: 48,019 Bytes
0754d43 fea8f94 0754d43 fea8f94 0754d43 7941e9b 1b4087e 7941e9b 0754d43 fb13b88 0754d43 fb13b88 0754d43 fb13b88 0754d43 fb13b88 0754d43 fea8f94 0754d43 fea8f94 0754d43 07ec79f 0754d43 8a74c6b 0754d43 fea8f94 0754d43 fea8f94 0754d43 fea8f94 0754d43 fea8f94 0754d43 fea8f94 0754d43 fea8f94 0754d43 fea8f94 0754d43 fea8f94 0754d43 17c0dfa 0754d43 fea8f94 0754d43 fea8f94 0754d43 2458d68 fea8f94 0754d43 fea8f94 0754d43 2458d68 fea8f94 0754d43 fea8f94 0754d43 fea8f94 0754d43 fea8f94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 |
#pragma once
#include "ggml-cpu-impl.h"
#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif // __ARM_FEATURE_SVE
#if defined(__ARM_NEON) && !defined(__CUDACC__) && !defined(__MUSACC__)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#endif
#if defined(__F16C__)
#include <immintrin.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
//
// simd mappings
//
// FP16 to FP32 conversion
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
//
// for old CUDA compilers (<= 11), we use uint16_t: ref https://github.com/ggml-org/llama.cpp/pull/10616
// for MUSA compilers , we use uint16_t: ref https://github.com/ggml-org/llama.cpp/pull/11843
//
#if defined(__ARM_NEON) && !(defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11) && !defined(__MUSACC__)
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) neon_compute_fp16_to_fp32(x)
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) neon_compute_fp32_to_fp16(x)
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
static inline float neon_compute_fp16_to_fp32(ggml_fp16_t h) {
__fp16 tmp;
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
return (float)tmp;
}
static inline ggml_fp16_t neon_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
__fp16 tmp = f;
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
return res;
}
#elif defined(__F16C__)
#ifdef _MSC_VER
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) power_compute_fp16_to_fp32(x)
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) power_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
static inline float power_compute_fp16_to_fp32(ggml_fp16_t h) {
float f;
double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t power_compute_fp32_to_fp16(float f) {
double d;
ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#elif defined(__riscv) && defined(__riscv_zfhmin)
static inline float riscv_compute_fp16_to_fp32(ggml_fp16_t h) {
float f;
__asm__(
"fmv.h.x %[f], %[h]\n\t"
"fcvt.s.h %[f], %[f]"
: [f] "=&f" (f)
: [h] "r" (h)
);
return f;
}
static inline ggml_fp16_t riscv_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
__asm__(
"fcvt.h.s %[f], %[f]\n\t"
"fmv.x.h %[h], %[f]"
: [h] "=&r" (res)
: [f] "f" (f)
);
return res;
}
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) riscv_compute_fp16_to_fp32(x)
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) riscv_compute_fp32_to_fp16(x)
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
#elif defined(__NNPA__)
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) nnpa_compute_fp16_to_fp32(x)
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) nnpa_compute_fp32_to_fp16(x)
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
static inline float nnpa_compute_fp16_to_fp32(ggml_fp16_t h) {
uint16x8_t v_h = vec_splats(h);
uint16x8_t v_hd = vec_convert_from_fp16(v_h, 0);
return vec_extend_to_fp32_hi(v_hd, 0)[0];
}
static inline ggml_fp16_t nnpa_compute_fp32_to_fp16(float f) {
float32x4_t v_f = vec_splats(f);
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_hd = vec_round_from_fp32(v_f, v_zero, 0);
uint16x8_t v_h = vec_convert_to_fp16(v_hd, 0);
return vec_extract(v_h, 0);
}
#endif
// precomputed f32 table for f16 (256 KB)
// defined in ggml-cpu.c, initialized in ggml_cpu_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_CPU_FP16_TO_FP32 and GGML_CPU_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_CPU_FP16_TO_FP32)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_CPU_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#endif
#if !defined(GGML_CPU_FP32_TO_FP16)
#define GGML_CPU_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
// we define a common set of C macros which map to specific intrinsics based on the current architecture
// we then implement the fundamental computation operations below using only these macros
// adding support for new architectures requires to define the corresponding SIMD macros
//
// GGML_F32_STEP / GGML_F16_STEP
// number of elements to process in a single step
//
// GGML_F32_EPR / GGML_F16_EPR
// number of elements to fit in a single register
//
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD
// F32 SVE
#define GGML_F32_EPR 8
#define DEFAULT_PG svptrue_b32()
#define GGML_F32xt svfloat32_t
#define GGML_F32xt_ZERO svdup_n_f32(0.0f)
#define GGML_F32xt_SET1(x) svdup_n_f32(x)
#define GGML_F32xt_LOAD_IMPL(pg, a, ...) svld1_f32(pg, a)
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, b, c, a)
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_MUL_IMPL(pg, a, b) svmul_f32_m(pg, a, b)
#define GGML_F32xt_MUL(...) GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a)
#define GGML_F32xt_REDUCE_ONE(...) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \
{ \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2); \
sum3 = svadd_f32_m(DEFAULT_PG, sum3, sum4); \
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum6); \
sum7 = svadd_f32_m(DEFAULT_PG, sum7, sum8); \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum3); \
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum7); \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5); \
(res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1); \
}
#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32_VEC GGML_F32xt
#define GGML_F32_VEC_ZERO GGML_F32xt_ZERO
#define GGML_F32_VEC_SET1 GGML_F32xt_SET1
#define GGML_F32_VEC_LOAD GGML_F32xt_LOAD
#define GGML_F32_VEC_STORE GGML_F32xt_STORE
#define GGML_F32_VEC_FMA GGML_F32xt_FMA
#define GGML_F32_VEC_ADD GGML_F32xt_ADD
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
// F16 NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
#define GGML_F16x8 float16x8_t
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
#define GGML_F16x8_STORE vst1q_f16
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
#define GGML_F16x8_ADD vaddq_f16
#define GGML_F16x8_MUL vmulq_f16
#define GGML_F16x8_REDUCE(res, x) \
do { \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
} while (0)
#define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
#else
// if FP16 vector arithmetic is not supported, we use FP32 instead
// and take advantage of the vcvt_ functions to convert to/from FP16
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
#define GGML_F32Cx4 float32x4_t
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32Cx4_ADD vaddq_f32
#define GGML_F32Cx4_MUL vmulq_f32
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD
// F32 NEON
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 float32x4_t
#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
#define GGML_F32x4_LOAD vld1q_f32
#define GGML_F32x4_STORE vst1q_f32
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32x4_ADD vaddq_f32
#define GGML_F32x4_MUL vmulq_f32
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
(res) = (ggml_float) GGML_F32x4_REDUCE_ONE((x)[0]); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
#define GGML_F16x8 float16x8_t
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
#define GGML_F16x8_STORE vst1q_f16
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
#define GGML_F16x8_ADD vaddq_f16
#define GGML_F16x8_MUL vmulq_f16
#define GGML_F16x8_REDUCE(res, x) \
do { \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
} while (0)
#define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
#else
// if FP16 vector arithmetic is not supported, we use FP32 instead
// and take advantage of the vcvt_ functions to convert to/from FP16
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
#define GGML_F32Cx4 float32x4_t
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32Cx4_ADD vaddq_f32
#define GGML_F32Cx4_MUL vmulq_f32
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
#elif defined(__AVX512F__)
#define GGML_SIMD
// F32 AVX512
#define GGML_F32_STEP 64
#define GGML_F32_EPR 16
#define GGML_F32x16 __m512
#define GGML_F32x16_ZERO _mm512_setzero_ps()
#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
#define GGML_F32x16_LOAD _mm512_loadu_ps
#define GGML_F32x16_STORE _mm512_storeu_ps
// _mm512_fmadd_ps is defined in AVX512F so no guard is required
#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32x16_ADD _mm512_add_ps
#define GGML_F32x16_MUL _mm512_mul_ps
#define GGML_F32x16_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x16
#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
#define GGML_F32_VEC_STORE GGML_F32x16_STORE
#define GGML_F32_VEC_FMA GGML_F32x16_FMA
#define GGML_F32_VEC_ADD GGML_F32x16_ADD
#define GGML_F32_VEC_MUL GGML_F32x16_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
// F16 AVX512
// F16 AVX
#define GGML_F16_STEP 64
#define GGML_F16_EPR 16
// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
#define GGML_F32Cx16 __m512
#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
// so F16C guard isn't required
#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32Cx16_ADD _mm512_add_ps
#define GGML_F32Cx16_MUL _mm512_mul_ps
#define GGML_F32Cx16_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
} while (0)
#define GGML_F16_VEC GGML_F32Cx16
#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
#elif defined(__AVX__)
#define GGML_SIMD
// F32 AVX
#define GGML_F32_STEP 32
#define GGML_F32_EPR 8
#define GGML_F32x8 __m256
#define GGML_F32x8_ZERO _mm256_setzero_ps()
#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
#define GGML_F32x8_LOAD _mm256_loadu_ps
#define GGML_F32x8_STORE _mm256_storeu_ps
#if defined(__FMA__)
#define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
#else
#define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
#endif
#define GGML_F32x8_ADD _mm256_add_ps
#define GGML_F32x8_MUL _mm256_mul_ps
#define GGML_F32x8_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
_mm256_extractf128_ps(x[0], 1)); \
const __m128 t1 = _mm_hadd_ps(t0, t0); \
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x8
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
// F16 AVX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
// F16 arithmetic is not supported by AVX, so we use F32 instead
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
#if defined(__F16C__)
// the _mm256_cvt intrinsics require F16C
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
#else
static inline __m256 __avx_f32cx8_load(const ggml_fp16_t * x) {
float tmp[8];
for (int i = 0; i < 8; i++) {
tmp[i] = GGML_CPU_FP16_TO_FP32(x[i]);
}
return _mm256_loadu_ps(tmp);
}
static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
float arr[8];
_mm256_storeu_ps(arr, y);
for (int i = 0; i < 8; i++)
x[i] = GGML_CPU_FP32_TO_FP16(arr[i]);
}
#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
#endif
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
#define GGML_F32Cx8_ADD _mm256_add_ps
#define GGML_F32Cx8_MUL _mm256_mul_ps
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
#define GGML_F16_VEC GGML_F32Cx8
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
#elif defined(__POWER9_VECTOR__)
#define GGML_SIMD
// F32 POWER9
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 vector float
#define GGML_F32x4_ZERO {0.0f}
#define GGML_F32x4_SET1 vec_splats
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
#define GGML_F32x4_ADD vec_add
#define GGML_F32x4_MUL vec_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
res = vec_extract(x[0], 0) + \
vec_extract(x[0], 1) + \
vec_extract(x[0], 2) + \
vec_extract(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 POWER9
#define GGML_F16_STEP GGML_F32_STEP
#define GGML_F16_EPR GGML_F32_EPR
#define GGML_F16_VEC GGML_F32x4
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
#define GGML_F16_VEC_ADD GGML_F32x4_ADD
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
// Use vec_xl, not vec_ld, in case the load address is not aligned.
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
vec_extract_fp32_from_shortl(vec_xl(0, p))
static inline unsigned char ggml_endian_byte(int i) {
uint16_t tmp_val = 1;
return ((unsigned char *)&tmp_val)[i];
}
#define GGML_ENDIAN_BYTE(i) ggml_endian_byte(i)
#define GGML_F16_VEC_STORE(p, r, i) \
if (i & 0x1) \
vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
r[i - GGML_ENDIAN_BYTE(0)]), \
0, p - GGML_F16_EPR)
#elif defined(__wasm_simd128__)
#define GGML_SIMD
// F32 WASM
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 v128_t
#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F32x4_LOAD wasm_v128_load
#define GGML_F32x4_STORE wasm_v128_store
#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
#define GGML_F32x4_ADD wasm_f32x4_add
#define GGML_F32x4_MUL wasm_f32x4_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 WASM
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
float tmp[4];
tmp[0] = GGML_CPU_FP16_TO_FP32(p[0]);
tmp[1] = GGML_CPU_FP16_TO_FP32(p[1]);
tmp[2] = GGML_CPU_FP16_TO_FP32(p[2]);
tmp[3] = GGML_CPU_FP16_TO_FP32(p[3]);
return wasm_v128_load(tmp);
}
inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
float tmp[4];
wasm_v128_store(tmp, x);
p[0] = GGML_CPU_FP32_TO_FP16(tmp[0]);
p[1] = GGML_CPU_FP32_TO_FP16(tmp[1]);
p[2] = GGML_CPU_FP32_TO_FP16(tmp[2]);
p[3] = GGML_CPU_FP32_TO_FP16(tmp[3]);
}
#define GGML_F16x4 v128_t
#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
#define GGML_F16x4_FMA GGML_F32x4_FMA
#define GGML_F16x4_ADD wasm_f32x4_add
#define GGML_F16x4_MUL wasm_f32x4_mul
#define GGML_F16x4_REDUCE(res, x) \
{ \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = (ggml_float) (wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3)); \
}
#define GGML_F16_VEC GGML_F16x4
#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F16x4_FMA
#define GGML_F16_VEC_ADD GGML_F16x4_ADD
#define GGML_F16_VEC_MUL GGML_F16x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
#elif defined(__SSE3__)
#define GGML_SIMD
// F32 SSE
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 __m128
#define GGML_F32x4_ZERO _mm_setzero_ps()
#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
#define GGML_F32x4_LOAD _mm_loadu_ps
#define GGML_F32x4_STORE _mm_storeu_ps
#if defined(__FMA__)
// TODO: Does this work?
#define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
#else
#define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
#endif
#define GGML_F32x4_ADD _mm_add_ps
#define GGML_F32x4_MUL _mm_mul_ps
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
}
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 SSE
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) {
float tmp[4];
tmp[0] = GGML_CPU_FP16_TO_FP32(x[0]);
tmp[1] = GGML_CPU_FP16_TO_FP32(x[1]);
tmp[2] = GGML_CPU_FP16_TO_FP32(x[2]);
tmp[3] = GGML_CPU_FP16_TO_FP32(x[3]);
return _mm_loadu_ps(tmp);
}
static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) {
float arr[4];
_mm_storeu_ps(arr, y);
x[0] = GGML_CPU_FP32_TO_FP16(arr[0]);
x[1] = GGML_CPU_FP32_TO_FP16(arr[1]);
x[2] = GGML_CPU_FP32_TO_FP16(arr[2]);
x[3] = GGML_CPU_FP32_TO_FP16(arr[3]);
}
#define GGML_F32Cx4 __m128
#define GGML_F32Cx4_ZERO _mm_setzero_ps()
#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
#define GGML_F32Cx4_ADD _mm_add_ps
#define GGML_F32Cx4_MUL _mm_mul_ps
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#elif defined(__loongarch_asx)
#define GGML_SIMD
// F32 LASX
#define GGML_F32_STEP 32
#define GGML_F32_EPR 8
#define GGML_F32x8 __m256
#define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
#define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
#define GGML_F32x8_ADD __lasx_xvfadd_s
#define GGML_F32x8_MUL __lasx_xvfmul_s
#define GGML_F32x8_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
} \
float *tmp_p = (float *)&x[0]; \
res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x8
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
// F16 LASX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
// F16 arithmetic is not supported by LASX, so we use F32 instead
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
__m256i a;
memcpy(&a, x, sizeof(ggml_fp16_t) * 8);
a = __lasx_xvpermi_d(a, 0 | (1 << 4));
return __lasx_xvfcvtl_s_h(a);
}
static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
__m256i a = __lasx_xvfcvt_h_s(y, y);
a = __lasx_xvpermi_d(a, 0 | (2 << 2));
memcpy(x, &a, sizeof(ggml_fp16_t) * 8);
}
#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
#define GGML_F32Cx8_ADD __lasx_xvfadd_s
#define GGML_F32Cx8_MUL __lasx_xvfmul_s
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
#define GGML_F16_VEC GGML_F32Cx8
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
#elif defined(__loongarch_sx)
#define GGML_SIMD
// F32 LSX
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 __m128
#define GGML_F32x4_ZERO __lsx_vldi(0)
#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
#define GGML_F32x4_STORE(x, y) __lsx_vst(y, x, 0)
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
#define GGML_F32x4_ADD __lsx_vfadd_s
#define GGML_F32x4_MUL __lsx_vfmul_s
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
} \
__m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
tmp = __lsx_vsrli_d((__m128i) t0, 32); \
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 LSX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
float tmp[4];
tmp[0] = GGML_CPU_FP16_TO_FP32(x[0]);
tmp[1] = GGML_CPU_FP16_TO_FP32(x[1]);
tmp[2] = GGML_CPU_FP16_TO_FP32(x[2]);
tmp[3] = GGML_CPU_FP16_TO_FP32(x[3]);
return __lsx_vld(tmp, 0);
}
static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
float arr[4];
__lsx_vst(y, arr, 0);
x[0] = GGML_CPU_FP32_TO_FP16(arr[0]);
x[1] = GGML_CPU_FP32_TO_FP16(arr[1]);
x[2] = GGML_CPU_FP32_TO_FP16(arr[2]);
x[3] = GGML_CPU_FP32_TO_FP16(arr[3]);
}
#define GGML_F32Cx4 __m128
#define GGML_F32Cx4_ZERO __lsx_vldi(0)
#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
#define GGML_F32Cx4_ADD __lsx_vfadd_s
#define GGML_F32Cx4_MUL __lsx_vfmul_s
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#elif defined(__VXE__) || defined(__VXE2__)
#define GGML_SIMD
// F32 s390x
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 float32x4_t
#define GGML_F32x4_ZERO vec_splats(0.0f)
#define GGML_F32x4_SET1 vec_splats
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
#define GGML_F32x4_ADD vec_add
#define GGML_F32x4_MUL vec_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset + i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset + i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset + i]); \
} \
float32x4_t tmp = x[0] + vec_reve(x[0]); \
res = tmp[0] + tmp[1]; \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 s390x
#define GGML_F16_STEP GGML_F32_STEP
#define GGML_F16_EPR GGML_F32_EPR
static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
#if defined(__NNPA__)
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)x);
uint16x8_t v_xd = vec_convert_from_fp16(v_x, 0);
return vec_extend_to_fp32_hi(v_xd, 0);
#else
float tmp[4];
for (int i = 0; i < 4; i++) {
tmp[i] = GGML_CPU_FP16_TO_FP32(x[i]);
}
// note: keep type-cast here to prevent compiler bugs
// see: https://github.com/ggml-org/llama.cpp/issues/12846
return vec_xl(0, (const float *)(tmp));
#endif
}
static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
#if defined(__NNPA__)
float32x4_t v_zero = vec_splats(0.0f);
uint16x8_t v_xd = vec_round_from_fp32(v_y, v_zero, 0);
uint16x8_t v_x = vec_convert_to_fp16(v_xd, 0);
x[0] = vec_extract(v_x, 0);
x[1] = vec_extract(v_x, 1);
x[2] = vec_extract(v_x, 2);
x[3] = vec_extract(v_x, 3);
#else
float arr[4];
// note: keep type-cast here to prevent compiler bugs
// see: https://github.com/ggml-org/llama.cpp/issues/12846
vec_xst(v_y, 0, (float *)(arr));
for (int i = 0; i < 4; i++) {
x[i] = GGML_CPU_FP32_TO_FP16(arr[i]);
}
#endif
}
#define GGML_F16_VEC GGML_F32x4
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
#define GGML_F16_VEC_LOAD(p, i) __lzs_f16cx4_load(p)
#define GGML_F16_VEC_STORE(p, r, i) __lzs_f16cx4_store(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
#define GGML_F16_VEC_ADD GGML_F32x4_ADD
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
#endif
// GGML_F32_ARR / GGML_F16_ARR
// number of registers to use per step
#ifdef GGML_SIMD
#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
#endif
#ifdef __cplusplus
}
#endif
|