Spaces:
Running
Running
File size: 36,573 Bytes
ade9bc3 58220b6 5ef1601 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 5ef1601 58220b6 5ef1601 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 fc04dc0 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 5ef1601 ade9bc3 5ef1601 ade9bc3 58220b6 fc04dc0 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 fc04dc0 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 fc04dc0 58220b6 ade9bc3 fc04dc0 58220b6 ade9bc3 58220b6 ade9bc3 fc04dc0 ade9bc3 58220b6 ade9bc3 58220b6 fc04dc0 ade9bc3 fc04dc0 58220b6 ade9bc3 fc04dc0 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 fc04dc0 58220b6 ade9bc3 58220b6 ade9bc3 fc04dc0 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 5ef1601 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 5ef1601 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 fc04dc0 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 ade9bc3 58220b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 |
#include "llama-memory-recurrent.h"
#include "llama-impl.h"
#include "llama-io.h"
#include "llama-batch.h"
#include "llama-model.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <map>
#include <stdexcept>
//
// llama_memory_recurrent
//
llama_memory_recurrent::llama_memory_recurrent(
const llama_model & model,
layer_filter_cb && filter,
ggml_type type_r,
ggml_type type_s,
bool offload,
uint32_t mem_size,
uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) {
const int32_t n_layer = hparams.n_layer;
LLAMA_LOG_INFO("%s: mem_size = %u, n_seq_max = %u, type_r = '%s', type_s = '%s', n_layer = %d\n",
__func__, mem_size, n_seq_max, ggml_type_name(type_r), ggml_type_name(type_s), n_layer);
head = 0;
size = mem_size;
used = 0;
cells.clear();
cells.resize(mem_size);
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
ggml_init_params params = {
/*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
r_l.resize(n_layer);
s_l.resize(n_layer);
for (int i = 0; i < n_layer; i++) {
if (filter && !filter(i)) {
LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, i);
continue;
}
const char * dev_name = "CPU";
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
if (offload) {
auto * dev = model.dev_layer(i);
buft = ggml_backend_dev_buffer_type(dev);
dev_name = ggml_backend_dev_name(dev);
}
LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
throw std::runtime_error("failed to create ggml context for kv cache");
}
ggml_tensor * r = ggml_new_tensor_1d(ctx, type_r, hparams.n_embd_r()*mem_size);
ggml_tensor * s = ggml_new_tensor_1d(ctx, type_s, hparams.n_embd_s()*mem_size);
ggml_format_name(r, "cache_r_l%d", i);
ggml_format_name(s, "cache_s_l%d", i);
r_l[i] = r;
s_l[i] = s;
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
bufs.emplace_back(buf);
}
{
const size_t memory_size_r = size_r_bytes();
const size_t memory_size_s = size_s_bytes();
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, R (%s): %7.2f MiB, S (%s): %7.2f MiB\n", __func__,
(float)(memory_size_r + memory_size_s) / (1024.0f * 1024.0f),
ggml_type_name(type_r), (float)memory_size_r / (1024.0f * 1024.0f),
ggml_type_name(type_s), (float)memory_size_s / (1024.0f * 1024.0f));
}
}
void llama_memory_recurrent::clear(bool data) {
for (int32_t i = 0; i < (int32_t) size; ++i) {
cells[i].pos = -1;
cells[i].seq_id.clear();
cells[i].src = -1;
cells[i].tail = -1;
}
head = 0;
used = 0;
if (data) {
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
}
bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
uint32_t new_head = size;
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// models like Mamba or RWKV can't have a state partially erased
if (seq_id >= (int64_t) size) {
// could be fatal
return false;
}
if (0 <= seq_id) {
int32_t & tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
const auto & cell = cells[tail_id];
// partial intersection is invalid
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
return false;
}
// invalidate tails which will be cleared
if (p0 <= cell.pos && cell.pos < p1) {
tail_id = -1;
}
}
} else {
// seq_id is negative, then the range should include everything or nothing
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
return false;
}
}
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].pos >= p0 && cells[i].pos < p1) {
if (seq_id < 0) {
cells[i].seq_id.clear();
} else if (cells[i].has_seq_id(seq_id)) {
cells[i].seq_id.erase(seq_id);
} else {
continue;
}
if (cells[i].is_empty()) {
// keep count of the number of used cells
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
if (new_head == size) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != size && new_head < head) {
head = new_head;
}
return true;
}
void llama_memory_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
if (seq_id_src == seq_id_dst) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
auto & tail_src = cells[seq_id_src];
auto & tail_dst = cells[seq_id_dst];
if (tail_dst.tail >= 0) {
// clear destination seq_id if it wasn't empty
auto & cell_dst = cells[tail_dst.tail];
cell_dst.seq_id.erase(seq_id_dst);
tail_dst.tail = -1;
if (cell_dst.seq_id.empty()) {
cell_dst.pos = -1;
cell_dst.src = -1;
used -= 1;
}
}
if (tail_src.tail >= 0) {
auto & cell_src = cells[tail_src.tail];
cell_src.seq_id.insert(seq_id_dst);
tail_dst.tail = tail_src.tail;
}
}
}
void llama_memory_recurrent::seq_keep(llama_seq_id seq_id) {
uint32_t new_head = size;
for (uint32_t i = 0; i < size; ++i) {
if ((llama_seq_id) i != seq_id) {
cells[i].tail = -1;
}
if (!cells[i].has_seq_id(seq_id)) {
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
cells[i].seq_id.clear();
if (new_head == size){
new_head = i;
}
} else {
cells[i].seq_id.clear();
cells[i].seq_id.insert(seq_id);
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != size && new_head < head) {
head = new_head;
}
}
void llama_memory_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
if (shift == 0) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the
if (p0 == p1) {
return;
}
// for Mamba-like or RWKV models, only the pos needs to be shifted
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
auto & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos += shift;
}
}
}
}
void llama_memory_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
if (d == 1) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) {
return;
}
// for Mamba-like or RWKV models, only the pos needs to be changed
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
auto & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos /= d;
}
}
}
}
llama_pos llama_memory_recurrent::seq_pos_min(llama_seq_id seq_id) const {
llama_pos result = std::numeric_limits<llama_pos>::max();
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id)) {
result = std::min(result, cells[i].pos);
}
}
if (result == std::numeric_limits<llama_pos>::max()) {
result = -1;
}
return result;
}
llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const {
llama_pos result = -1;
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id)) {
result = std::max(result, cells[i].pos);
}
}
return result;
}
llama_memory_state_ptr llama_memory_recurrent::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
std::vector<llama_ubatch> ubatches;
while (true) {
llama_ubatch ubatch;
if (embd_all) {
// if all tokens are output, split by sequence
ubatch = balloc.split_seq(n_ubatch);
} else {
ubatch = balloc.split_equal(n_ubatch);
}
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch)); // NOLINT
}
if (!prepare(ubatches)) {
return std::make_unique<llama_memory_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
return std::make_unique<llama_memory_recurrent_state>(this, std::move(ubatches));
}
llama_memory_state_ptr llama_memory_recurrent::init_full() {
return std::make_unique<llama_memory_recurrent_state>(this);
}
llama_memory_state_ptr llama_memory_recurrent::init_update(llama_context * lctx, bool optimize) {
GGML_UNUSED(lctx);
GGML_UNUSED(optimize);
return std::make_unique<llama_memory_recurrent_state>(LLAMA_MEMORY_STATUS_NO_UPDATE);
}
bool llama_memory_recurrent::prepare(const std::vector<llama_ubatch> & ubatches) {
// simply remember the full state because it is very small for this type of cache
// TODO: optimize
auto org_cells = cells;
auto org_used = used;
auto org_head = head;
bool success = true;
for (const auto & ubatch : ubatches) {
if (!find_slot(ubatch)) {
success = false;
break;
}
}
// restore the original state
cells = std::move(org_cells);
used = org_used;
head = org_head;
return success;
}
bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head > used + 2*n_seqs) {
head = 0;
}
// For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous.
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(ubatch.equal_seqs);
int32_t min = size - 1;
int32_t max = 0;
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t i = s*n_seq_tokens; // first token of sequence set s
const uint32_t n_seq_id = ubatch.n_seq_id[i];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[i][j];
if (seq_id < 0 || (uint32_t) seq_id >= size) {
// too big seq_id
// TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%u Try using a bigger --parallel value\n", __func__, seq_id, n_seq_max);
return false;
}
if (j > 0) {
auto & seq = cells[seq_id];
if (seq.tail >= 0) {
auto & cell = cells[seq.tail];
// clear cells from seq_ids that become shared
// (should not normally happen, but let's handle it anyway)
cell.seq_id.erase(seq_id);
seq.tail = -1;
if (cell.seq_id.empty()) {
cell.pos = -1;
cell.src = -1;
used -= 1;
}
}
}
}
}
#ifndef NDEBUG
{
std::vector<int32_t> tails_verif;
tails_verif.assign(size, -1);
for (uint32_t i = 0; i < size; ++i) {
auto & cell = cells[i];
for (llama_seq_id seq_id : cell.seq_id) {
if (tails_verif[seq_id] != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
}
tails_verif[seq_id] = i;
}
}
for (uint32_t i = 0; i < size; ++i) {
if (tails_verif[i] != cells[i].tail) {
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
}
}
}
#endif
// find next empty cell
uint32_t next_empty_cell = head;
for (uint32_t i = 0; i < size; ++i) {
if (next_empty_cell >= size) { next_empty_cell -= size; }
auto & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t i = s*n_seq_tokens;
const llama_seq_id seq_id = ubatch.seq_id[i][0];
auto & seq_meta = cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
auto & cell = cells[seq_meta.tail];
GGML_ASSERT(cell.has_seq_id(seq_id));
// does this seq_id "own" the cell?
if (cell.seq_id.size() == 1) { has_cell = true; }
}
if (!has_cell) {
auto & empty_cell = cells[next_empty_cell];
GGML_ASSERT(empty_cell.is_empty());
// copy old tail into the empty cell
if (seq_meta.tail >= 0) {
auto & orig_cell = cells[seq_meta.tail];
empty_cell.pos = orig_cell.pos;
empty_cell.src = orig_cell.src;
orig_cell.seq_id.erase(seq_id);
empty_cell.seq_id.insert(seq_id); // will be overwritten
GGML_ASSERT(!orig_cell.is_empty()); // has at least one remaining seq_id
}
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
for (uint32_t j = 0; j < size; ++j) {
next_empty_cell += 1;
if (next_empty_cell >= size) { next_empty_cell -= size; }
auto & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
}
}
}
if (min > seq_meta.tail) { min = seq_meta.tail; }
if (max < seq_meta.tail) { max = seq_meta.tail; }
}
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t i = s*n_seq_tokens;
const int32_t dst_id = s + min;
const int32_t src_id = cells[ubatch.seq_id[i][0]].tail;
if (dst_id != src_id) {
auto & dst_cell = cells[dst_id];
auto & src_cell = cells[src_id];
std::swap(dst_cell.pos, src_cell.pos);
std::swap(dst_cell.src, src_cell.src);
std::swap(dst_cell.seq_id, src_cell.seq_id);
// swap tails
for (uint32_t j = 0; j < size; ++j) {
int32_t & tail = cells[j].tail;
if (tail == src_id) {
tail = dst_id;
} else if (tail == dst_id) {
tail = src_id;
}
}
}
}
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t i = s*n_seq_tokens;
const llama_pos last_pos = ubatch.pos[i + n_seq_tokens - 1];
const int32_t cell_id = s + min;
auto & cell = cells[cell_id];
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, ubatch.seq_id[i][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < ubatch.n_seq_id[i]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[i][j];
cell.seq_id.insert(seq_id);
cells[seq_id].tail = cell_id;
}
}
// Find first cell without src refs, to use as the zero-ed state
{
// TODO: bake-in src refcounts in the cell metadata
std::vector<int32_t> refcounts(size, 0);
for (size_t i = 0; i < size; ++i) {
const int32_t src = cells[i].src;
if (src >= 0) {
refcounts[src] += 1;
}
}
rs_z = -1;
for (int i = min; i <= max; ++i) {
if (refcounts[i] == 0) {
rs_z = i;
break;
}
}
for (int i = min; i <= max; ++i) {
if (cells[i].src < 0) {
GGML_ASSERT(rs_z >= 0);
cells[i].src0 = rs_z;
} else {
// Stage the source ids for all used cells to allow correct seq_* behavior
// and still make these values available when setting the inputs
cells[i].src0 = cells[i].src;
}
cells[i].src = i; // avoid moving or clearing twice
}
}
// allow getting the range of used cells, from head to head + n
head = min;
n = max - min + 1;
used = std::count_if(cells.begin(), cells.end(),
[](const mem_cell & cell){ return !cell.is_empty(); });
// sanity check
return n >= n_seqs;
}
bool llama_memory_recurrent::get_can_shift() const {
// shifting the pos is trivial for recurrent models
return true;
}
size_t llama_memory_recurrent::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
size_t llama_memory_recurrent::size_r_bytes() const {
size_t size_r_bytes = 0;
for (const auto & r : r_l) {
if (r != nullptr) {
size_r_bytes += ggml_nbytes(r);
}
}
return size_r_bytes;
}
size_t llama_memory_recurrent::size_s_bytes() const {
size_t size_s_bytes = 0;
for (const auto & s : s_l) {
if (s != nullptr) {
size_s_bytes += ggml_nbytes(s);
}
}
return size_s_bytes;
}
void llama_memory_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
uint32_t cell_count = 0;
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = size;
for (uint32_t i = 0; i < size; ++i) {
const auto & cell = cells[i];
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
++cell_count;
if (cell_range_begin == size) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != size) {
cell_ranges.emplace_back(cell_range_begin, i);
cell_range_begin = size;
}
}
}
if (cell_range_begin != size) {
cell_ranges.emplace_back(cell_range_begin, size);
}
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cell_ranges) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
io.write(&cell_count, sizeof(cell_count));
state_write_meta(io, cell_ranges, seq_id);
state_write_data(io, cell_ranges);
}
void llama_memory_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
uint32_t cell_count;
io.read_to(&cell_count, sizeof(cell_count));
bool res = true;
res = res && state_read_meta(io, cell_count, seq_id);
res = res && state_read_data(io, cell_count);
if (!res) {
if (seq_id == -1) {
clear(true);
} else {
seq_rm(seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
void llama_memory_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
for (const auto & range : cell_ranges) {
for (uint32_t i = range.first; i < range.second; ++i) {
const auto & cell = cells[i];
const llama_pos pos = cell.pos;
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id) {
for (auto seq_id : cell.seq_id) {
io.write(&seq_id, sizeof(seq_id));
}
}
}
}
}
void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
const uint32_t s_trans = 0;
const uint32_t n_layer = hparams.n_layer;
io.write(&s_trans, sizeof(s_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (uint32_t il = 0; il < n_layer; ++il) {
// Write key type
const int32_t r_type_i = (int32_t)r_l[il]->type;
io.write(&r_type_i, sizeof(r_type_i));
// Write row size of key
const uint64_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
io.write(&r_size_row, sizeof(r_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * r_size_row;
io.write_tensor(r_l[il], range.first * r_size_row, buf_size);
}
}
if (!s_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
// Write value type
const int32_t s_type_i = (int32_t)s_l[il]->type;
io.write(&s_type_i, sizeof(s_type_i));
// Write row size of value
const uint64_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
io.write(&s_size_row, sizeof(s_size_row));
// Read each range of cells of s_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * s_size_row;
io.write_tensor(s_l[il], range.first * s_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t mem_size = size;
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_s = hparams.n_embd_s();
// Write value type
const int32_t s_type_i = (int32_t)s_l[il]->type;
io.write(&s_type_i, sizeof(s_type_i));
// Write element size
const uint32_t s_size_el = ggml_type_size(s_l[il]->type);
io.write(&s_size_el, sizeof(s_size_el));
// Write GQA embedding size
io.write(&n_embd_s, sizeof(n_embd_s));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_s; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * mem_size) * s_size_el;
const size_t buf_size = range_size * s_size_el;
io.write_tensor(s_l[il], src_offset, buf_size);
}
}
}
}
}
bool llama_memory_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
if (dest_seq_id != -1) {
// single sequence
seq_rm(dest_seq_id, -1, -1);
llama_batch_allocr balloc(hparams.n_pos_per_embd());
llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 0) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
ubatch.pos[i] = pos;
}
ubatch.n_seq_id[0] = 1;
ubatch.seq_id[0] = &dest_seq_id;
if (!find_slot(ubatch)) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
// DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head + cell_count <= size);
GGML_ASSERT(cells[head].pos == ubatch.pos[0]);
GGML_ASSERT(cells[head + cell_count - 1].pos == ubatch.pos[cell_count - 1]);
GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
} else {
// whole KV cache restore
if (cell_count > size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
clear(true);
for (uint32_t i = 0; i < cell_count; ++i) {
auto & cell = cells[i];
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
cell.pos = pos;
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
// TODO: llama_memory_recurrent should have a notion of max sequences
//if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
if (seq_id < 0) {
//LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
return false;
}
cell.seq_id.insert(seq_id);
int32_t & tail = cells[seq_id].tail;
if (tail != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
return false;
}
tail = i;
}
}
head = 0;
used = cell_count;
}
for (uint32_t i = 0; i < cell_count; ++i) {
uint32_t cell_id = head + i;
// make sure the recurrent states will keep their restored state
cells[cell_id].src = cell_id;
}
return true;
}
bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
uint32_t s_trans;
uint32_t n_layer;
io.read_to(&s_trans, sizeof(s_trans));
io.read_to(&n_layer, sizeof(n_layer));
if (n_layer != hparams.n_layer) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
return false;
}
if (cell_count > size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
return false;
}
if (false != (bool) s_trans) {
LLAMA_LOG_ERROR("%s: incompatible s transposition\n", __func__);
return false;
}
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (uint32_t il = 0; il < n_layer; ++il) {
// Read type of key
int32_t r_type_i_ref;
io.read_to(&r_type_i_ref, sizeof(r_type_i_ref));
const int32_t r_type_i = (int32_t) r_l[il]->type;
if (r_type_i != r_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched r type (%d != %d, layer %d)\n", __func__, r_type_i, r_type_i_ref, il);
return false;
}
// Read row size of key
uint64_t r_size_row_ref;
io.read_to(&r_size_row_ref, sizeof(r_size_row_ref));
const size_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
if (r_size_row != r_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched r row size (%zu != %zu, layer %d)\n", __func__, r_size_row, (size_t) r_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(r_l[il], io.read(cell_count * r_size_row), head * r_size_row, cell_count * r_size_row);
}
}
if (!s_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
// Read type of value
int32_t s_type_i_ref;
io.read_to(&s_type_i_ref, sizeof(s_type_i_ref));
const int32_t s_type_i = (int32_t)s_l[il]->type;
if (s_type_i != s_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il);
return false;
}
// Read row size of value
uint64_t s_size_row_ref;
io.read_to(&s_size_row_ref, sizeof(s_size_row_ref));
const size_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
if (s_size_row != s_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched s row size (%zu != %zu, layer %d)\n", __func__, s_size_row, (size_t) s_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_row), head * s_size_row, cell_count * s_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_s = hparams.n_embd_s();
// Read type of value
int32_t s_type_i_ref;
io.read_to(&s_type_i_ref, sizeof(s_type_i_ref));
const int32_t s_type_i = (int32_t)s_l[il]->type;
if (s_type_i != s_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il);
return false;
}
// Read element size of value
uint32_t s_size_el_ref;
io.read_to(&s_size_el_ref, sizeof(s_size_el_ref));
const size_t s_size_el = ggml_type_size(s_l[il]->type);
if (s_size_el != s_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched s element size (%zu != %zu, layer %d)\n", __func__, s_size_el, (size_t) s_size_el_ref, il);
return false;
}
// Read state embedding size
uint32_t n_embd_s_ref;
io.read_to(&n_embd_s_ref, sizeof(n_embd_s_ref));
if (n_embd_s != n_embd_s_ref) {
LLAMA_LOG_ERROR("%s: mismatched s embedding size (%u != %u, layer %d)\n", __func__, n_embd_s, n_embd_s_ref, il);
return false;
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_s; ++j) {
const size_t dst_offset = (head + j * size) * s_size_el;
ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_el), dst_offset, cell_count * s_size_el);
}
}
}
}
return true;
}
//
// llama_memory_recurrent_state
//
llama_memory_recurrent_state::llama_memory_recurrent_state(llama_memory_status status) : status(status) {}
llama_memory_recurrent_state::llama_memory_recurrent_state(
llama_memory_recurrent * mem) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), is_full(true) {
}
llama_memory_recurrent_state::llama_memory_recurrent_state(
llama_memory_recurrent * mem,
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), ubatches(std::move(ubatches)) {}
llama_memory_recurrent_state::~llama_memory_recurrent_state() = default;
bool llama_memory_recurrent_state::next() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
if (++i_next >= ubatches.size()) {
return false;
}
return true;
}
bool llama_memory_recurrent_state::apply() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
mem->find_slot(ubatches[i_next]);
return true;
}
llama_memory_status llama_memory_recurrent_state::get_status() const {
return status;
}
const llama_ubatch & llama_memory_recurrent_state::get_ubatch() const {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return ubatches[i_next];
}
uint32_t llama_memory_recurrent_state::get_n_rs() const {
return is_full ? mem->size : mem->n;
}
uint32_t llama_memory_recurrent_state::get_head() const {
return is_full ? 0 : mem->head;
}
int32_t llama_memory_recurrent_state::get_rs_z() const {
return is_full ? 0 : mem->rs_z;
}
uint32_t llama_memory_recurrent_state::get_size() const {
return mem->size;
}
ggml_tensor * llama_memory_recurrent_state::get_r_l(int32_t il) const {
return mem->r_l[il];
}
ggml_tensor * llama_memory_recurrent_state::get_s_l(int32_t il) const {
return mem->s_l[il];
}
int32_t llama_memory_recurrent_state::s_copy(int i) const {
return mem->cells[i + mem->head].src0;
}
|