File size: 36,573 Bytes
ade9bc3
58220b6
 
5ef1601
58220b6
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
ade9bc3
 
 
 
 
 
 
 
58220b6
 
ade9bc3
 
58220b6
 
ade9bc3
58220b6
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
 
58220b6
 
ade9bc3
 
 
 
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
 
 
 
 
 
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
 
58220b6
ade9bc3
 
 
 
58220b6
 
 
ade9bc3
58220b6
 
 
 
 
 
5ef1601
58220b6
 
 
5ef1601
 
 
 
58220b6
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
 
58220b6
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
ade9bc3
58220b6
 
fc04dc0
 
ade9bc3
58220b6
ade9bc3
58220b6
 
ade9bc3
 
 
 
 
58220b6
 
 
ade9bc3
58220b6
 
ade9bc3
58220b6
 
ade9bc3
 
58220b6
 
ade9bc3
5ef1601
 
 
ade9bc3
5ef1601
 
ade9bc3
58220b6
 
 
 
 
 
 
 
fc04dc0
 
 
 
 
 
58220b6
 
 
 
 
 
 
 
 
ade9bc3
58220b6
ade9bc3
58220b6
 
 
fc04dc0
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
 
 
58220b6
ade9bc3
58220b6
 
 
 
 
 
 
 
ade9bc3
58220b6
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
ade9bc3
 
 
58220b6
 
ade9bc3
58220b6
 
 
 
 
ade9bc3
58220b6
 
 
ade9bc3
58220b6
 
 
 
fc04dc0
58220b6
 
 
 
ade9bc3
fc04dc0
58220b6
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
ade9bc3
fc04dc0
ade9bc3
58220b6
ade9bc3
 
58220b6
 
 
 
 
fc04dc0
ade9bc3
 
fc04dc0
 
 
 
 
58220b6
 
 
 
 
 
ade9bc3
 
fc04dc0
ade9bc3
58220b6
 
 
 
 
ade9bc3
58220b6
 
 
ade9bc3
 
58220b6
 
 
 
 
fc04dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58220b6
 
 
 
ade9bc3
58220b6
 
 
 
 
ade9bc3
fc04dc0
 
58220b6
 
ade9bc3
58220b6
 
 
 
 
 
 
 
ade9bc3
 
58220b6
ade9bc3
 
 
 
58220b6
 
ade9bc3
58220b6
 
ade9bc3
 
58220b6
ade9bc3
 
 
 
58220b6
 
ade9bc3
58220b6
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
5ef1601
58220b6
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
 
58220b6
 
ade9bc3
 
58220b6
 
 
 
 
 
 
 
ade9bc3
 
58220b6
 
ade9bc3
 
58220b6
 
 
 
ade9bc3
 
58220b6
 
 
ade9bc3
58220b6
 
 
ade9bc3
 
58220b6
 
ade9bc3
 
58220b6
ade9bc3
58220b6
 
ade9bc3
 
58220b6
 
 
 
ade9bc3
58220b6
ade9bc3
58220b6
 
ade9bc3
 
58220b6
 
ade9bc3
 
58220b6
 
ade9bc3
58220b6
 
ade9bc3
58220b6
 
 
ade9bc3
 
 
58220b6
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
ade9bc3
58220b6
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
ade9bc3
 
58220b6
ade9bc3
58220b6
 
 
 
 
 
 
ade9bc3
 
58220b6
 
 
 
 
 
 
 
 
 
5ef1601
58220b6
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
 
58220b6
ade9bc3
58220b6
 
 
 
 
 
 
 
 
 
ade9bc3
 
58220b6
 
 
 
 
 
 
ade9bc3
 
 
 
 
58220b6
 
 
 
ade9bc3
 
 
 
 
58220b6
 
 
 
 
ade9bc3
58220b6
 
 
ade9bc3
58220b6
 
 
ade9bc3
 
 
 
 
58220b6
 
 
 
ade9bc3
 
 
 
 
58220b6
 
 
 
 
ade9bc3
58220b6
 
 
 
 
ade9bc3
58220b6
 
ade9bc3
 
 
 
 
58220b6
 
 
 
ade9bc3
 
 
 
 
58220b6
 
 
ade9bc3
 
 
 
 
58220b6
 
 
 
 
ade9bc3
 
 
58220b6
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
ade9bc3
58220b6
ade9bc3
 
58220b6
 
ade9bc3
 
 
58220b6
ade9bc3
58220b6
ade9bc3
58220b6
 
 
 
 
 
 
 
 
ade9bc3
58220b6
 
ade9bc3
58220b6
 
 
 
ade9bc3
58220b6
 
 
ade9bc3
58220b6
 
 
 
 
ade9bc3
 
58220b6
 
ade9bc3
 
58220b6
 
ade9bc3
 
fc04dc0
 
ade9bc3
 
58220b6
 
ade9bc3
 
58220b6
 
ade9bc3
 
58220b6
 
ade9bc3
 
58220b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
#include "llama-memory-recurrent.h"

#include "llama-impl.h"
#include "llama-io.h"
#include "llama-batch.h"
#include "llama-model.h"

#include <algorithm>
#include <cassert>
#include <limits>
#include <map>
#include <stdexcept>

//
// llama_memory_recurrent
//

llama_memory_recurrent::llama_memory_recurrent(
        const llama_model &  model,
          layer_filter_cb && filter,
                ggml_type    type_r,
                ggml_type    type_s,
                     bool    offload,
                 uint32_t    mem_size,
                 uint32_t    n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) {
    const int32_t n_layer = hparams.n_layer;

    LLAMA_LOG_INFO("%s: mem_size = %u, n_seq_max = %u, type_r = '%s', type_s = '%s', n_layer = %d\n",
            __func__, mem_size, n_seq_max, ggml_type_name(type_r), ggml_type_name(type_s), n_layer);

    head = 0;
    size = mem_size;
    used = 0;

    cells.clear();
    cells.resize(mem_size);

    // create a context for each buffer type
    std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
    auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
        auto it = ctx_map.find(buft);
        if (it == ctx_map.end()) {
            ggml_init_params params = {
                /*.mem_size   =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
                /*.mem_buffer =*/ NULL,
                /*.no_alloc   =*/ true,
            };

            ggml_context * ctx = ggml_init(params);
            if (!ctx) {
                return nullptr;
            }

            ctx_map[buft] = ctx;
            ctxs.emplace_back(ctx);

            return ctx;
        }

        return it->second;
    };

    r_l.resize(n_layer);
    s_l.resize(n_layer);

    for (int i = 0; i < n_layer; i++) {
        if (filter && !filter(i)) {
            LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, i);
            continue;
        }

        const char * dev_name = "CPU";

        ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();

        if (offload) {
            auto * dev = model.dev_layer(i);
            buft = ggml_backend_dev_buffer_type(dev);

            dev_name = ggml_backend_dev_name(dev);
        }

        LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name);

        ggml_context * ctx = ctx_for_buft(buft);
        if (!ctx) {
            throw std::runtime_error("failed to create ggml context for kv cache");
        }

        ggml_tensor * r = ggml_new_tensor_1d(ctx, type_r, hparams.n_embd_r()*mem_size);
        ggml_tensor * s = ggml_new_tensor_1d(ctx, type_s, hparams.n_embd_s()*mem_size);
        ggml_format_name(r, "cache_r_l%d", i);
        ggml_format_name(s, "cache_s_l%d", i);
        r_l[i] = r;
        s_l[i] = s;
    }

    // allocate tensors and initialize the buffers to avoid NaNs in the padding
    for (auto it : ctx_map) {
        auto * buft = it.first;
        auto * ctx  = it.second;

        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
        if (!buf) {
            throw std::runtime_error("failed to allocate buffer for kv cache");
        }
        ggml_backend_buffer_clear(buf, 0);
        LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
        bufs.emplace_back(buf);
    }

    {
        const size_t memory_size_r = size_r_bytes();
        const size_t memory_size_s = size_s_bytes();

        LLAMA_LOG_INFO("%s: KV self size  = %7.2f MiB, R (%s): %7.2f MiB, S (%s): %7.2f MiB\n", __func__,
                (float)(memory_size_r + memory_size_s) / (1024.0f * 1024.0f),
                ggml_type_name(type_r), (float)memory_size_r / (1024.0f * 1024.0f),
                ggml_type_name(type_s), (float)memory_size_s / (1024.0f * 1024.0f));
    }
}

void llama_memory_recurrent::clear(bool data) {
    for (int32_t i = 0; i < (int32_t) size; ++i) {
        cells[i].pos = -1;
        cells[i].seq_id.clear();
        cells[i].src = -1;
        cells[i].tail = -1;
    }

    head = 0;
    used = 0;

    if (data) {
        for (auto & buf : bufs) {
            ggml_backend_buffer_clear(buf.get(), 0);
        }
    }
}

bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
    uint32_t new_head = size;

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // models like Mamba or RWKV can't have a state partially erased
    if (seq_id >= (int64_t) size) {
        // could be fatal
        return false;
    }
    if (0 <= seq_id) {
        int32_t & tail_id = cells[seq_id].tail;
        if (tail_id >= 0) {
            const auto & cell = cells[tail_id];
            // partial intersection is invalid
            if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
                return false;
            }
            // invalidate tails which will be cleared
            if (p0 <= cell.pos && cell.pos < p1) {
                tail_id = -1;
            }
        }
    } else {
        // seq_id is negative, then the range should include everything or nothing
        if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
            return false;
        }
    }

    for (uint32_t i = 0; i < size; ++i) {
        if (cells[i].pos >= p0 && cells[i].pos < p1) {
            if (seq_id < 0) {
                cells[i].seq_id.clear();
            } else if (cells[i].has_seq_id(seq_id)) {
                cells[i].seq_id.erase(seq_id);
            } else {
                continue;
            }
            if (cells[i].is_empty()) {
                // keep count of the number of used cells
                if (cells[i].pos >= 0) {
                    used--;
                }
                cells[i].pos = -1;
                cells[i].src = -1;
                if (new_head == size) {
                    new_head = i;
                }
            }
        }
    }

    // If we freed up a slot, set head to it so searching can start there.
    if (new_head != size && new_head < head) {
        head = new_head;
    }

    return true;
}

void llama_memory_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
    if (seq_id_src == seq_id_dst) {
        return;
    }

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
        auto & tail_src = cells[seq_id_src];
        auto & tail_dst = cells[seq_id_dst];
        if (tail_dst.tail >= 0) {
            // clear destination seq_id if it wasn't empty
            auto & cell_dst = cells[tail_dst.tail];

            cell_dst.seq_id.erase(seq_id_dst);
            tail_dst.tail = -1;
            if (cell_dst.seq_id.empty()) {
                cell_dst.pos = -1;
                cell_dst.src = -1;
                used -= 1;
            }
        }
        if (tail_src.tail >= 0) {
            auto & cell_src = cells[tail_src.tail];

            cell_src.seq_id.insert(seq_id_dst);
            tail_dst.tail = tail_src.tail;
        }
    }
}

void llama_memory_recurrent::seq_keep(llama_seq_id seq_id) {
    uint32_t new_head = size;

    for (uint32_t i = 0; i < size; ++i) {
        if ((llama_seq_id) i != seq_id) {
            cells[i].tail = -1;
        }

        if (!cells[i].has_seq_id(seq_id)) {
            if (cells[i].pos >= 0) {
                used--;
            }

            cells[i].pos = -1;
            cells[i].src = -1;
            cells[i].seq_id.clear();

            if (new_head == size){
                new_head = i;
            }
        } else {
            cells[i].seq_id.clear();
            cells[i].seq_id.insert(seq_id);
        }
    }

    // If we freed up a slot, set head to it so searching can start there.
    if (new_head != size && new_head < head) {
        head = new_head;
    }
}

void llama_memory_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
    if (shift == 0) {
        return;
    }

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // If there is no range then return early to avoid looping over the
    if (p0 == p1) {
        return;
    }

    // for Mamba-like or RWKV models, only the pos needs to be shifted
    if (0 <= seq_id && seq_id < (int64_t) size) {
        const int32_t tail_id = cells[seq_id].tail;
        if (tail_id >= 0) {
            auto & cell = cells[tail_id];
            if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
                cell.pos += shift;
            }
        }
    }
}

void llama_memory_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
    if (d == 1) {
        return;
    }

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // If there is no range then return early to avoid looping over the cache.
    if (p0 == p1) {
        return;
    }

    // for Mamba-like or RWKV models, only the pos needs to be changed
    if (0 <= seq_id && seq_id < (int64_t) size) {
        const int32_t tail_id = cells[seq_id].tail;
        if (tail_id >= 0) {
            auto & cell = cells[tail_id];
            if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
                cell.pos /= d;
            }
        }
    }
}

llama_pos llama_memory_recurrent::seq_pos_min(llama_seq_id seq_id) const {
    llama_pos result = std::numeric_limits<llama_pos>::max();

    for (uint32_t i = 0; i < size; ++i) {
        if (cells[i].has_seq_id(seq_id)) {
            result = std::min(result, cells[i].pos);
        }
    }

    if (result == std::numeric_limits<llama_pos>::max()) {
        result = -1;
    }

    return result;
}

llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const {
    llama_pos result = -1;

    for (uint32_t i = 0; i < size; ++i) {
        if (cells[i].has_seq_id(seq_id)) {
            result = std::max(result, cells[i].pos);
        }
    }

    return result;
}

llama_memory_state_ptr llama_memory_recurrent::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
    std::vector<llama_ubatch> ubatches;

    while (true) {
        llama_ubatch ubatch;

        if (embd_all) {
            // if all tokens are output, split by sequence
            ubatch = balloc.split_seq(n_ubatch);
        } else {
            ubatch = balloc.split_equal(n_ubatch);
        }

        if (ubatch.n_tokens == 0) {
            break;
        }

        ubatches.push_back(std::move(ubatch)); // NOLINT
    }

    if (!prepare(ubatches)) {
        return std::make_unique<llama_memory_recurrent_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
    }

    return std::make_unique<llama_memory_recurrent_state>(this, std::move(ubatches));
}

llama_memory_state_ptr llama_memory_recurrent::init_full() {
    return std::make_unique<llama_memory_recurrent_state>(this);
}

llama_memory_state_ptr llama_memory_recurrent::init_update(llama_context * lctx, bool optimize) {
    GGML_UNUSED(lctx);
    GGML_UNUSED(optimize);

    return std::make_unique<llama_memory_recurrent_state>(LLAMA_MEMORY_STATUS_NO_UPDATE);
}

bool llama_memory_recurrent::prepare(const std::vector<llama_ubatch> & ubatches) {
    // simply remember the full state because it is very small for this type of cache
    // TODO: optimize
    auto org_cells = cells;
    auto org_used = used;
    auto org_head = head;

    bool success = true;

    for (const auto & ubatch : ubatches) {
        if (!find_slot(ubatch)) {
            success = false;
            break;
        }
    }

    // restore the original state
    cells = std::move(org_cells);
    used = org_used;
    head = org_head;

    return success;
}

bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
    const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
    const uint32_t n_seqs       = ubatch.n_seqs;

    // if we have enough unused cells before the current head ->
    //   better to start searching from the beginning of the cache, hoping to fill it
    if (head > used + 2*n_seqs) {
        head = 0;
    }

    // For recurrent state architectures (like Mamba or RWKV),
    // each cache cell can store the state for a whole sequence.
    // A slot should be always be contiguous.

    // can only process batches with an equal number of new tokens in each sequence
    GGML_ASSERT(ubatch.equal_seqs);

    int32_t min = size - 1;
    int32_t max = 0;

    // everything should fit if all seq_ids are smaller than the max
    for (uint32_t s = 0; s < n_seqs; ++s) {
        const uint32_t i = s*n_seq_tokens; // first token of sequence set s
        const uint32_t n_seq_id = ubatch.n_seq_id[i];

        for (uint32_t j = 0; j < n_seq_id; ++j) {
            const llama_seq_id seq_id = ubatch.seq_id[i][j];

            if (seq_id < 0 || (uint32_t) seq_id >= size) {
                // too big seq_id
                // TODO: would it be possible to resize the cache instead?
                LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%u Try using a bigger --parallel value\n", __func__, seq_id, n_seq_max);
                return false;
            }
            if (j > 0) {
                auto & seq = cells[seq_id];
                if (seq.tail >= 0) {
                    auto & cell = cells[seq.tail];
                    // clear cells from seq_ids that become shared
                    // (should not normally happen, but let's handle it anyway)
                    cell.seq_id.erase(seq_id);
                    seq.tail = -1;
                    if (cell.seq_id.empty()) {
                        cell.pos = -1;
                        cell.src = -1;
                        used -= 1;
                    }
                }
            }
        }
    }

#ifndef NDEBUG
    {
        std::vector<int32_t> tails_verif;
        tails_verif.assign(size, -1);
        for (uint32_t i = 0; i < size; ++i) {
            auto & cell = cells[i];
            for (llama_seq_id seq_id : cell.seq_id) {
                if (tails_verif[seq_id] != -1) {
                    LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
                }
                tails_verif[seq_id] = i;
            }
        }
        for (uint32_t i = 0; i < size; ++i) {
            if (tails_verif[i] != cells[i].tail) {
                LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
            }
        }
    }
#endif

    // find next empty cell
    uint32_t next_empty_cell = head;

    for (uint32_t i = 0; i < size; ++i) {
        if (next_empty_cell >= size) { next_empty_cell -= size; }
        auto & cell = cells[next_empty_cell];
        if (cell.is_empty()) { break; }
        next_empty_cell += 1;
    }

    // find usable cell range
    for (uint32_t s = 0; s < n_seqs; ++s) {
        const uint32_t i = s*n_seq_tokens;
        const llama_seq_id seq_id = ubatch.seq_id[i][0];
        auto & seq_meta = cells[seq_id];
        bool has_cell = false;
        if (seq_meta.tail >= 0) {
            auto & cell = cells[seq_meta.tail];
            GGML_ASSERT(cell.has_seq_id(seq_id));
            // does this seq_id "own" the cell?
            if (cell.seq_id.size() == 1) { has_cell = true; }
        }
        if (!has_cell) {
            auto & empty_cell = cells[next_empty_cell];
            GGML_ASSERT(empty_cell.is_empty());
            // copy old tail into the empty cell
            if (seq_meta.tail >= 0) {
                auto & orig_cell = cells[seq_meta.tail];
                empty_cell.pos = orig_cell.pos;
                empty_cell.src = orig_cell.src;
                orig_cell.seq_id.erase(seq_id);
                empty_cell.seq_id.insert(seq_id); // will be overwritten
                GGML_ASSERT(!orig_cell.is_empty()); // has at least one remaining seq_id
            }
            seq_meta.tail = next_empty_cell;
            // find next empty cell
            if (s + 1 < n_seqs) {
                for (uint32_t j = 0; j < size; ++j) {
                    next_empty_cell += 1;
                    if (next_empty_cell >= size) { next_empty_cell -= size; }
                    auto & cell = cells[next_empty_cell];
                    if (cell.is_empty()) { break; }
                }
            }
        }
        if (min > seq_meta.tail) { min = seq_meta.tail; }
        if (max < seq_meta.tail) { max = seq_meta.tail; }
    }

    // gather and re-order
    for (uint32_t s = 0; s < n_seqs; ++s) {
        const uint32_t i = s*n_seq_tokens;
        const int32_t dst_id = s + min;
        const int32_t src_id = cells[ubatch.seq_id[i][0]].tail;
        if (dst_id != src_id) {
            auto & dst_cell = cells[dst_id];
            auto & src_cell = cells[src_id];

            std::swap(dst_cell.pos, src_cell.pos);
            std::swap(dst_cell.src, src_cell.src);
            std::swap(dst_cell.seq_id, src_cell.seq_id);

            // swap tails
            for (uint32_t j = 0; j < size; ++j) {
                int32_t & tail = cells[j].tail;
                if (tail == src_id) {
                    tail = dst_id;
                } else if (tail == dst_id) {
                    tail = src_id;
                }
            }
        }
    }

    // update the pos of the used seqs
    for (uint32_t s = 0; s < n_seqs; ++s) {
        const uint32_t i = s*n_seq_tokens;
        const llama_pos last_pos = ubatch.pos[i + n_seq_tokens - 1];
        const int32_t cell_id = s + min;
        auto & cell = cells[cell_id];

        if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
            // What should happen when the pos backtracks or skips a value?
            // Clearing the state mid-batch would require special-casing which isn't done.
            LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
                __func__, last_pos, cell.pos, ubatch.seq_id[i][0], n_seq_tokens);
        }
        cell.pos = last_pos;
        cell.seq_id.clear();
        for (int32_t j = 0; j < ubatch.n_seq_id[i]; ++j) {
            const llama_seq_id seq_id = ubatch.seq_id[i][j];
            cell.seq_id.insert(seq_id);
            cells[seq_id].tail = cell_id;
        }
    }

    // Find first cell without src refs, to use as the zero-ed state
    {
        // TODO: bake-in src refcounts in the cell metadata
        std::vector<int32_t> refcounts(size, 0);
        for (size_t i = 0; i < size; ++i) {
            const int32_t src = cells[i].src;
            if (src >= 0) {
                refcounts[src] += 1;
            }
        }

        rs_z = -1;
        for (int i = min; i <= max; ++i) {
            if (refcounts[i] == 0) {
                rs_z = i;
                break;
            }
        }

        for (int i = min; i <= max; ++i) {
            if (cells[i].src < 0) {
                GGML_ASSERT(rs_z >= 0);
                cells[i].src0 = rs_z;
            } else {
                // Stage the source ids for all used cells to allow correct seq_* behavior
                // and still make these values available when setting the inputs
                cells[i].src0 = cells[i].src;
            }
            cells[i].src = i; // avoid moving or clearing twice
        }
    }

    // allow getting the range of used cells, from head to head + n
    head = min;
    n    = max - min + 1;
    used = std::count_if(cells.begin(), cells.end(),
        [](const mem_cell & cell){ return !cell.is_empty(); });

    // sanity check
    return n >= n_seqs;
}

bool llama_memory_recurrent::get_can_shift() const {
    // shifting the pos is trivial for recurrent models
    return true;
}

size_t llama_memory_recurrent::total_size() const {
    size_t size = 0;
    for (const auto & buf : bufs) {
        size += ggml_backend_buffer_get_size(buf.get());
    }

    return size;
}

size_t llama_memory_recurrent::size_r_bytes() const {
    size_t size_r_bytes = 0;

    for (const auto & r : r_l) {
        if (r != nullptr) {
            size_r_bytes += ggml_nbytes(r);
        }
    }

    return size_r_bytes;
}

size_t llama_memory_recurrent::size_s_bytes() const {
    size_t size_s_bytes = 0;

    for (const auto & s : s_l) {
        if (s != nullptr) {
            size_s_bytes += ggml_nbytes(s);
        }
    }

    return size_s_bytes;
}

void llama_memory_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
    std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
    uint32_t cell_count = 0;

    // Count the number of cells with the specified seq_id
    // Find all the ranges of cells with this seq id (or all, when -1)
    uint32_t cell_range_begin = size;
    for (uint32_t i = 0; i < size; ++i) {
        const auto & cell = cells[i];
        if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
            ++cell_count;
            if (cell_range_begin == size) {
                cell_range_begin = i;
            }
        } else {
            if (cell_range_begin != size) {
                cell_ranges.emplace_back(cell_range_begin, i);
                cell_range_begin = size;
            }
        }
    }
    if (cell_range_begin != size) {
        cell_ranges.emplace_back(cell_range_begin, size);
    }

    // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
    uint32_t cell_count_check = 0;
    for (const auto & range : cell_ranges) {
        cell_count_check += range.second - range.first;
    }
    GGML_ASSERT(cell_count == cell_count_check);

    io.write(&cell_count, sizeof(cell_count));

    state_write_meta(io, cell_ranges, seq_id);
    state_write_data(io, cell_ranges);
}

void llama_memory_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
    uint32_t cell_count;
    io.read_to(&cell_count, sizeof(cell_count));

    bool res = true;

    res = res && state_read_meta(io, cell_count, seq_id);
    res = res && state_read_data(io, cell_count);

    if (!res) {
        if (seq_id == -1) {
            clear(true);
        } else {
            seq_rm(seq_id, -1, -1);
        }
        throw std::runtime_error("failed to restore kv cache");
    }
}

void llama_memory_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
    for (const auto & range : cell_ranges) {
        for (uint32_t i = range.first; i < range.second; ++i) {
            const auto & cell = cells[i];
            const llama_pos pos      = cell.pos;
            const uint32_t  n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;

            io.write(&pos,      sizeof(pos));
            io.write(&n_seq_id, sizeof(n_seq_id));

            if (n_seq_id) {
                for (auto seq_id : cell.seq_id) {
                    io.write(&seq_id, sizeof(seq_id));
                }
            }
        }
    }
}

void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
    const uint32_t s_trans = 0;
    const uint32_t n_layer = hparams.n_layer;

    io.write(&s_trans, sizeof(s_trans));
    io.write(&n_layer,   sizeof(n_layer));

    std::vector<uint8_t> tmp_buf;

    // Iterate and write all the keys first, each row is a cell
    // Get whole range at a time
    for (uint32_t il = 0; il < n_layer; ++il) {

        // Write key type
        const int32_t r_type_i = (int32_t)r_l[il]->type;
        io.write(&r_type_i, sizeof(r_type_i));

        // Write row size of key
        const uint64_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
        io.write(&r_size_row, sizeof(r_size_row));

        // Read each range of cells of k_size length each into tmp_buf and write out
        for (const auto & range : cell_ranges) {
            const size_t range_size = range.second - range.first;
            const size_t buf_size = range_size * r_size_row;
            io.write_tensor(r_l[il], range.first * r_size_row, buf_size);
        }
    }

    if (!s_trans) {
        for (uint32_t il = 0; il < n_layer; ++il) {

            // Write value type
            const int32_t s_type_i = (int32_t)s_l[il]->type;
            io.write(&s_type_i, sizeof(s_type_i));

            // Write row size of value
            const uint64_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
            io.write(&s_size_row, sizeof(s_size_row));

            // Read each range of cells of s_size length each into tmp_buf and write out
            for (const auto & range : cell_ranges) {
                const size_t range_size = range.second - range.first;
                const size_t buf_size = range_size * s_size_row;
                io.write_tensor(s_l[il], range.first * s_size_row, buf_size);
            }
        }
    } else {
        // When v is transposed, we also need the element size and get the element ranges from each row
        const uint32_t mem_size = size;
        for (uint32_t il = 0; il < n_layer; ++il) {
            const uint32_t n_embd_s = hparams.n_embd_s();

            // Write value type
            const int32_t s_type_i = (int32_t)s_l[il]->type;
            io.write(&s_type_i, sizeof(s_type_i));

            // Write element size
            const uint32_t s_size_el = ggml_type_size(s_l[il]->type);
            io.write(&s_size_el, sizeof(s_size_el));

            // Write GQA embedding size
            io.write(&n_embd_s, sizeof(n_embd_s));

            // For each row, we get the element values of each cell
            for (uint32_t j = 0; j < n_embd_s; ++j) {
                // Read each range of cells of v_size_el length each into tmp_buf and write out
                for (const auto & range : cell_ranges) {
                    const size_t range_size = range.second - range.first;
                    const size_t src_offset = (range.first + j * mem_size) * s_size_el;
                    const size_t buf_size = range_size * s_size_el;
                    io.write_tensor(s_l[il], src_offset, buf_size);
                }
            }
        }
    }
}

bool llama_memory_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
    if (dest_seq_id != -1) {
        // single sequence

        seq_rm(dest_seq_id, -1, -1);

        llama_batch_allocr balloc(hparams.n_pos_per_embd());

        llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);

        for (uint32_t i = 0; i < cell_count; ++i) {
            llama_pos pos;
            uint32_t n_seq_id;

            io.read_to(&pos,      sizeof(pos));
            io.read_to(&n_seq_id, sizeof(n_seq_id));

            if (n_seq_id != 0) {
                LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
                return false;
            }

            ubatch.pos[i] = pos;
        }
        ubatch.n_seq_id[0] = 1;
        ubatch.seq_id[0] = &dest_seq_id;

        if (!find_slot(ubatch)) {
            LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
            return false;
        }

        // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
        // Assume that this is one contiguous block of cells
        GGML_ASSERT(head + cell_count <= size);
        GGML_ASSERT(cells[head].pos == ubatch.pos[0]);
        GGML_ASSERT(cells[head + cell_count - 1].pos == ubatch.pos[cell_count - 1]);
        GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
        GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
    } else {
        // whole KV cache restore

        if (cell_count > size) {
            LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
            return false;
        }

        clear(true);

        for (uint32_t i = 0; i < cell_count; ++i) {
            auto & cell = cells[i];

            llama_pos pos;
            uint32_t  n_seq_id;

            io.read_to(&pos,      sizeof(pos));
            io.read_to(&n_seq_id, sizeof(n_seq_id));

            cell.pos = pos;

            for (uint32_t j = 0; j < n_seq_id; ++j) {
                llama_seq_id seq_id;
                io.read_to(&seq_id, sizeof(seq_id));

                // TODO: llama_memory_recurrent should have a notion of max sequences
                //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
                if (seq_id < 0) {
                    //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
                    LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
                    return false;
                }

                cell.seq_id.insert(seq_id);

                int32_t & tail = cells[seq_id].tail;
                if (tail != -1) {
                    LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
                    return false;
                }
                tail = i;
            }
        }

        head = 0;
        used = cell_count;
    }

    for (uint32_t i = 0; i < cell_count; ++i) {
        uint32_t cell_id = head + i;
        // make sure the recurrent states will keep their restored state
        cells[cell_id].src = cell_id;
    }

    return true;
}

bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
    uint32_t s_trans;
    uint32_t n_layer;
    io.read_to(&s_trans, sizeof(s_trans));
    io.read_to(&n_layer, sizeof(n_layer));

    if (n_layer != hparams.n_layer) {
        LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
        return false;
    }
    if (cell_count > size) {
        LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
        return false;
    }
    if (false != (bool) s_trans) {
        LLAMA_LOG_ERROR("%s: incompatible s transposition\n", __func__);
        return false;
    }

    // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
    for (uint32_t il = 0; il < n_layer; ++il) {

        // Read type of key
        int32_t r_type_i_ref;
        io.read_to(&r_type_i_ref, sizeof(r_type_i_ref));
        const int32_t r_type_i = (int32_t) r_l[il]->type;
        if (r_type_i != r_type_i_ref) {
            LLAMA_LOG_ERROR("%s: mismatched r type (%d != %d, layer %d)\n", __func__, r_type_i, r_type_i_ref, il);
            return false;
        }

        // Read row size of key
        uint64_t r_size_row_ref;
        io.read_to(&r_size_row_ref, sizeof(r_size_row_ref));
        const size_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
        if (r_size_row != r_size_row_ref) {
            LLAMA_LOG_ERROR("%s: mismatched r row size (%zu != %zu, layer %d)\n", __func__, r_size_row, (size_t) r_size_row_ref, il);
            return false;
        }

        if (cell_count) {
            // Read and set the keys for the whole cell range
            ggml_backend_tensor_set(r_l[il], io.read(cell_count * r_size_row), head * r_size_row, cell_count * r_size_row);
        }
    }

    if (!s_trans) {
        for (uint32_t il = 0; il < n_layer; ++il) {

            // Read type of value
            int32_t s_type_i_ref;
            io.read_to(&s_type_i_ref, sizeof(s_type_i_ref));
            const int32_t s_type_i = (int32_t)s_l[il]->type;
            if (s_type_i != s_type_i_ref) {
                LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il);
                return false;
            }

            // Read row size of value
            uint64_t s_size_row_ref;
            io.read_to(&s_size_row_ref, sizeof(s_size_row_ref));
            const size_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
            if (s_size_row != s_size_row_ref) {
                LLAMA_LOG_ERROR("%s: mismatched s row size (%zu != %zu, layer %d)\n", __func__, s_size_row, (size_t) s_size_row_ref, il);
                return false;
            }

            if (cell_count) {
                // Read and set the values for the whole cell range
                ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_row), head * s_size_row, cell_count * s_size_row);
            }
        }
    } else {
        // For each layer, read the values for each cell (transposed)
        for (uint32_t il = 0; il < n_layer; ++il) {
            const uint32_t n_embd_s = hparams.n_embd_s();

            // Read type of value
            int32_t s_type_i_ref;
            io.read_to(&s_type_i_ref, sizeof(s_type_i_ref));
            const int32_t s_type_i = (int32_t)s_l[il]->type;
            if (s_type_i != s_type_i_ref) {
                LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il);
                return false;
            }

            // Read element size of value
            uint32_t s_size_el_ref;
            io.read_to(&s_size_el_ref, sizeof(s_size_el_ref));
            const size_t s_size_el = ggml_type_size(s_l[il]->type);
            if (s_size_el != s_size_el_ref) {
                LLAMA_LOG_ERROR("%s: mismatched s element size (%zu != %zu, layer %d)\n", __func__, s_size_el, (size_t) s_size_el_ref, il);
                return false;
            }

            // Read state embedding size
            uint32_t n_embd_s_ref;
            io.read_to(&n_embd_s_ref, sizeof(n_embd_s_ref));
            if (n_embd_s != n_embd_s_ref) {
                LLAMA_LOG_ERROR("%s: mismatched s embedding size (%u != %u, layer %d)\n", __func__, n_embd_s, n_embd_s_ref, il);
                return false;
            }

            if (cell_count) {
                // For each row in the transposed matrix, read the values for the whole cell range
                for (uint32_t j = 0; j < n_embd_s; ++j) {
                    const size_t dst_offset = (head + j * size) * s_size_el;
                    ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_el), dst_offset, cell_count * s_size_el);
                }
            }
        }
    }

    return true;
}

//
// llama_memory_recurrent_state
//

llama_memory_recurrent_state::llama_memory_recurrent_state(llama_memory_status status) : status(status) {}

llama_memory_recurrent_state::llama_memory_recurrent_state(
        llama_memory_recurrent * mem) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), is_full(true) {
}

llama_memory_recurrent_state::llama_memory_recurrent_state(
        llama_memory_recurrent * mem,
        std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), ubatches(std::move(ubatches)) {}

llama_memory_recurrent_state::~llama_memory_recurrent_state() = default;

bool llama_memory_recurrent_state::next() {
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    if (++i_next >= ubatches.size()) {
        return false;
    }

    return true;
}

bool llama_memory_recurrent_state::apply() {
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    mem->find_slot(ubatches[i_next]);

    return true;
}

llama_memory_status llama_memory_recurrent_state::get_status() const {
    return status;
}

const llama_ubatch & llama_memory_recurrent_state::get_ubatch() const {
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    return ubatches[i_next];
}

uint32_t llama_memory_recurrent_state::get_n_rs() const {
    return is_full ? mem->size : mem->n;
}

uint32_t llama_memory_recurrent_state::get_head() const {
    return is_full ? 0 : mem->head;
}

int32_t llama_memory_recurrent_state::get_rs_z() const {
    return is_full ? 0 : mem->rs_z;
}

uint32_t llama_memory_recurrent_state::get_size() const {
    return mem->size;
}

ggml_tensor * llama_memory_recurrent_state::get_r_l(int32_t il) const {
    return mem->r_l[il];
}

ggml_tensor * llama_memory_recurrent_state::get_s_l(int32_t il) const {
    return mem->s_l[il];
}

int32_t llama_memory_recurrent_state::s_copy(int i) const {
    return  mem->cells[i + mem->head].src0;
}