File size: 9,192 Bytes
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef1601
 
 
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
fc04dc0
58220b6
fc04dc0
 
ade9bc3
58220b6
fc04dc0
ade9bc3
 
58220b6
ade9bc3
 
 
58220b6
ade9bc3
fc04dc0
58220b6
fc04dc0
 
 
 
58220b6
fc04dc0
 
 
 
58220b6
fc04dc0
 
 
ade9bc3
fc04dc0
 
 
 
ade9bc3
fc04dc0
 
ade9bc3
 
58220b6
ade9bc3
 
 
fc04dc0
ade9bc3
fc04dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
fc04dc0
 
 
 
58220b6
fc04dc0
58220b6
 
 
5ef1601
58220b6
 
5ef1601
 
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
 
 
 
5ef1601
 
 
 
 
ade9bc3
 
 
 
58220b6
 
 
 
 
 
ade9bc3
 
5ef1601
ade9bc3
 
 
5ef1601
58220b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef1601
58220b6
 
 
 
 
 
5ef1601
58220b6
 
 
 
 
5ef1601
58220b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#include "llama-kv-cache-unified-iswa.h"

#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-model.h"

#include <algorithm>
#include <cassert>

//
// llama_kv_cache_unified_iswa
//

llama_kv_cache_unified_iswa::llama_kv_cache_unified_iswa(
        const llama_model & model,
                ggml_type   type_k,
                ggml_type   type_v,
                     bool   v_trans,
                     bool   offload,
                     bool   swa_full,
                 uint32_t   kv_size,
                 uint32_t   n_seq_max,
                 uint32_t   n_ubatch,
                 uint32_t   n_pad) : hparams(model.hparams) {
    llama_kv_cache_unified::layer_filter_cb filter_base = [&](int32_t il) { return !model.hparams.is_swa(il); };
    llama_kv_cache_unified::layer_filter_cb filter_swa  = [&](int32_t il) { return  model.hparams.is_swa(il); };

    const uint32_t size_base = kv_size;

    uint32_t size_swa = std::min(size_base, GGML_PAD(hparams.n_swa*n_seq_max + n_ubatch, n_pad));

    // when using full-size SWA cache, we set the SWA cache size to be equal to the base cache size
    if (swa_full) {
        LLAMA_LOG_WARN("%s: using full-size SWA cache (ref: %s)\n",
                __func__, "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");

        size_swa = size_base;
    }

    LLAMA_LOG_INFO("%s: creating non-SWA KV cache, size = %u cells\n", __func__, size_base);

    kv_base = std::make_unique<llama_kv_cache_unified>(
            model, std::move(filter_base), type_k, type_v,
            v_trans, offload, size_base, n_seq_max, n_pad,
            0, LLAMA_SWA_TYPE_NONE);

    LLAMA_LOG_INFO("%s: creating     SWA KV cache, size = %u cells\n", __func__, size_swa);

    kv_swa = std::make_unique<llama_kv_cache_unified>(
            model, std::move(filter_swa), type_k, type_v,
            v_trans, offload, size_swa, n_seq_max, n_pad,
            hparams.n_swa, hparams.swa_type);
}

void llama_kv_cache_unified_iswa::clear(bool data) {
    kv_base->clear(data);
    kv_swa ->clear(data);
}

bool llama_kv_cache_unified_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
    bool res = true;

    res = res & kv_base->seq_rm(seq_id, p0, p1);
    res = res & kv_swa ->seq_rm(seq_id, p0, p1);

    return res;
}

void llama_kv_cache_unified_iswa::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
    kv_base->seq_cp(seq_id_src, seq_id_dst, p0, p1);
    kv_swa ->seq_cp(seq_id_src, seq_id_dst, p0, p1);
}

void llama_kv_cache_unified_iswa::seq_keep(llama_seq_id seq_id) {
    kv_base->seq_keep(seq_id);
    kv_swa ->seq_keep(seq_id);
}

void llama_kv_cache_unified_iswa::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
    kv_base->seq_add(seq_id, p0, p1, shift);
    kv_swa ->seq_add(seq_id, p0, p1, shift);
}

void llama_kv_cache_unified_iswa::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
    kv_base->seq_div(seq_id, p0, p1, d);
    kv_swa ->seq_div(seq_id, p0, p1, d);
}

llama_pos llama_kv_cache_unified_iswa::seq_pos_min(llama_seq_id seq_id) const {
    // the base cache is a superset of the SWA cache, so we can just check the SWA cache
    return kv_swa->seq_pos_min(seq_id);
}

llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const {
    return kv_swa->seq_pos_max(seq_id);
}

llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
    GGML_UNUSED(embd_all);

    // first try simple split
    do {
        balloc.split_reset();

        std::vector<llama_ubatch> ubatches;
        while (true) {
            auto ubatch = balloc.split_simple(n_ubatch);

            if (ubatch.n_tokens == 0) {
                break;
            }

            ubatches.push_back(std::move(ubatch)); // NOLINT
        }

        auto heads_base = kv_base->prepare(ubatches);
        if (heads_base.empty()) {
            break;
        }

        auto heads_swa = kv_swa->prepare(ubatches);
        if (heads_swa.empty()) {
            break;
        }

        assert(heads_base.size() == heads_swa.size());

        return std::make_unique<llama_kv_cache_unified_iswa_state>(
                this, std::move(heads_base), std::move(heads_swa), std::move(ubatches));
    } while (false);

    // if it fails, try equal split
    do {
        balloc.split_reset();

        std::vector<llama_ubatch> ubatches;
        while (true) {
            auto ubatch = balloc.split_equal(n_ubatch);

            if (ubatch.n_tokens == 0) {
                break;
            }

            ubatches.push_back(std::move(ubatch)); // NOLINT
        }

        auto heads_base = kv_base->prepare(ubatches);
        if (heads_base.empty()) {
            break;
        }

        auto heads_swa = kv_swa->prepare(ubatches);
        if (heads_swa.empty()) {
            break;
        }

        assert(heads_base.size() == heads_swa.size());

        return std::make_unique<llama_kv_cache_unified_iswa_state>(
                this, std::move(heads_base), std::move(heads_swa), std::move(ubatches));
    } while (false);

    // TODO: if we fail again, we should attempt different splitting strategies
    //       but to do that properly, we first have to refactor the batches to be more flexible

    return std::make_unique<llama_kv_cache_unified_iswa_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}

llama_memory_state_ptr llama_kv_cache_unified_iswa::init_full() {
    return std::make_unique<llama_kv_cache_unified_iswa_state>(this);
}

llama_memory_state_ptr llama_kv_cache_unified_iswa::init_update(llama_context * lctx, bool optimize) {
    return std::make_unique<llama_kv_cache_unified_iswa_state>(this, lctx, optimize);
}

bool llama_kv_cache_unified_iswa::get_can_shift() const {
    return kv_base->get_size() == kv_swa->get_size();
}

void llama_kv_cache_unified_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
    kv_base->state_write(io, seq_id);
    kv_swa ->state_write(io, seq_id);
}

void llama_kv_cache_unified_iswa::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
    kv_base->state_read(io, seq_id);
    kv_swa ->state_read(io, seq_id);
}

llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_base() const {
    return kv_base.get();
}

llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_swa() const {
    return kv_swa.get();
}

//
// llama_kv_cache_unified_iswa_state
//

llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state(llama_memory_status status) : status(status) {}

llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state(
        llama_kv_cache_unified_iswa * kv) :
    state_base(kv->get_base()->init_full()),
    state_swa (kv->get_swa ()->init_full()),
    status(llama_memory_status_combine(state_base->get_status(), state_swa->get_status())) {
}

llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state(
        llama_kv_cache_unified_iswa * kv,
        llama_context * lctx,
        bool optimize) :
    state_base(kv->get_base()->init_update(lctx, optimize)),
    state_swa (kv->get_swa ()->init_update(lctx, optimize)),
    status(llama_memory_status_combine(state_base->get_status(), state_swa->get_status())) {
}

llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state(
        llama_kv_cache_unified_iswa * kv,
        std::vector<uint32_t> heads_base,
        std::vector<uint32_t> heads_swa,
        std::vector<llama_ubatch> ubatches) :
    ubatches(std::move(ubatches)),
    // note: here we copy the ubatches. not sure if this is ideal
    state_base(new llama_kv_cache_unified_state(kv->get_base(), std::move(heads_base), this->ubatches)),
    state_swa (new llama_kv_cache_unified_state(kv->get_swa (), std::move(heads_swa),  this->ubatches)),
    status(llama_memory_status_combine(state_base->get_status(), state_swa->get_status())) {
}

llama_kv_cache_unified_iswa_state:: ~llama_kv_cache_unified_iswa_state() = default;

bool llama_kv_cache_unified_iswa_state::next() {
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    state_base->next();
    state_swa ->next();

    if (++i_next >= ubatches.size()) {
        return false;
    }

    return true;
}

bool llama_kv_cache_unified_iswa_state::apply() {
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    bool res = true;

    res = res & state_base->apply();
    res = res & state_swa ->apply();

    return res;
}

llama_memory_status llama_kv_cache_unified_iswa_state::get_status() const {
    return status;
}

const llama_ubatch & llama_kv_cache_unified_iswa_state::get_ubatch() const {
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    return ubatches[i_next];
}

const llama_kv_cache_unified_state * llama_kv_cache_unified_iswa_state::get_base() const {
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    return static_cast<const llama_kv_cache_unified_state *>(state_base.get());
}

const llama_kv_cache_unified_state * llama_kv_cache_unified_iswa_state::get_swa()  const {
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    return static_cast<const llama_kv_cache_unified_state *>(state_swa.get());
}