Spaces:
Running
Running
File size: 27,304 Bytes
d9d0b94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 |
"""
================================================================================
UNIFIED AI REASONING BRAIN – CORE SYSTEM (PROPRIETARY)
================================================================================
© 2025 Solomon 8888. All Rights Reserved.
PROPRIETARY LICENSE – FREE TO USE
---------------------------------
This software is provided to you at no monetary cost for use within your
applications. You are granted a **non‑exclusive, royalty‑free licence** to run
the software *as‑is*. The following actions are strictly prohibited:
* Modifying, adapting, or creating derivative works of this source code.
* Copying, redistributing, or publicly disclosing the source code in any
form (including posting online, publishing, or sharing with third parties).
* Sublicensing, selling, or transferring the software to anyone else.
The source code is considered confidential and proprietary. Any unauthorized
use, modification, or distribution may result in civil and/or criminal
remedies.
Trademark Attribution
---------------------
Powered by Pro'VerBs™ Open‑Source Protocol
ADAPPT‑I™ Technology Implementation
All trademarks (Pro'VerBs™, ADAPPT‑I™, Dual Analysis Law Perspective™) are
registered. Proper attribution must be retained in any user‑facing
documentation, UI, or other public material.
================================================================================
"""
import json
import asyncio
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Callable, Union
from dataclasses import dataclass, field
from enum import Enum
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ============================================================================
# CORE DATA STRUCTURES
# ============================================================================
class ProtocolCategory(Enum):
"""Categories of reasoning protocols"""
CORE_REASONING = "core_reasoning"
QUANTUM_SPECIFIC = "quantum_specific"
MULTI_AGENT = "multi_agent"
ADVANCED_IMPLEMENTATION = "advanced_implementation"
VERIFICATION = "verification"
OPTIMIZATION = "optimization"
class ExecutionStatus(Enum):
"""Status of protocol execution"""
PENDING = "pending"
RUNNING = "running"
SUCCESS = "success"
FAILED = "failed"
CANCELLED = "cancelled"
@dataclass
class ReasoningContext:
"""Context maintained across reasoning operations"""
task_id: str
query: str
history: List[Dict[str, Any]] = field(default_factory=list)
memory: Dict[str, Any] = field(default_factory=dict)
metadata: Dict[str, Any] = field(default_factory=dict)
quantum_resources: Optional[Dict[str, Any]] = None
@dataclass
class ProtocolResult:
"""Result from protocol execution"""
protocol_name: str
status: ExecutionStatus
output: Any
reasoning_trace: List[str] = field(default_factory=list)
metadata: Dict[str, Any] = field(default_factory=dict)
error: Optional[str] = None
# ============================================================================
# BASE PROTOCOL INTERFACE
# ============================================================================
class BaseProtocol(ABC):
"""Base class for all reasoning protocols"""
def __init__(self, name: str, category: ProtocolCategory):
self.name = name
self.category = category
self.enabled = True
@abstractmethod
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
"""Execute the protocol"""
pass
def validate_input(self, context: ReasoningContext) -> bool:
"""Validate input context"""
return context.query is not None
# ============================================================================
# CORE REASONING PROTOCOLS (1-50)
# ============================================================================
class ChainOfThought(BaseProtocol):
"""Protocol 1: Generate intermediate reasoning steps"""
def __init__(self):
super().__init__("Chain-of-Thought", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
steps = []
steps.append(f"Breaking down: {context.query}")
steps.append("Step 1: Identify key components")
steps.append("Step 2: Establish relationships")
steps.append("Step 3: Apply logical inference")
steps.append("Step 4: Synthesize conclusion")
output = {
"reasoning_steps": steps,
"conclusion": "Result based on step-by-step reasoning"
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=output,
reasoning_trace=steps
)
class SelfConsistency(BaseProtocol):
"""Protocol 2: Sample multiple reasoning paths and aggregate"""
def __init__(self):
super().__init__("Self-Consistency", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
num_samples = kwargs.get('num_samples', 3)
samples = []
for i in range(num_samples):
sample = {
"path_id": i,
"reasoning": f"Alternative reasoning path {i+1}",
"result": f"Candidate answer {i+1}"
}
samples.append(sample)
# Vote/aggregate
aggregated = "Consensus answer from majority voting"
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output={"samples": samples, "consensus": aggregated},
reasoning_trace=[f"Generated {num_samples} reasoning paths"]
)
class TreeOfThoughts(BaseProtocol):
"""Protocol 3: Explore branching reasoning trees"""
def __init__(self):
super().__init__("Tree-of-Thoughts", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
search_method = kwargs.get('search_method', 'BFS')
tree = {
"root": context.query,
"branches": [
{"thought": "Approach 1: Direct solution", "score": 0.8},
{"thought": "Approach 2: Decomposition", "score": 0.9},
{"thought": "Approach 3: Analogical", "score": 0.7}
],
"best_path": "Approach 2 selected based on evaluation"
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=tree,
reasoning_trace=[f"Explored tree using {search_method}"]
)
class ReAct(BaseProtocol):
"""Protocol 5: Reason + Act cycles"""
def __init__(self):
super().__init__("ReAct", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
max_iterations = kwargs.get('max_iterations', 5)
tools = kwargs.get('tools', [])
trace = []
for i in range(max_iterations):
thought = f"Iteration {i+1}: Reasoning about next action"
action = f"Action: Use tool or gather info"
observation = f"Observation: Result from action"
trace.extend([thought, action, observation])
# Simulate convergence
if i >= 2:
break
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output={"final_answer": "Result after reason-act cycles"},
reasoning_trace=trace
)
class Reflexion(BaseProtocol):
"""Protocol 9: Self-reflection with memory"""
def __init__(self):
super().__init__("Reflexion", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
# Generate initial attempt
attempt = "Initial solution attempt"
# Reflect on attempt
reflection = {
"what_worked": ["Logical approach", "Clear reasoning"],
"what_failed": ["Missing edge case", "Incomplete analysis"],
"improvements": ["Add validation", "Consider alternatives"]
}
# Store reflection in memory
context.memory['reflexion_history'] = context.memory.get('reflexion_history', [])
context.memory['reflexion_history'].append(reflection)
# Improved attempt
improved = "Improved solution based on reflection"
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output={"attempt": attempt, "reflection": reflection, "improved": improved},
reasoning_trace=["Initial attempt", "Reflection", "Improvement"]
)
class RAG(BaseProtocol):
"""Protocol 15: Retrieval‑Augmented Generation"""
def __init__(self):
super().__init__("RAG", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
# Simulate retrieval
retrieved_docs = [
{"doc_id": 1, "content": "Relevant information from knowledge base"},
{"doc_id": 2, "content": "Supporting evidence and data"}
]
# Generate with retrieved context
output = {
"retrieved": retrieved_docs,
"generated_response": "Answer synthesized from retrieved knowledge",
"sources": [1, 2]
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=output,
reasoning_trace=["Retrieved relevant documents", "Synthesized answer"]
)
# ============================================================================
# QUANTUM‑SPECIFIC PROTOCOLS (51‑100)
# ============================================================================
class QuantumJobOrchestration(BaseProtocol):
"""Protocol 51: Orchestrate quantum computing jobs"""
def __init__(self):
super().__init__("Quantum-Job-Orchestration", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
circuit = kwargs.get('circuit', None)
backend = kwargs.get('backend', 'simulator')
job = {
"circuit": circuit or "quantum_circuit_placeholder",
"backend": backend,
"transpiled": True,
"job_id": "qjob_12345",
"status": "completed",
"results": {"counts": {"00": 512, "11": 512}}
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=job,
reasoning_trace=["Circuit transpiled", "Job submitted", "Results collected"]
)
class VQE(BaseProtocol):
"""Protocol 57: Variational Quantum Eigensolver"""
def __init__(self):
super().__init__("VQE", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
hamiltonian = kwargs.get('hamiltonian', 'H = Z0*Z1')
ansatz = kwargs.get('ansatz', 'hardware_efficient')
result = {
"hamiltonian": hamiltonian,
"ansatz": ansatz,
"optimal_parameters": [0.5, 1.2, 0.8],
"ground_state_energy": -1.85,
"iterations": 50
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=result,
reasoning_trace=["Initialized ansatz", "Optimized parameters", "Found ground state"]
)
class QAOA(BaseProtocol):
"""Protocol 58: Quantum Approximate Optimization Algorithm"""
def __init__(self):
super().__init__("QAOA", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
problem = kwargs.get('problem', 'MaxCut')
layers = kwargs.get('layers', 3)
result = {
"problem": problem,
"layers": layers,
"optimal_solution": [1, 0, 1, 0, 1],
"approximation_ratio": 0.92,
"objective_value": 15.3
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=result,
reasoning_trace=[f"QAOA with {layers} layers", "Optimized parameters", "Found solution"]
)
class CircuitTranspilation(BaseProtocol):
"""Protocol 65: Map logical circuits to physical hardware"""
def __init__(self):
super().__init__("Circuit-Transpilation", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
circuit = kwargs.get('circuit', 'logical_circuit')
backend = kwargs.get('backend', 'ibm_perth')
result = {
"original_depth": 50,
"transpiled_depth": 38,
"gate_count_reduction": "24%",
"topology": "heavy-hex",
"optimization_level": 3
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=result,
reasoning_trace=["Analyzed circuit", "Mapped to topology", "Optimized gates"]
)
class ErrorMitigation(BaseProtocol):
"""Protocol 66: Apply error mitigation techniques"""
def __init__(self):
super().__init__("Error-Mitigation", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
technique = kwargs.get('technique', 'ZNE')
result = {
"technique": technique,
"raw_expectation": 0.45,
"mitigated_expectation": 0.72,
"improvement": "60%",
"confidence": 0.95
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=result,
reasoning_trace=["Applied ZNE", "Extrapolated to zero noise", "Improved fidelity"]
)
# ============================================================================
# MULTI‑AGENT PROTOCOLS (73‑100)
# ============================================================================
class MultiAgentQuantumCoordination(BaseProtocol):
"""Protocol 73: Orchestrate multiple agents on quantum problems"""
def __init__(self):
super().__init__("Multi-Agent-Coordination", ProtocolCategory.MULTI_AGENT)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
num_agents = kwargs.get('num_agents', 3)
coordination = {
"agents": [f"Agent-{i}" for i in range(num_agents)],
"task_allocation": {
"Agent-0": "Circuit optimization",
"Agent-1": "Parameter tuning",
"Agent-2": "Result analysis"
},
"communication": "Message passing protocol",
"convergence": "Achieved after 15 iterations"
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=coordination,
reasoning_trace=["Allocated tasks", "Coordinated execution", "Aggregated results"]
)
class ContractNetProtocol(BaseProtocol):
"""Protocol 74: Decentralized task allocation"""
def __init__(self):
super().__init__("Contract-Net-Protocol", ProtocolCategory.MULTI_AGENT)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
task = kwargs.get('task', 'quantum_optimization')
auction = {
"task": task,
"bids": [
{"agent": "Agent-A", "cost": 100, "quality": 0.9},
{"agent": "Agent-B", "cost": 80, "quality": 0.85},
{"agent": "Agent-C", "cost": 120, "quality": 0.95}
],
"winner": "Agent-C",
"reason": "Best quality‑to‑cost ratio"
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=auction,
reasoning_trace=["Announced task", "Collected bids", "Selected winner"]
)
# ============================================================================
# PROTOCOL REGISTRY
# ============================================================================
class ProtocolRegistry:
"""Registry of all available protocols"""
def __init__(self):
self.protocols: Dict[str, BaseProtocol] = {}
self._register_default_protocols()
def _register_default_protocols(self):
"""Register all default protocols"""
# Core reasoning (1‑50)
self.register(ChainOfThought())
self.register(SelfConsistency())
self.register(TreeOfThoughts())
self.register(ReAct())
self.register(Reflexion())
self.register(RAG())
# Quantum‑specific (51‑100)
self.register(QuantumJobOrchestration())
self.register(VQE())
self.register(QAOA())
self.register(CircuitTranspilation())
self.register(ErrorMitigation())
# Multi‑agent (73‑100)
self.register(MultiAgentQuantumCoordination())
self.register(ContractNetProtocol())
def register(self, protocol: BaseProtocol):
"""Register a new protocol"""
self.protocols[protocol.name] = protocol
logger.info(f"Registered protocol: {protocol.name}")
def get(self, name: str) -> Optional[BaseProtocol]:
"""Get protocol by name"""
return self.protocols.get(name)
def list_by_category(self, category: ProtocolCategory) -> List[BaseProtocol]:
"""List protocols by category"""
return [p for p in self.protocols.values() if p.category == category]
def list_all(self) -> List[str]:
"""List all protocol names"""
return list(self.protocols.keys())
# ============================================================================
# INTELLIGENT ROUTER
# ============================================================================
class IntelligentRouter:
"""Routes queries to appropriate protocols"""
def __init__(self, registry: ProtocolRegistry):
self.registry = registry
def route(self, context: ReasoningContext, preferences: Optional[Dict] = None) -> List[str]:
"""Determine which protocols to use"""
preferences = preferences or {}
query_lower = context.query.lower()
selected = []
# Keyword‑based routing (simplified)
if any(kw in query_lower for kw in ['quantum', 'circuit', 'qubit']):
selected.extend(['Quantum-Job-Orchestration', 'Circuit-Transpilation'])
if 'optimize' in query_lower:
selected.extend(['QAOA', 'VQE'])
if 'multi-step' in query_lower or 'reasoning' in query_lower:
selected.append('Chain-of-Thought')
if 'verify' in query_lower or 'check' in query_lower:
selected.append('Self-Consistency')
if 'search' in query_lower or 'explore' in query_lower:
selected.append('Tree-of-Thoughts')
if 'knowledge' in query_lower or 'retrieve' in query_lower:
selected.append('RAG')
# Default to Chain‑of‑Thought if nothing selected
if not selected:
selected.append('Chain-of-Thought')
# Apply preferences
if preferences.get('use_reflection', False):
selected.append('Reflexion')
if preferences.get('multi_agent', False):
selected.append('Multi-Agent-Coordination')
return selected
# ============================================================================
# EXECUTION ENGINE
# ============================================================================
class ExecutionEngine:
"""Execute protocols and manage workflows"""
def __init__(self, registry: ProtocolRegistry):
self.registry = registry
async def execute_single(
self,
protocol_name: str,
context: ReasoningContext,
**kwargs
) -> ProtocolResult:
"""Execute a single protocol"""
protocol = self.registry.get(protocol_name)
if not protocol:
return ProtocolResult(
protocol_name=protocol_name,
status=ExecutionStatus.FAILED,
output=None,
error=f"Protocol {protocol_name} not found"
)
if not protocol.enabled:
return ProtocolResult(
protocol_name=protocol_name,
status=ExecutionStatus.FAILED,
output=None,
error=f"Protocol {protocol_name} is disabled"
)
try:
result = await protocol.execute(context, **kwargs)
context.history.append({
"protocol": protocol_name,
"result": result.output,
"trace": result.reasoning_trace
})
return result
except Exception as e:
logger.error(f"Error executing {protocol_name}: {str(e)}")
return ProtocolResult(
protocol_name=protocol_name,
status=ExecutionStatus.FAILED,
output=None,
error=str(e)
)
async def execute_pipeline(
self,
protocol_names: List[str],
context: ReasoningContext,
**kwargs
) -> List[ProtocolResult]:
"""Execute multiple protocols in sequence"""
results = []
for name in protocol_names:
result = await self.execute_single(name, context, **kwargs)
results.append(result)
# Stop on failure if requested
if kwargs.get('stop_on_failure', False) and result.status == ExecutionStatus.FAILED:
break
return results
async def execute_parallel(
self,
protocol_names: List[str],
context: ReasoningContext,
**kwargs
) -> List[ProtocolResult]:
"""Execute multiple protocols in parallel"""
tasks = [self.execute_single(name, context, **kwargs) for name in protocol_names]
return await asyncio.gather(*tasks)
# ============================================================================
# UNIFIED BRAIN
# ============================================================================
class UnifiedBrain:
"""
Main orchestrator – the "Brain" that integrates all protocols
"""
def __init__(self):
self.registry = ProtocolRegistry()
self.router = IntelligentRouter(self.registry)
self.engine = ExecutionEngine(self.registry)
self.active_contexts: Dict[str, ReasoningContext] = {}
logger.info("Unified Brain initialized with all protocols")
async def process(
self,
query: str,
task_id: Optional[str] = None,
preferences: Optional[Dict] = None,
execution_mode: str = 'sequential',
**kwargs
) -> Dict[str, Any]:
"""
Main entry point – process a query using appropriate protocols
Args:
query: The input query/task
task_id: Optional task identifier
preferences: Routing and execution preferences
execution_mode: 'sequential' or 'parallel'
**kwargs: Additional arguments passed to protocols
"""
task_id = task_id or f"task_{len(self.active_contexts)}"
# Create context
context = ReasoningContext(task_id=task_id, query=query)
self.active_contexts[task_id] = context
# Route to appropriate protocols
selected_protocols = self.router.route(context, preferences)
logger.info(f"Selected protocols: {selected_protocols}")
# Execute protocols
if execution_mode == 'parallel':
results = await self.engine.execute_parallel(selected_protocols, context, **kwargs)
else:
results = await self.engine.execute_pipeline(selected_protocols, context, **kwargs)
# Compile response
response = {
"task_id": task_id,
"query": query,
"protocols_used": selected_protocols,
"results": [
{
"protocol": r.protocol_name,
"status": r.status.value,
"output": r.output,
"trace": r.reasoning_trace
}
for r in results
],
"context_history": context.history,
"success": all(r.status == ExecutionStatus.SUCCESS for r in results)
}
return response
def get_available_protocols(self) -> Dict[str, List[str]]:
"""Get all available protocols organized by category"""
categorized = {}
for category in ProtocolCategory:
protocols = self.registry.list_by_category(category)
categorized[category.value] = [p.name for p in protocols]
return categorized
def register_custom_protocol(self, protocol: BaseProtocol):
"""Register a custom protocol"""
self.registry.register(protocol)
def enable_protocol(self, name: str):
"""Enable a protocol"""
protocol = self.registry.get(name)
if protocol:
protocol.enabled = True
def disable_protocol(self, name: str):
"""Disable a protocol"""
protocol = self.registry.get(name)
if protocol:
protocol.enabled = False
|