Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,6 +23,8 @@ from transformers import (
|
|
| 23 |
)
|
| 24 |
from transformers.image_utils import load_image
|
| 25 |
|
|
|
|
|
|
|
| 26 |
import re
|
| 27 |
import ast
|
| 28 |
import html
|
|
@@ -34,7 +36,6 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
| 34 |
|
| 35 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 36 |
|
| 37 |
-
# --- Model Loading ---
|
| 38 |
# Load Nanonets-OCR-s
|
| 39 |
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
|
| 40 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
|
@@ -86,7 +87,7 @@ model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 86 |
torch_dtype=torch.float16
|
| 87 |
).to(device).eval()
|
| 88 |
|
| 89 |
-
#
|
| 90 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
| 91 |
"""Add random padding to an image based on its size."""
|
| 92 |
image = image.convert("RGB")
|
|
@@ -120,7 +121,6 @@ def downsample_video(video_path):
|
|
| 120 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 121 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 122 |
frames = []
|
| 123 |
-
# Use 10 frames for video processing
|
| 124 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 125 |
for i in frame_indices:
|
| 126 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
|
@@ -133,11 +133,76 @@ def downsample_video(video_path):
|
|
| 133 |
vidcap.release()
|
| 134 |
return frames
|
| 135 |
|
| 136 |
-
|
| 137 |
-
def
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
| 142 |
if "<chart>" in cleaned_output:
|
| 143 |
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
|
@@ -145,44 +210,43 @@ def format_smoldocling_output(buffer_text, images):
|
|
| 145 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 146 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 147 |
markdown_output = doc.export_to_markdown()
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
|
| 152 |
-
|
| 153 |
-
def
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
if model_name == "Nanonets-OCR-s":
|
| 156 |
-
|
|
|
|
| 157 |
elif model_name == "MonkeyOCR-Recognition":
|
| 158 |
-
|
|
|
|
| 159 |
elif model_name == "SmolDocling-256M-preview":
|
| 160 |
-
|
|
|
|
| 161 |
elif model_name == "Typhoon-OCR-7B":
|
| 162 |
-
|
|
|
|
| 163 |
elif model_name == "Thyme-RL":
|
| 164 |
-
|
|
|
|
| 165 |
else:
|
| 166 |
-
return None, None
|
| 167 |
-
|
| 168 |
-
@spaces.GPU
|
| 169 |
-
def generate_response(model_name: str, text: str, media_input, media_type: str,
|
| 170 |
-
max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
|
| 171 |
-
"""Unified generation function for both image and video."""
|
| 172 |
-
processor, model = get_model_and_processor(model_name)
|
| 173 |
-
if not processor or not model:
|
| 174 |
yield "Invalid model selected.", "Invalid model selected."
|
| 175 |
return
|
| 176 |
|
| 177 |
-
if
|
| 178 |
-
yield
|
| 179 |
return
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
images = [frame for frame, _ in frames]
|
| 184 |
-
else: # image
|
| 185 |
-
images = [media_input]
|
| 186 |
|
| 187 |
if model_name == "SmolDocling-256M-preview":
|
| 188 |
if "OTSL" in text or "code" in text:
|
|
@@ -191,7 +255,12 @@ def generate_response(model_name: str, text: str, media_input, media_type: str,
|
|
| 191 |
text = normalize_values(text, target_max=500)
|
| 192 |
|
| 193 |
messages = [
|
| 194 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
]
|
| 196 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 197 |
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
|
@@ -211,24 +280,23 @@ def generate_response(model_name: str, text: str, media_input, media_type: str,
|
|
| 211 |
|
| 212 |
buffer = ""
|
| 213 |
for new_text in streamer:
|
| 214 |
-
buffer += new_text.replace("<|
|
| 215 |
yield buffer, buffer
|
| 216 |
|
| 217 |
if model_name == "SmolDocling-256M-preview":
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
|
| 231 |
-
#
|
| 232 |
image_examples = [
|
| 233 |
["Reconstruct the doc [table] as it is.", "images/0.png"],
|
| 234 |
["Describe the image!", "images/8.png"],
|
|
@@ -238,7 +306,7 @@ image_examples = [
|
|
| 238 |
["Convert chart to OTSL.", "images/4.png"],
|
| 239 |
["Convert code to text", "images/5.jpg"],
|
| 240 |
["Convert this table to OTSL.", "images/6.jpg"],
|
| 241 |
-
["Convert formula to
|
| 242 |
]
|
| 243 |
|
| 244 |
video_examples = [
|
|
@@ -246,292 +314,84 @@ video_examples = [
|
|
| 246 |
["Explain the video in detail.", "videos/2.mp4"]
|
| 247 |
]
|
| 248 |
|
| 249 |
-
#
|
| 250 |
css = """
|
| 251 |
-
/* Left sidebar styles */
|
| 252 |
-
.sidebar {
|
| 253 |
-
background-color: #f8f9fa;
|
| 254 |
-
border-right: 1px solid #e9ecef;
|
| 255 |
-
padding: 20px;
|
| 256 |
-
height: 100vh;
|
| 257 |
-
}
|
| 258 |
-
|
| 259 |
-
/* Main content area */
|
| 260 |
-
.content-area {
|
| 261 |
-
padding: 20px;
|
| 262 |
-
}
|
| 263 |
-
|
| 264 |
-
/* Document grid */
|
| 265 |
-
.doc-grid {
|
| 266 |
-
display: grid;
|
| 267 |
-
grid-template-columns: repeat(5, 1fr);
|
| 268 |
-
gap: 10px;
|
| 269 |
-
margin: 20px 0;
|
| 270 |
-
}
|
| 271 |
-
|
| 272 |
-
.doc-item {
|
| 273 |
-
border: 1px solid #dee2e6;
|
| 274 |
-
border-radius: 8px;
|
| 275 |
-
padding: 10px;
|
| 276 |
-
text-align: center;
|
| 277 |
-
height: 120px;
|
| 278 |
-
background-color: #f8f9fa;
|
| 279 |
-
cursor: pointer;
|
| 280 |
-
transition: all 0.2s ease;
|
| 281 |
-
}
|
| 282 |
-
|
| 283 |
-
.doc-item:hover {
|
| 284 |
-
border-color: #007bff;
|
| 285 |
-
background-color: #e9f0ff;
|
| 286 |
-
}
|
| 287 |
-
|
| 288 |
-
/* Upload and controls area */
|
| 289 |
-
.upload-controls {
|
| 290 |
-
display: flex;
|
| 291 |
-
align-items: center;
|
| 292 |
-
gap: 10px;
|
| 293 |
-
margin: 20px 0;
|
| 294 |
-
padding: 15px;
|
| 295 |
-
border: 1px solid #e9ecef;
|
| 296 |
-
border-radius: 8px;
|
| 297 |
-
}
|
| 298 |
-
|
| 299 |
-
.file-upload {
|
| 300 |
-
flex: 1;
|
| 301 |
-
}
|
| 302 |
-
|
| 303 |
-
.model-dropdown {
|
| 304 |
-
width: 200px;
|
| 305 |
-
}
|
| 306 |
-
|
| 307 |
.submit-btn {
|
| 308 |
-
background-color: #
|
| 309 |
-
color: white;
|
| 310 |
-
border: none;
|
| 311 |
-
border-radius: 4px;
|
| 312 |
-
padding: 10px 20px;
|
| 313 |
-
font-size: 1.2rem;
|
| 314 |
-
cursor: pointer;
|
| 315 |
-
transition: background-color 0.2s;
|
| 316 |
}
|
| 317 |
-
|
| 318 |
.submit-btn:hover {
|
| 319 |
-
background-color: #
|
| 320 |
-
}
|
| 321 |
-
|
| 322 |
-
/* Output area */
|
| 323 |
-
.output-area {
|
| 324 |
-
margin-top: 20px;
|
| 325 |
}
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
color: white;
|
| 331 |
-
border: none;
|
| 332 |
-
padding: 8px 15px;
|
| 333 |
-
border-radius: 4px;
|
| 334 |
-
cursor: pointer;
|
| 335 |
-
}
|
| 336 |
-
|
| 337 |
-
.add-conv-btn:hover {
|
| 338 |
-
background-color: #218838;
|
| 339 |
-
}
|
| 340 |
-
|
| 341 |
-
/* Examples section */
|
| 342 |
-
.examples-section {
|
| 343 |
-
margin-top: 20px;
|
| 344 |
-
}
|
| 345 |
-
|
| 346 |
-
/* Header styles */
|
| 347 |
-
.header {
|
| 348 |
-
margin-bottom: 15px;
|
| 349 |
-
}
|
| 350 |
-
|
| 351 |
-
/* Media upload icon styling */
|
| 352 |
-
.upload-icon {
|
| 353 |
-
font-size: 1.5rem;
|
| 354 |
-
color: #6c757d;
|
| 355 |
-
margin-right: 10px;
|
| 356 |
-
}
|
| 357 |
-
|
| 358 |
-
/* Document icon styling */
|
| 359 |
-
.doc-icon {
|
| 360 |
-
font-size: 2rem;
|
| 361 |
-
color: #6c757d;
|
| 362 |
-
margin-bottom: 5px;
|
| 363 |
-
}
|
| 364 |
-
|
| 365 |
-
/* Query input */
|
| 366 |
-
.query-input {
|
| 367 |
-
margin: 15px 0;
|
| 368 |
-
}
|
| 369 |
-
|
| 370 |
-
/* Model dropdown styling */
|
| 371 |
-
.model-dropdown .select {
|
| 372 |
-
padding: 8px 12px;
|
| 373 |
-
border: 1px solid #ced4da;
|
| 374 |
-
border-radius: 4px;
|
| 375 |
-
}
|
| 376 |
-
|
| 377 |
-
/* Output styling */
|
| 378 |
-
.output-text {
|
| 379 |
-
border: 1px solid #ced4da;
|
| 380 |
-
border-radius: 4px;
|
| 381 |
-
padding: 10px;
|
| 382 |
-
min-height: 150px;
|
| 383 |
-
}
|
| 384 |
-
|
| 385 |
-
/* Add some space between elements */
|
| 386 |
-
.gr-box {
|
| 387 |
-
margin-bottom: 15px;
|
| 388 |
}
|
| 389 |
"""
|
| 390 |
|
| 391 |
-
#
|
| 392 |
-
with gr.Blocks(css=css) as demo:
|
| 393 |
-
# Initialize state variables that hold data
|
| 394 |
-
image_upload_state = gr.State(None)
|
| 395 |
-
video_upload_state = gr.State(None)
|
| 396 |
-
media_type_state = gr.State("image")
|
| 397 |
-
|
| 398 |
gr.Markdown("# **[Multimodal OCR2](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
| 399 |
-
|
| 400 |
with gr.Row():
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
# Document grid (5 document thumbnails as shown in the sketch)
|
| 420 |
-
with gr.Row(elem_classes="doc-grid"):
|
| 421 |
-
for i in range(5):
|
| 422 |
-
with gr.Column():
|
| 423 |
-
doc_item = gr.Image(
|
| 424 |
-
value=None,
|
| 425 |
-
label=f"Document {i+1}",
|
| 426 |
-
height=120,
|
| 427 |
-
show_label=False,
|
| 428 |
-
container=False,
|
| 429 |
-
elem_classes="doc-item"
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
# Define input components before they are referenced by gr.Examples
|
| 433 |
-
with gr.Group(elem_classes="upload-controls"):
|
| 434 |
-
with gr.Column(elem_classes="file-upload"):
|
| 435 |
-
file_upload = gr.File(
|
| 436 |
-
label="Upload files (image/video)",
|
| 437 |
-
file_types=["image", "video"],
|
| 438 |
-
elem_classes="file-upload"
|
| 439 |
-
)
|
| 440 |
-
|
| 441 |
-
model_dropdown = gr.Dropdown(
|
| 442 |
-
choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "Thyme-RL", "Typhoon-OCR-7B", "SmolDocling-256M-preview"],
|
| 443 |
-
value="Nanonets-OCR-s",
|
| 444 |
-
label="Select Model",
|
| 445 |
-
elem_classes="model-dropdown"
|
| 446 |
)
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
elem_classes="query-input"
|
| 454 |
-
)
|
| 455 |
-
|
| 456 |
-
# Examples section
|
| 457 |
-
gr.Markdown("### Examples")
|
| 458 |
-
with gr.Row():
|
| 459 |
-
with gr.Column():
|
| 460 |
-
gr.Examples(
|
| 461 |
-
examples=image_examples,
|
| 462 |
-
inputs=[query_input, file_upload], # Corrected inputs
|
| 463 |
-
label="Image Examples"
|
| 464 |
-
)
|
| 465 |
-
with gr.Column():
|
| 466 |
-
gr.Examples(
|
| 467 |
-
examples=video_examples,
|
| 468 |
-
inputs=[query_input, file_upload], # Corrected inputs
|
| 469 |
-
label="Video Examples"
|
| 470 |
-
)
|
| 471 |
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 477 |
-
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 478 |
-
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 479 |
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
file_upload.change(
|
| 502 |
-
fn=handle_file_upload,
|
| 503 |
-
inputs=[file_upload],
|
| 504 |
-
outputs=[media_type_state, image_upload_state, video_upload_state] # Corrected outputs
|
| 505 |
)
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
elif m_type == "video" and vid is not None:
|
| 512 |
-
media_input = vid
|
| 513 |
-
else:
|
| 514 |
-
yield "Please upload a valid file.", "Please upload a valid file."
|
| 515 |
-
return
|
| 516 |
-
|
| 517 |
-
yield from generate_response(model, text, media_input, m_type, max_tokens, temp, top_p_val, top_k_val, rep_penalty)
|
| 518 |
-
|
| 519 |
-
submit_btn.click(
|
| 520 |
-
fn=generate_wrapper,
|
| 521 |
-
inputs=[
|
| 522 |
-
query_input,
|
| 523 |
-
image_upload_state, # Corrected input state
|
| 524 |
-
video_upload_state, # Corrected input state
|
| 525 |
-
model_dropdown,
|
| 526 |
-
max_new_tokens,
|
| 527 |
-
temperature,
|
| 528 |
-
top_p,
|
| 529 |
-
top_k,
|
| 530 |
-
repetition_penalty,
|
| 531 |
-
media_type_state # Corrected input state
|
| 532 |
-
],
|
| 533 |
-
outputs=[raw_output, raw_output]
|
| 534 |
)
|
| 535 |
|
| 536 |
if __name__ == "__main__":
|
| 537 |
-
demo.queue(max_size=50).launch(share=True, show_error=True)
|
|
|
|
| 23 |
)
|
| 24 |
from transformers.image_utils import load_image
|
| 25 |
|
| 26 |
+
from docling_core.types.doc import DoclingDocument, DocTagsDocument
|
| 27 |
+
|
| 28 |
import re
|
| 29 |
import ast
|
| 30 |
import html
|
|
|
|
| 36 |
|
| 37 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 38 |
|
|
|
|
| 39 |
# Load Nanonets-OCR-s
|
| 40 |
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
|
| 41 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
|
|
|
| 87 |
torch_dtype=torch.float16
|
| 88 |
).to(device).eval()
|
| 89 |
|
| 90 |
+
# Preprocessing functions for SmolDocling-256M
|
| 91 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
| 92 |
"""Add random padding to an image based on its size."""
|
| 93 |
image = image.convert("RGB")
|
|
|
|
| 121 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 122 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 123 |
frames = []
|
|
|
|
| 124 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 125 |
for i in frame_indices:
|
| 126 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
|
|
|
| 133 |
vidcap.release()
|
| 134 |
return frames
|
| 135 |
|
| 136 |
+
@spaces.GPU
|
| 137 |
+
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 138 |
+
max_new_tokens: int = 1024,
|
| 139 |
+
temperature: float = 0.6,
|
| 140 |
+
top_p: float = 0.9,
|
| 141 |
+
top_k: int = 50,
|
| 142 |
+
repetition_penalty: float = 1.2):
|
| 143 |
+
"""Generate responses for image input using the selected model."""
|
| 144 |
+
if model_name == "Nanonets-OCR-s":
|
| 145 |
+
processor = processor_m
|
| 146 |
+
model = model_m
|
| 147 |
+
elif model_name == "MonkeyOCR-Recognition":
|
| 148 |
+
processor = processor_g
|
| 149 |
+
model = model_g
|
| 150 |
+
elif model_name == "SmolDocling-256M-preview":
|
| 151 |
+
processor = processor_x
|
| 152 |
+
model = model_x
|
| 153 |
+
elif model_name == "Typhoon-OCR-7B":
|
| 154 |
+
processor = processor_l
|
| 155 |
+
model = model_l
|
| 156 |
+
elif model_name == "Thyme-RL":
|
| 157 |
+
processor = processor_n
|
| 158 |
+
model = model_n
|
| 159 |
+
else:
|
| 160 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 161 |
+
return
|
| 162 |
+
|
| 163 |
+
if image is None:
|
| 164 |
+
yield "Please upload an image.", "Please upload an image."
|
| 165 |
+
return
|
| 166 |
+
|
| 167 |
+
images = [image]
|
| 168 |
+
|
| 169 |
+
if model_name == "SmolDocling-256M-preview":
|
| 170 |
+
if "OTSL" in text or "code" in text:
|
| 171 |
+
images = [add_random_padding(img) for img in images]
|
| 172 |
+
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
| 173 |
+
text = normalize_values(text, target_max=500)
|
| 174 |
+
|
| 175 |
+
messages = [
|
| 176 |
+
{
|
| 177 |
+
"role": "user",
|
| 178 |
+
"content": [{"type": "image"} for _ in images] + [
|
| 179 |
+
{"type": "text", "text": text}
|
| 180 |
+
]
|
| 181 |
+
}
|
| 182 |
+
]
|
| 183 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 184 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
| 185 |
+
|
| 186 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 187 |
+
generation_kwargs = {
|
| 188 |
+
**inputs,
|
| 189 |
+
"streamer": streamer,
|
| 190 |
+
"max_new_tokens": max_new_tokens,
|
| 191 |
+
"temperature": temperature,
|
| 192 |
+
"top_p": top_p,
|
| 193 |
+
"top_k": top_k,
|
| 194 |
+
"repetition_penalty": repetition_penalty,
|
| 195 |
+
}
|
| 196 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 197 |
+
thread.start()
|
| 198 |
+
|
| 199 |
+
buffer = ""
|
| 200 |
+
for new_text in streamer:
|
| 201 |
+
buffer += new_text.replace("<|im_end|>", "")
|
| 202 |
+
yield buffer, buffer
|
| 203 |
+
|
| 204 |
+
if model_name == "SmolDocling-256M-preview":
|
| 205 |
+
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 206 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
| 207 |
if "<chart>" in cleaned_output:
|
| 208 |
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
|
|
|
| 210 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 211 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 212 |
markdown_output = doc.export_to_markdown()
|
| 213 |
+
yield buffer, markdown_output
|
| 214 |
+
else:
|
| 215 |
+
yield buffer, cleaned_output
|
| 216 |
|
| 217 |
+
@spaces.GPU
|
| 218 |
+
def generate_video(model_name: str, text: str, video_path: str,
|
| 219 |
+
max_new_tokens: int = 1024,
|
| 220 |
+
temperature: float = 0.6,
|
| 221 |
+
top_p: float = 0.9,
|
| 222 |
+
top_k: int = 50,
|
| 223 |
+
repetition_penalty: float = 1.2):
|
| 224 |
+
"""Generate responses for video input using the selected model."""
|
| 225 |
if model_name == "Nanonets-OCR-s":
|
| 226 |
+
processor = processor_m
|
| 227 |
+
model = model_m
|
| 228 |
elif model_name == "MonkeyOCR-Recognition":
|
| 229 |
+
processor = processor_g
|
| 230 |
+
model = model_g
|
| 231 |
elif model_name == "SmolDocling-256M-preview":
|
| 232 |
+
processor = processor_x
|
| 233 |
+
model = model_x
|
| 234 |
elif model_name == "Typhoon-OCR-7B":
|
| 235 |
+
processor = processor_l
|
| 236 |
+
model = model_l
|
| 237 |
elif model_name == "Thyme-RL":
|
| 238 |
+
processor = processor_n
|
| 239 |
+
model = model_n
|
| 240 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
yield "Invalid model selected.", "Invalid model selected."
|
| 242 |
return
|
| 243 |
|
| 244 |
+
if video_path is None:
|
| 245 |
+
yield "Please upload a video.", "Please upload a video."
|
| 246 |
return
|
| 247 |
|
| 248 |
+
frames = downsample_video(video_path)
|
| 249 |
+
images = [frame for frame, _ in frames]
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
if model_name == "SmolDocling-256M-preview":
|
| 252 |
if "OTSL" in text or "code" in text:
|
|
|
|
| 255 |
text = normalize_values(text, target_max=500)
|
| 256 |
|
| 257 |
messages = [
|
| 258 |
+
{
|
| 259 |
+
"role": "user",
|
| 260 |
+
"content": [{"type": "image"} for _ in images] + [
|
| 261 |
+
{"type": "text", "text": text}
|
| 262 |
+
]
|
| 263 |
+
}
|
| 264 |
]
|
| 265 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 266 |
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
|
|
|
|
| 280 |
|
| 281 |
buffer = ""
|
| 282 |
for new_text in streamer:
|
| 283 |
+
buffer += new_text.replace("<|im_end|>", "")
|
| 284 |
yield buffer, buffer
|
| 285 |
|
| 286 |
if model_name == "SmolDocling-256M-preview":
|
| 287 |
+
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 288 |
+
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
| 289 |
+
if "<chart>" in cleaned_output:
|
| 290 |
+
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
| 291 |
+
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
| 292 |
+
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 293 |
+
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 294 |
+
markdown_output = doc.export_to_markdown()
|
| 295 |
+
yield buffer, markdown_output
|
| 296 |
+
else:
|
| 297 |
+
yield buffer, cleaned_output
|
|
|
|
| 298 |
|
| 299 |
+
# Define examples for image and video inference
|
| 300 |
image_examples = [
|
| 301 |
["Reconstruct the doc [table] as it is.", "images/0.png"],
|
| 302 |
["Describe the image!", "images/8.png"],
|
|
|
|
| 306 |
["Convert chart to OTSL.", "images/4.png"],
|
| 307 |
["Convert code to text", "images/5.jpg"],
|
| 308 |
["Convert this table to OTSL.", "images/6.jpg"],
|
| 309 |
+
["Convert formula to late.", "images/7.jpg"],
|
| 310 |
]
|
| 311 |
|
| 312 |
video_examples = [
|
|
|
|
| 314 |
["Explain the video in detail.", "videos/2.mp4"]
|
| 315 |
]
|
| 316 |
|
| 317 |
+
#css
|
| 318 |
css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
.submit-btn {
|
| 320 |
+
background-color: #2980b9 !important;
|
| 321 |
+
color: white !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
}
|
|
|
|
| 323 |
.submit-btn:hover {
|
| 324 |
+
background-color: #3498db !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
}
|
| 326 |
+
.canvas-output {
|
| 327 |
+
border: 2px solid #4682B4;
|
| 328 |
+
border-radius: 10px;
|
| 329 |
+
padding: 20px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
}
|
| 331 |
"""
|
| 332 |
|
| 333 |
+
# Create the Gradio Interface
|
| 334 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
gr.Markdown("# **[Multimodal OCR2](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
|
|
|
|
| 336 |
with gr.Row():
|
| 337 |
+
with gr.Column():
|
| 338 |
+
with gr.Tabs():
|
| 339 |
+
with gr.TabItem("Image Inference"):
|
| 340 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 341 |
+
image_upload = gr.Image(type="pil", label="Image", height=290)
|
| 342 |
+
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 343 |
+
gr.Examples(
|
| 344 |
+
examples=image_examples,
|
| 345 |
+
inputs=[image_query, image_upload]
|
| 346 |
+
)
|
| 347 |
+
with gr.TabItem("Video Inference"):
|
| 348 |
+
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 349 |
+
video_upload = gr.Video(label="Video", height=290)
|
| 350 |
+
video_submit = gr.Button("Submit", elem_classes="submit-btn")
|
| 351 |
+
gr.Examples(
|
| 352 |
+
examples=video_examples,
|
| 353 |
+
inputs=[video_query, video_upload]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
)
|
| 355 |
+
with gr.Accordion("Advanced options", open=False):
|
| 356 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 357 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 358 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 359 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 360 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
+
with gr.Column():
|
| 363 |
+
with gr.Column(elem_classes="canvas-output"):
|
| 364 |
+
gr.Markdown("## Output")
|
| 365 |
+
raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=5)
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 368 |
+
formatted_output = gr.Markdown(label="(Result.md)")
|
| 369 |
+
|
| 370 |
+
model_choice = gr.Radio(
|
| 371 |
+
choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "Thyme-RL", "Typhoon-OCR-7B", "SmolDocling-256M-preview"],
|
| 372 |
+
label="Select Model",
|
| 373 |
+
value="Nanonets-OCR-s"
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)")
|
| 377 |
+
gr.Markdown("> [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.")
|
| 378 |
+
gr.Markdown("> [SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview): SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for DoclingDocuments.")
|
| 379 |
+
gr.Markdown("> [MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR): MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.")
|
| 380 |
+
gr.Markdown("> [Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b): A bilingual document parsing model built specifically for real-world documents in Thai and English inspired by models like olmOCR based on Qwen2.5-VL-Instruction. Extracts and interprets embedded text (e.g., chart labels, captions) in Thai or English.")
|
| 381 |
+
gr.Markdown("> [Thyme-RL](https://huggingface.co/Kwai-Keye/Thyme-RL): Thyme: Think Beyond Images. Thyme transcends traditional ``thinking with images'' paradigms by autonomously generating and executing diverse image processing and computational operations through executable code, significantly enhancing performance on high-resolution perception and complex reasoning tasks.")
|
| 382 |
+
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
| 383 |
+
|
| 384 |
+
image_submit.click(
|
| 385 |
+
fn=generate_image,
|
| 386 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 387 |
+
outputs=[raw_output, formatted_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
)
|
| 389 |
+
video_submit.click(
|
| 390 |
+
fn=generate_video,
|
| 391 |
+
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 392 |
+
outputs=[raw_output,
|
| 393 |
+
formatted_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
)
|
| 395 |
|
| 396 |
if __name__ == "__main__":
|
| 397 |
+
demo.queue(max_size=50).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|