import numpy as np import matplotlib.pyplot as plt from PIL import Image from transformers import pipeline import torch import tifffile import gradio as gr import os # Step 1: Setup print("Step 1: Setting up the environment...") device = 0 if torch.cuda.is_available() else -1 print(f" > Device selected: {'GPU' if device == 0 else 'CPU'}") # Step 2: Load SAM Model print("Step 2: Loading SAM Model...") generator = pipeline("mask-generation", model="facebook/sam-vit-huge", device=device) print(" > SAM Model loaded successfully.") def segment_image(image): print("Step 3: Starting image segmentation...") # Resize Image print(" > Resizing image...") raw_image = image.convert("RGB") original_size = raw_image.size resized_size = (original_size[0] // 4, original_size[1] // 4) raw_image = raw_image.resize(resized_size) print(f" > Original size: {original_size}, Resized size: {resized_size}") # Run SAM Segmentation print(" > Running SAM segmentation...") outputs = generator(raw_image, points_per_batch=64) masks = outputs["masks"] print(f" > {len(masks)} masks generated.") # Create Labeled Mask print(" > Creating labeled mask...") h, w = masks[0].shape labeled_mask = np.zeros((h, w), dtype=np.uint16) for i, mask in enumerate(masks): labeled_mask[mask] = i + 1 print(" > Labeled mask created.") # Generate Overlay print(" > Generating overlay...") overlay = np.zeros((h, w, 4)) # RGBA np.random.seed(42) for label in np.unique(labeled_mask): if label == 0: continue color = np.random.rand(3) overlay[labeled_mask == label] = np.append(color, 0.5) print(" > Overlay generated.") # Save the labeled mask as TIFF output_path = "labeled_mask.tif" print(" > Saving labeled mask as TIFF...") tifffile.imwrite(output_path, labeled_mask) print(f" > Mask saved to: {output_path}") # Plotting results print("Step 4: Plotting results...") plt.figure(figsize=(15, 5)) # Original Image plt.subplot(1, 2, 1) plt.imshow(image) plt.title("Original Image") plt.axis("off") # Segmented Overlay plt.subplot(1, 2, 2) plt.imshow(raw_image) plt.imshow(overlay) plt.title("Segmented Overlay") plt.axis("off") plt.tight_layout() plt.savefig("segmented_overlay.png") # Save the overlay plot plt.close() # Close the plot to avoid display issues print(" > Results plotted.") return output_path # Return path to the saved mask # Step 5: Gradio Interface print("Step 5: Setting up Gradio interface...") iface = gr.Interface( fn=segment_image, inputs=gr.Image(type="pil"), outputs=gr.File(label="Download Mask"), title="Image Segmentation with SAM", description="Upload an image to segment it and visualize the results." ) # Step 6: Launch the interface print("Step 6: Launching the interface...") iface.launch() print(" > Interface launched successfully.")