File size: 11,668 Bytes
25e624c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# -*- coding: utf-8 -*-
"""
Report Generator - Generate evaluation reports

Creates markdown and JSON reports from evaluation results
"""

import json
import os
from datetime import datetime
from typing import Dict, List, Any, Optional
from dataclasses import asdict


class ReportGenerator:
    """
    Generate evaluation reports in multiple formats
    
    Creates markdown and JSON reports from benchmark results
    """
    
    def __init__(self, output_dir: str = "evaluation/reports"):
        """
        Initialize report generator
        
        Args:
            output_dir: Directory to save reports
        """
        self.output_dir = output_dir
        os.makedirs(output_dir, exist_ok=True)
    
    def _get_timestamp(self) -> str:
        """Get formatted timestamp"""
        return datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    
    def generate_markdown_report(
        self,
        benchmark_results: Any,
        transition_results: Optional[List[Any]] = None,
        filename: Optional[str] = None
    ) -> str:
        """
        Generate markdown report
        
        Args:
            benchmark_results: Results from AccuracyBenchmark
            transition_results: Optional results from LiveStreamTest
            filename: Optional filename (auto-generated if None)
            
        Returns:
            Path to generated report
        """
        timestamp = self._get_timestamp()
        if filename is None:
            filename = f"evaluation_report_{timestamp}.md"
        
        filepath = os.path.join(self.output_dir, filename)
        
        lines = [
            "# Emoji AI Avatar - Sentiment Analysis Evaluation Report",
            "",
            f"**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
            "",
            "---",
            "",
            "## Executive Summary",
            "",
            f"- **Total Emotions Tested:** {benchmark_results.total_tests}",
            f"- **Correct Predictions:** {benchmark_results.correct_tests}",
            f"- **Overall Accuracy:** {benchmark_results.accuracy:.1%}",
            f"- **Average Inference Time:** {benchmark_results.avg_inference_time_ms:.2f} ms",
            "",
        ]
        
        # Accuracy by emotion
        lines.extend([
            "## Accuracy by Emotion",
            "",
            "| Emotion | Accuracy | Samples | Status |",
            "|---------|----------|---------|--------|",
        ])
        
        emotion_accuracy = benchmark_results.emotion_accuracy
        for emotion, acc in sorted(emotion_accuracy.items(), key=lambda x: -x[1]):
            status = "✅ PASS" if acc >= 0.5 else "❌ FAIL"
            # Count samples for this emotion
            samples = len(benchmark_results.emotion_results.get(emotion, []))
            lines.append(f"| {emotion} | {acc:.1%} | {samples} | {status} |")
        
        lines.append("")
        
        # Timing statistics
        lines.extend([
            "## Performance Metrics",
            "",
            "| Metric | Value |",
            "|--------|-------|",
            f"| Min Inference Time | {benchmark_results.min_inference_time_ms:.2f} ms |",
            f"| Max Inference Time | {benchmark_results.max_inference_time_ms:.2f} ms |",
            f"| Avg Inference Time | {benchmark_results.avg_inference_time_ms:.2f} ms |",
            f"| Median Inference Time | {benchmark_results.median_inference_time_ms:.2f} ms |",
            "",
        ])
        
        # Confusion matrix summary
        lines.extend([
            "## Confusion Analysis",
            "",
            "### Most Common Misclassifications",
            "",
            "| Expected | Predicted | Count |",
            "|----------|-----------|-------|",
        ])
        
        confusion = benchmark_results.confusion_matrix
        # Flatten the nested dict for easier processing
        misclassifications = []
        for expected, predicted_counts in confusion.items():
            for predicted, count in predicted_counts.items():
                if expected != predicted:
                    misclassifications.append((expected, predicted, count))
        misclassifications.sort(key=lambda x: -x[2])
        
        for exp, pred, count in misclassifications[:10]:
            lines.append(f"| {exp} | {pred} | {count} |")
        
        lines.append("")
        
        # Transition test results if available
        if transition_results:
            correct_transitions = sum(1 for r in transition_results if r.transition_correct)
            total_transitions = len(transition_results)
            trans_accuracy = correct_transitions / total_transitions if total_transitions > 0 else 0
            
            lines.extend([
                "## Live Emotion Transition Tests",
                "",
                f"- **Total Transitions:** {total_transitions}",
                f"- **Correct Transitions:** {correct_transitions}",
                f"- **Transition Accuracy:** {trans_accuracy:.1%}",
                "",
                "### Transition Details",
                "",
                "| From Text | To Text | Expected | Detected | Status |",
                "|-----------|---------|----------|----------|--------|",
            ])
            
            for r in transition_results:
                status = "✅" if r.transition_correct else "❌"
                from_short = r.from_text[:25] + "..." if len(r.from_text) > 25 else r.from_text
                to_short = r.to_text[:25] + "..." if len(r.to_text) > 25 else r.to_text
                lines.append(
                    f"| {from_short} | {to_short} | {r.to_emotion} | "
                    f"{r.final_detected_emotion} | {status} |"
                )
            
            lines.append("")
        
        # Detailed test results
        lines.extend([
            "## Detailed Test Results",
            "",
            "### Failed Tests",
            "",
        ])
        
        # Collect all failed results
        failures = []
        for emotion, results_list in benchmark_results.emotion_results.items():
            for r in results_list:
                if not r.is_correct:
                    failures.append(r)
        
        if failures:
            lines.extend([
                "| Text | Expected | Detected | Time (ms) |",
                "|------|----------|----------|-----------|",
            ])
            for r in failures[:50]:  # Show first 50 failures
                text_short = r.text[:40] + "..." if len(r.text) > 40 else r.text
                lines.append(f"| {text_short} | {r.expected_polarity} | {r.detected_polarity} | {r.inference_time_ms:.2f} |")
        else:
            lines.append("*All tests passed!*")
        
        lines.extend([
            "",
            "---",
            "",
            f"*Report generated by Emoji AI Avatar Evaluation Framework*",
        ])
        
        with open(filepath, "w", encoding="utf-8") as f:
            f.write("\n".join(lines))
        
        return filepath
    
    def generate_json_report(
        self,
        benchmark_results: Any,
        transition_results: Optional[List[Any]] = None,
        filename: Optional[str] = None
    ) -> str:
        """
        Generate JSON report for CI/CD integration
        
        Args:
            benchmark_results: Results from AccuracyBenchmark
            transition_results: Optional results from LiveStreamTest
            filename: Optional filename (auto-generated if None)
            
        Returns:
            Path to generated report
        """
        timestamp = self._get_timestamp()
        if filename is None:
            filename = f"evaluation_report_{timestamp}.json"
        
        filepath = os.path.join(self.output_dir, filename)
        
        # Build report data
        # Flatten the nested confusion matrix for JSON
        flat_confusion = {}
        for expected, predicted_counts in benchmark_results.confusion_matrix.items():
            for predicted, count in predicted_counts.items():
                flat_confusion[f"{expected}|{predicted}"] = count
        
        # Flatten emotion results for JSON
        all_results = []
        for emotion, results_list in benchmark_results.emotion_results.items():
            for r in results_list:
                all_results.append(asdict(r))
        
        report = {
            "meta": {
                "timestamp": datetime.now().isoformat(),
                "version": "1.0.0",
            },
            "summary": {
                "total_tests": benchmark_results.total_tests,
                "correct": benchmark_results.correct_tests,
                "accuracy": benchmark_results.accuracy,
                "avg_time_ms": benchmark_results.avg_inference_time_ms,
                "min_time_ms": benchmark_results.min_inference_time_ms,
                "max_time_ms": benchmark_results.max_inference_time_ms,
                "median_time_ms": benchmark_results.median_inference_time_ms,
            },
            "emotion_accuracy": dict(benchmark_results.emotion_accuracy),
            "confusion_matrix": flat_confusion,
            "results": all_results,
        }
        
        if transition_results:
            correct_transitions = sum(1 for r in transition_results if r.transition_correct)
            report["transitions"] = {
                "total": len(transition_results),
                "correct": correct_transitions,
                "accuracy": correct_transitions / len(transition_results) if transition_results else 0,
                "details": [asdict(r) for r in transition_results],
            }
        
        with open(filepath, "w", encoding="utf-8") as f:
            json.dump(report, f, indent=2)
        
        return filepath
    
    def generate_summary_report(self, benchmark_results: Any) -> str:
        """
        Generate a brief console summary
        
        Args:
            benchmark_results: Results from AccuracyBenchmark
            
        Returns:
            Summary string
        """
        lines = [
            "=" * 60,
            "SENTIMENT ANALYSIS EVALUATION SUMMARY",
            "=" * 60,
            "",
            f"Total Tests:     {benchmark_results.total_tests}",
            f"Correct:         {benchmark_results.correct_tests}",
            f"Accuracy:        {benchmark_results.accuracy:.1%}",
            f"Avg Time:        {benchmark_results.avg_inference_time_ms:.2f} ms",
            "",
            "-" * 60,
            "EMOTION BREAKDOWN (Top 10)",
            "-" * 60,
        ]
        
        # Top 10 by accuracy
        emotion_accuracy = benchmark_results.emotion_accuracy
        sorted_emotions = sorted(emotion_accuracy.items(), key=lambda x: -x[1])[:10]
        
        for emotion, acc in sorted_emotions:
            bar = "█" * int(acc * 20) + "░" * (20 - int(acc * 20))
            lines.append(f"{emotion:20} {bar} {acc:.1%}")
        
        lines.extend([
            "",
            "-" * 60,
            "LOWEST PERFORMERS (Bottom 5)",
            "-" * 60,
        ])
        
        # Bottom 5 by accuracy
        bottom_emotions = sorted(emotion_accuracy.items(), key=lambda x: x[1])[:5]
        
        for emotion, acc in bottom_emotions:
            bar = "█" * int(acc * 20) + "░" * (20 - int(acc * 20))
            lines.append(f"{emotion:20} {bar} {acc:.1%}")
        
        lines.append("=" * 60)
        
        return "\n".join(lines)


if __name__ == "__main__":
    # Demo usage
    print("Report Generator - Use with AccuracyBenchmark results")