Spaces:
Running
Running
File size: 20,479 Bytes
25e624c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
# -*- coding: utf-8 -*-
"""
Sentiment Multi-Emotion Analyzer - Advanced emotion detection using multi-class models
Uses RoBERTa-based emotion classifier for 7+ emotion detection:
- anger, disgust, fear, joy, neutral, sadness, surprise
This provides granular emotion detection instead of just positive/negative
"""
import torch
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from typing import Dict, Any, List, Optional
import warnings
import re
warnings.filterwarnings("ignore", category=UserWarning)
class MultiEmotionAnalyzer:
"""
Multi-class emotion analyzer using DistilRoBERTa
Detects 7 core emotions: anger, disgust, fear, joy, neutral, sadness, surprise
Maps to extended emotion vocabulary for nuanced emoji display
"""
# Core emotion to polarity mapping
EMOTION_TO_POLARITY = {
"joy": "positive",
"surprise": "positive", # Generally positive context
"neutral": "neutral",
"sadness": "negative",
"anger": "negative",
"fear": "negative",
"disgust": "negative",
}
# Extended emotion mapping from core emotions + context
EXTENDED_EMOTION_MAP = {
# Joy variations based on intensity/context
"joy": {
"high_confidence": "ecstasy",
"medium_confidence": "joy",
"low_confidence": "contentment",
},
# Sadness variations
"sadness": {
"high_confidence": "grief",
"medium_confidence": "sadness",
"low_confidence": "melancholy",
},
# Anger variations
"anger": {
"high_confidence": "rage",
"medium_confidence": "anger",
"low_confidence": "irritation",
},
# Fear variations
"fear": {
"high_confidence": "terror",
"medium_confidence": "fear",
"low_confidence": "anxiety",
},
# Disgust variations
"disgust": {
"high_confidence": "revulsion",
"medium_confidence": "disgust",
"low_confidence": "contempt",
},
# Surprise variations
"surprise": {
"high_confidence": "astonishment",
"medium_confidence": "surprise",
"low_confidence": "curiosity",
},
# Neutral variations
"neutral": {
"high_confidence": "neutral",
"medium_confidence": "neutral",
"low_confidence": "neutral",
},
}
# Context keywords for emotion refinement
# IMPORTANT: More specific patterns (heartbreak, hopeless) must come BEFORE
# general patterns (love, hope) to avoid false matches
CONTEXT_REFINEMENTS = {
# === OVERRIDE PATTERNS (check first) ===
# Heartbreak-related words (negative - despite "heart" being in love keywords)
"heartbreak_keywords": ["heartbroken", "heartbreak", "broke my heart", "heart is broken", "shattered heart"],
"heartbreak_emotion": "grief",
"heartbreak_polarity": "negative",
# Hopelessness-related words (negative - despite "hope" being positive)
"hopelessness_keywords": ["hopeless", "hopelessness", "no hope", "lost all hope", "without hope"],
"hopelessness_emotion": "despair",
"hopelessness_polarity": "negative",
# Sarcasm-related words (negative - often masking frustration)
"sarcasm_keywords": ["oh great,", "just what i needed", "yeah right", "oh wonderful,", "just perfect", "oh fantastic", "exactly what i wanted", "wow, fantastic", "that's exactly", "that is exactly", "oh wonderful"],
"sarcasm_emotion": "sarcasm",
"sarcasm_polarity": "negative",
# Indifferent/neutral-related words (neutral) - short responses
"indifferent_keywords": ["meh", "whatever", "don't care", "doesn't matter", "indifferent", "fine i guess", "i'm fine", "just fine", "i guess so", "sure whatever"],
"indifferent_emotion": "indifferent",
"indifferent_polarity": "neutral",
# === POSITIVE PATTERNS ===
# Love-related words (but NOT heartbroken)
"love_keywords": ["love", "adore", "beloved", "darling", "sweetheart"],
"love_emotion": "love",
"love_polarity": "positive",
# Best/compliments (positive)
"compliment_keywords": ["you're the best", "you are the best", "best ever", "you're amazing", "you are amazing"],
"compliment_emotion": "admiration",
"compliment_polarity": "positive",
# Gratitude-related words
"gratitude_keywords": ["thank", "grateful", "appreciate", "thankful", "gratitude"],
"gratitude_emotion": "gratitude",
"gratitude_polarity": "positive",
# Excitement-related words
"excitement_keywords": ["excited", "exciting", "thrilled", "can't wait", "pumped"],
"excitement_emotion": "excitement",
"excitement_polarity": "positive",
# Hope-related words
"hope_keywords": ["hope", "hopeful", "optimistic", "looking forward"],
"hope_emotion": "hope",
"hope_polarity": "positive",
# Nostalgia-related words (positive - fond memories)
"nostalgia_keywords": ["nostalgic", "nostalgia", "remember when", "miss the old", "good old days"],
"nostalgia_emotion": "nostalgia",
"nostalgia_polarity": "positive",
# Confusion-related words (negative - distressing)
"confusion_keywords": ["confused", "confusing", "puzzled", "don't understand", "baffled", "perplexed", "bewildered"],
"confusion_emotion": "confused",
"confusion_polarity": "negative",
# Longing-related words (negative - painful desire)
"longing_keywords": ["longing", "yearning", "yearn", "i miss you", "miss you so much", "miss him", "miss her"],
"longing_emotion": "longing",
"longing_polarity": "negative",
# Playful-related words
"playful_keywords": ["lol", "haha", "hehe", "π", "π€£", "playful", "silly", "joking", "kidding"],
"playful_emotion": "playful",
"playful_polarity": "positive",
# Pride-related words
"pride_keywords": ["proud", "pride", "accomplished", "achieved"],
"pride_emotion": "pride",
"pride_polarity": "positive",
# Embarrassment-related words
"embarrassment_keywords": ["embarrassed", "embarrassing", "awkward", "cringe"],
"embarrassment_emotion": "embarrassment",
"embarrassment_polarity": "negative",
# Sympathy-related words (positive - showing care)
"sympathy_keywords": ["sorry for", "sympathize", "sympathy", "feel for you", "my condolences", "so sorry to hear"],
"sympathy_emotion": "sympathy",
"sympathy_polarity": "positive",
# Empathy-related words (positive - showing understanding)
"empathy_keywords": ["empathize", "empathy", "empathetic", "understand how you feel", "feel what you're feeling", "i understand", "i know how you feel"],
"empathy_emotion": "empathy",
"empathy_polarity": "positive",
# Compassion-related words (positive - showing care)
"compassion_keywords": ["compassion", "compassionate", "feel compassion", "care about", "caring"],
"compassion_emotion": "compassion",
"compassion_polarity": "positive",
# Awe/Wonder-related words (positive - not fear)
"awe_keywords": ["awe", "in awe", "awe-inspiring", "awesome", "awestruck", "wonder", "wondrous", "marvelous"],
"awe_emotion": "awe",
"awe_polarity": "positive",
# Fascination/Interest-related words (positive)
"fascination_keywords": ["fascinated", "fascinating", "intrigued", "intriguing", "captivated", "captivating", "curious"],
"fascination_emotion": "fascination",
"fascination_polarity": "positive",
# Calm/Peace-related words (positive)
"calm_keywords": ["calm", "peaceful", "serene", "tranquil", "relaxed", "at peace", "zen"],
"calm_emotion": "calm",
"calm_polarity": "positive",
# Tenderness-related words (positive)
"tenderness_keywords": ["tender", "tenderness", "gently", "softly", "warmth"],
"tenderness_emotion": "tenderness",
"tenderness_polarity": "positive",
# Affection-related words (positive)
"affection_keywords": ["affection", "affectionate", "fond", "fondness", "warmly"],
"affection_emotion": "affection",
"affection_polarity": "positive",
# Shock-related words (negative - distressing)
"shock_keywords": ["shock", "shocked", "in shock", "shocking"],
"shock_emotion": "shock",
"shock_polarity": "negative",
# Thinking-related words (neutral)
"thinking_keywords": ["thinking", "think about", "contemplating", "pondering", "considering", "let me think"],
"thinking_emotion": "thinking",
"thinking_polarity": "neutral",
# Silly-related words (positive - fun)
"silly_keywords": ["silly", "goofy", "dorky", "being silly", "acting silly"],
"silly_emotion": "silly",
"silly_polarity": "positive",
# Determination-related words (positive)
"determination_keywords": ["determined", "determination", "won't give up", "never give up", "nothing will stop"],
"determination_emotion": "determination",
"determination_polarity": "positive",
# Anticipation-related words (positive)
"anticipation_keywords": ["anticipating", "anticipation", "looking forward", "eagerly awaiting"],
"anticipation_emotion": "anticipation",
"anticipation_polarity": "positive",
# Trust-related words (positive)
"trust_keywords": ["trust", "believe in you", "have faith", "rely on you", "count on you"],
"trust_emotion": "trust",
"trust_polarity": "positive",
}
def __init__(self, model_name: str = "j-hartmann/emotion-english-distilroberta-base"):
"""
Initialize multi-emotion classifier
Args:
model_name: HuggingFace model for 7-class emotion detection
Default: j-hartmann/emotion-english-distilroberta-base
Outputs: anger, disgust, fear, joy, neutral, sadness, surprise
"""
self.model_name = model_name
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"π Loading multi-emotion model: {model_name}")
print(f" Device: {self.device}")
try:
# Initialize the pipeline with top_k to get all emotion scores
self.pipeline = pipeline(
"text-classification",
model=model_name,
device=0 if self.device == "cuda" else -1,
top_k=None, # Return all emotion scores
)
self.model_loaded = True
print(f"β Multi-emotion model loaded (7 emotions)")
except Exception as e:
print(f"β οΈ Failed to load multi-emotion model: {e}")
print(f" Falling back to binary sentiment model")
self.model_loaded = False
# Fallback to binary model
self.pipeline = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english",
device=0 if self.device == "cuda" else -1,
)
def _get_last_sentence(self, text: str) -> str:
"""Extract last sentence for real-time accuracy"""
parts = re.split(r'[.!?;:\n]+', text)
parts = [p.strip() for p in parts if p.strip()]
return parts[-1] if parts else text.strip()
def _check_context_keywords(self, text: str) -> Optional[tuple]:
"""
Check for context keywords that indicate specific emotions
Returns:
Tuple of (emotion, polarity) if context match found, None otherwise
"""
text_lower = text.lower().strip()
text_clean = text_lower.rstrip('?!.,')
# Special handling for very short responses (exact match)
SHORT_NEUTRAL_WORDS = {"fine", "ok", "okay", "sure", "alright", "k", "kk",
"yep", "yup", "nope", "nah", "yes", "no", "maybe",
"i guess", "i suppose", "perhaps"}
if text_clean in SHORT_NEUTRAL_WORDS:
return ("neutral", "neutral")
# Check each context category
for key, value in self.CONTEXT_REFINEMENTS.items():
if key.endswith("_keywords"):
base_key = key.replace("_keywords", "")
emotion_key = f"{base_key}_emotion"
polarity_key = f"{base_key}_polarity"
keywords = value
emotion = self.CONTEXT_REFINEMENTS.get(emotion_key)
polarity = self.CONTEXT_REFINEMENTS.get(polarity_key)
if emotion and any(kw in text_lower for kw in keywords):
return (emotion, polarity)
return None
def _get_intensity_level(self, score: float) -> str:
"""Map confidence score to intensity level"""
if score >= 0.7:
return "high_confidence"
elif score >= 0.4:
return "medium_confidence"
else:
return "low_confidence"
def _refine_emotion(self, base_emotion: str, score: float, text: str) -> tuple:
"""
Refine base emotion using context and intensity
Returns:
Tuple of (refined_emotion, polarity)
"""
# First check for context-specific emotions
context_result = self._check_context_keywords(text)
if context_result:
return context_result # Returns (emotion, polarity)
# Otherwise use intensity-based refinement
intensity = self._get_intensity_level(score)
emotion_variants = self.EXTENDED_EMOTION_MAP.get(base_emotion, {})
refined_emotion = emotion_variants.get(intensity, base_emotion)
# Use base emotion polarity
polarity = self.EMOTION_TO_POLARITY.get(base_emotion, "neutral")
return (refined_emotion, polarity)
def analyze(self, text: str) -> Dict[str, Any]:
"""
Analyze text and return detected emotion with details
Args:
text: Input text to analyze
Returns:
Dict with 'label' (emotion), 'score', 'polarity', and 'details'
"""
if not text or not text.strip():
return {
"label": "neutral",
"score": 0.0,
"polarity": "neutral",
"details": {"segment": "empty"}
}
# Use last sentence for real-time accuracy
last_sentence = self._get_last_sentence(text)
truncated = last_sentence[:512]
try:
if self.model_loaded:
# Multi-emotion model returns all scores
results = self.pipeline(truncated)
if isinstance(results, list) and len(results) > 0:
if isinstance(results[0], list):
results = results[0]
# Sort by score to get top emotion
sorted_results = sorted(results, key=lambda x: x['score'], reverse=True)
top_result = sorted_results[0]
base_emotion = top_result['label'].lower()
score = top_result['score']
# Refine emotion based on context - returns (emotion, polarity)
refined_emotion, polarity = self._refine_emotion(base_emotion, score, truncated)
# Get all emotion scores for details
all_scores = {r['label'].lower(): r['score'] for r in sorted_results}
return {
"label": refined_emotion,
"base_emotion": base_emotion,
"score": score,
"polarity": polarity,
"details": {
"segment": "last_sentence",
"text": truncated[:50],
"model": self.model_name,
"all_scores": all_scores,
}
}
else:
# Fallback binary model
result = self.pipeline(truncated, truncation=True)
if isinstance(result, list):
result = result[0]
raw_label = result.get("label", "NEUTRAL").upper()
score = result.get("score", 0.0)
if raw_label == "POSITIVE":
base_emotion = "joy"
polarity = "positive"
elif raw_label == "NEGATIVE":
base_emotion = "sadness"
polarity = "negative"
else:
base_emotion = "neutral"
polarity = "neutral"
# Refine emotion based on context - returns (emotion, polarity)
refined_emotion, ctx_polarity = self._refine_emotion(base_emotion, score, truncated)
# Use context polarity if it differs (more specific)
if ctx_polarity:
polarity = ctx_polarity
return {
"label": refined_emotion,
"base_emotion": base_emotion,
"score": score,
"polarity": polarity,
"details": {
"segment": "last_sentence",
"text": truncated[:50],
"model": "binary-fallback",
}
}
except Exception as e:
print(f"β οΈ Multi-emotion analyzer error: {e}")
return {
"label": "neutral",
"score": 0.0,
"polarity": "neutral",
"details": {"error": str(e)}
}
def get_all_emotions(self, text: str) -> Dict[str, float]:
"""Get scores for all detected emotions"""
result = self.analyze(text)
return result.get("details", {}).get("all_scores", {})
# Backward compatible SentimentAnalyzer alias
class SentimentAnalyzer(MultiEmotionAnalyzer):
"""Alias for backward compatibility with existing code"""
pass
if __name__ == "__main__":
print("=" * 70)
print("Testing Multi-Emotion Analyzer")
print("=" * 70)
analyzer = MultiEmotionAnalyzer()
test_cases = [
# Core emotions
"I am so happy today!",
"I feel terrible and sad",
"I'm really angry about this!",
"I'm scared of what might happen",
"That's disgusting!",
"Wow, I didn't expect that!",
"The weather is okay",
# Extended emotions
"I love you so much!",
"Thank you, I'm so grateful!",
"I can't wait for tomorrow!",
"I miss you",
"LOL that's hilarious",
"I'm so proud of myself",
"This is so embarrassing",
"I'm sorry for your loss",
# Edge cases
"I'm thinking about it",
"I feel silly today",
"I am good",
]
print("\nEmotion Predictions:")
print("-" * 70)
for text in test_cases:
result = analyzer.analyze(text)
emoji = "π" if result["polarity"] == "positive" else \
"π’" if result["polarity"] == "negative" else "π"
print(f"{emoji} '{text[:45]:45}' β {result['label']:15} ({result['base_emotion']}) [{result['score']:.2f}]")
print("\n" + "=" * 70)
print("β
Multi-Emotion Analyzer ready!")
print("=" * 70)
|