Spaces:
Sleeping
Sleeping
File size: 7,305 Bytes
25e624c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
"""
Sentiment AI Analysis - Core sentiment/emotion detection engine
Analyzes text and detects emotions using keyword matching
Focuses on the LAST SENTENCE for real-time accuracy
"""
import re
from typing import Dict, Any
from .sentiment_keyword_map import KeywordMap
class SentimentAnalyzer:
"""
Ultra-fast emotion analyzer optimized for real-time detection
Detects 50+ emotions from text as it's being typed or streamed
Focuses on the LAST SENTENCE/PHRASE for accurate real-time updates
"""
SENTENCE_SEPARATORS = re.compile(r'[.!?;:\n]+')
def __init__(self, custom_keywords: Dict[str, str] = None):
"""Initialize with keyword mappings"""
self.keyword_map = KeywordMap(custom_keywords)
self._word_pattern = re.compile(r'\b\w+\b')
def _get_last_sentence(self, text: str) -> str:
"""
Extract the last sentence/phrase from text
This ensures emoji reflects CURRENT sentiment, not cumulative
"""
parts = self.SENTENCE_SEPARATORS.split(text)
parts = [p.strip() for p in parts if p.strip()]
if not parts:
return text.strip()
return parts[-1]
def _analyze_segment(self, text: str, position_weight: float = 1.0) -> Dict[str, float]:
"""
Analyze a text segment and return emotion scores
Args:
text: Text to analyze
position_weight: Multiplier for recency (higher = more recent)
Returns:
Dict mapping emotions to scores
"""
text_lower = text.lower()
words = self._word_pattern.findall(text_lower)
if not words:
return {}
emotion_scores: Dict[str, float] = {}
negation_active = False
intensifier_active = False
# Process words with position weighting
word_count = len(words)
for idx, word in enumerate(words):
# Position weight: last word gets full weight, first gets 0.5
word_position_weight = 0.5 + (0.5 * (idx / max(word_count - 1, 1)))
# Check for negation
if self.keyword_map.is_negation(word):
negation_active = True
continue
# Check for intensifier
if self.keyword_map.is_intensifier(word):
intensifier_active = True
continue
# Check if word maps to emotion
emotion = self.keyword_map.get_emotion_for_word(word)
if emotion:
# Handle negation
if negation_active:
emotion = self.keyword_map.get_opposite_emotion(emotion)
negation_active = False
# Calculate score with position weighting
base_score = 1.5 if intensifier_active else 1.0
final_score = base_score * word_position_weight * position_weight
intensifier_active = False
# Accumulate
emotion_scores[emotion] = emotion_scores.get(emotion, 0) + final_score
else:
negation_active = False
intensifier_active = False
return emotion_scores
def analyze(self, text: str) -> Dict[str, Any]:
"""
Analyze text and return detected emotion
FOCUSES ON LAST SENTENCE for real-time accuracy
Args:
text: Text to analyze
Returns:
Dict with 'label' (emotion), 'score', and 'details'
"""
if not text or not text.strip():
return {"label": "neutral", "score": 0.0, "details": {}}
# Get the last sentence (what user is currently typing)
last_sentence = self._get_last_sentence(text)
# Analyze last sentence with full weight
last_sentence_scores = self._analyze_segment(last_sentence, position_weight=2.0)
# If found emotions in last sentence, use those
if last_sentence_scores:
primary_emotion = max(last_sentence_scores, key=lambda k: last_sentence_scores[k])
max_score = last_sentence_scores[primary_emotion]
normalized_score = min(max_score / 3.0, 1.0)
return {
"label": primary_emotion,
"score": normalized_score,
"details": {"segment": "last_sentence", "text": last_sentence[:50]}
}
# Fallback: analyze full text if last sentence has no emotion words
full_text_scores = self._analyze_segment(text, position_weight=1.0)
if not full_text_scores:
return {"label": "neutral", "score": 0.0, "details": {"segment": "none"}}
primary_emotion = max(full_text_scores, key=lambda k: full_text_scores[k])
max_score = full_text_scores[primary_emotion]
normalized_score = min(max_score / 3.0, 1.0)
return {
"label": primary_emotion,
"score": normalized_score,
"details": {"segment": "full_text", "all_emotions": full_text_scores}
}
if __name__ == "__main__":
print("=" * 60)
print("Testing Sentiment Analyzer")
print("=" * 60)
analyzer = SentimentAnalyzer()
test_cases = [
("I am so happy today!", "happiness"),
("I love this!", "love"),
("This is exciting!", "excitement"),
("Thank you so much!", "gratitude"),
("I am really sad", "sadness"),
("This makes me angry", "anger"),
("I am scared", "fear"),
("So frustrating!", "frustration"),
("I am curious about this", "curiosity"),
("Wow, that is amazing!", "amazement"),
("I am so confused", "confused"),
("I miss you", "longing"),
]
print("\nBasic Emotion Detection:")
passed = 0
for text, expected in test_cases:
result = analyzer.analyze(text)
match = expected in result["label"] or result["label"] == expected
status = "✓" if match else "✗"
if match:
passed += 1
print(f"{status} '{text}' → {result['label']}")
print(f"\n{passed}/{len(test_cases)} tests passed")
print("\n" + "=" * 60)
print("Last Sentence Focus Tests (Real-Time Updates)")
print("=" * 60)
multi_tests = [
("I love this! But now I am angry", "anger"),
("Happy day! Wait, I'm confused", "confused"),
("Great work! This is frustrating", "frustration"),
("Sad news. But I'm grateful now", "gratitude"),
("I was scared. Now I'm excited!", "excitement"),
]
print("\nLast Sentence Detection:")
passed_multi = 0
for text, expected in multi_tests:
result = analyzer.analyze(text)
match = expected in result["label"] or result["label"] == expected
status = "✓" if match else "✗"
if match:
passed_multi += 1
print(f"{status} '{text[:50]}...' → {result['label']}")
print(f"\n{passed_multi}/{len(multi_tests)} tests passed")
print("\n✅ Sentiment Analyzer ready!")
|