In the name of the absolute power and the absolute knowledge

Social and Cognitive Robotics

Chapter 3+: Continual Learning

Alireza Taheri, PhD, Assistant Professor artaheri@sharif.edu

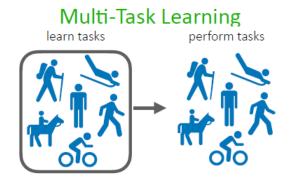
Head of the Social and Cognitive Robotics Lab.,
Center of Excellence in Design, Robotics, and Automation
School of Mechanical Engineering,
Sharif University of Technology, Tehran, Iran

Outlines

- Chapter 1: Continual Learning
 - Problem Statement
 - Problem Variations
 - ▶ Task Incremental
 - Class Incremental
 - Domain Incremental
 - ▶ Task Agnostic
 - Metrics
 - Methods
 - Replay methods
 - Regularization-based methods
 - Parameter Isolation methods
 - Edge of Knowledge
 - Conclusion

Problem Statements

What is Continual Learning?



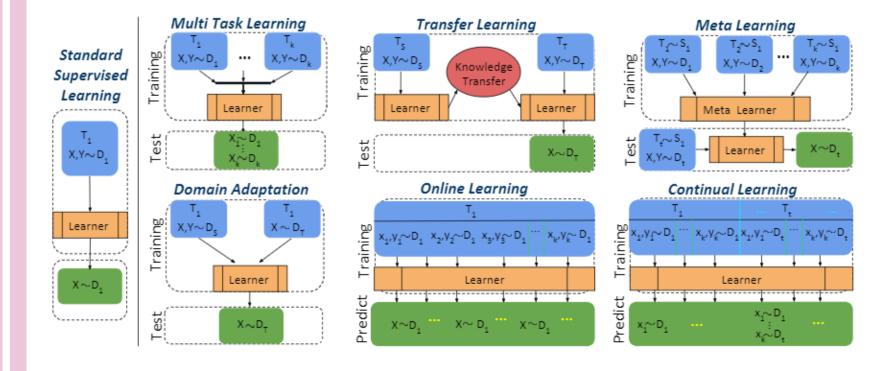
Meta-Learning

quickly learn new task

In contrast, many real world settings look like:

time

Problem Statements (cont.)



Problem Variations

Task ID

Task order

Discrete/Continuous

Task Incremental

Class Incremental

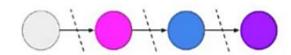
Domain Incremental

Task Incremental

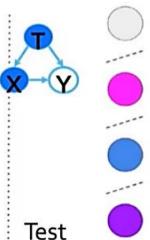
Task-Incremental Learning (or multi-head setting)

Task

Task boundary or task label



Training



Task Incremental

Class Incremental

Domain Incremental

$$\{\mathcal{Y}^{(t)}\} \neq \{\mathcal{Y}^{(t+1)}\}$$

Task Incremental

Problem Variations (cont.)

Social and Cognitive Robotics, Sharif University of Technology

Class Incremental

Class-Incremental Learning (or shared-head setting)

Task

Task Doundary

Training

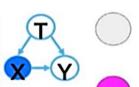
Test

Class Incremental

Class Incremental $P(\mathcal{X}^{(t)}) \neq P(\mathcal{X}^{(t+1)})$ $\{\mathcal{Y}^{(t)}\} = \{\mathcal{Y}^{(t+1)}\}$ $P(\mathcal{Y}^{(t)}) \neq P(\mathcal{Y}^{(t+1)})$

Domain Incremental

Class-Incremental Learning (or shared-head setting) Task Task boundary **Training**



Test

Task Incremental

Class Incremental

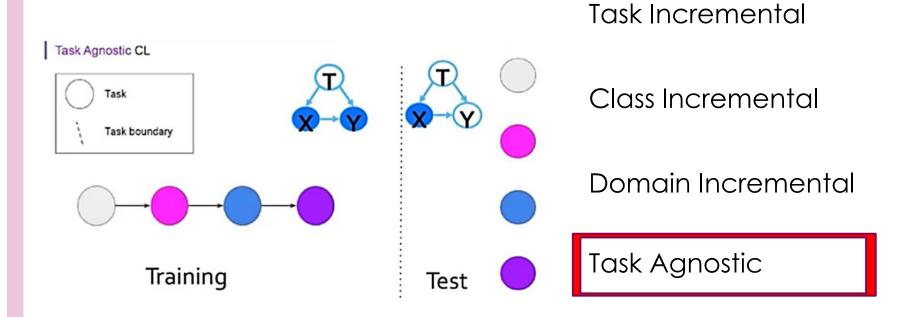
Domain Incremental

$$P(\mathcal{X}^{(t)}) \neq P(\mathcal{X}^{(t+1)})$$

$$\{\mathcal{Y}^{(t)}\} = \{\mathcal{Y}^{(t+1)}\}$$

$$P(\mathcal{Y}^{(t)}) = P(\mathcal{Y}^{(t+1)})$$

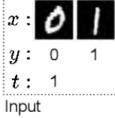
Task Agnostic



Comparison

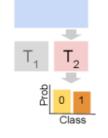
 T_1

 T_2

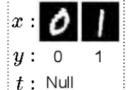


 $x: \mathbf{2} \mid \mathcal{3}$

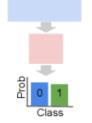
y. 0



Incremental **Domain** Learning



t: Null



Incremental Class Learning

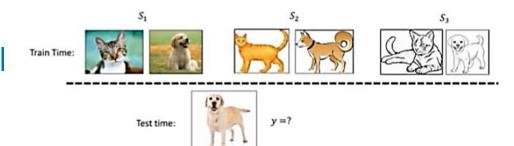
 $t: \mathsf{Null}$

y: 2 3

 $t: \mathsf{Null}$

Comparison

Domain Incremental



Class Incremental

Metrics

Stability / Plasticity

Accuracy

Forward transfer

Previous tasks cause better performance on future tasks

Backward transfer

Future tasks cause better performance on Previous tasks

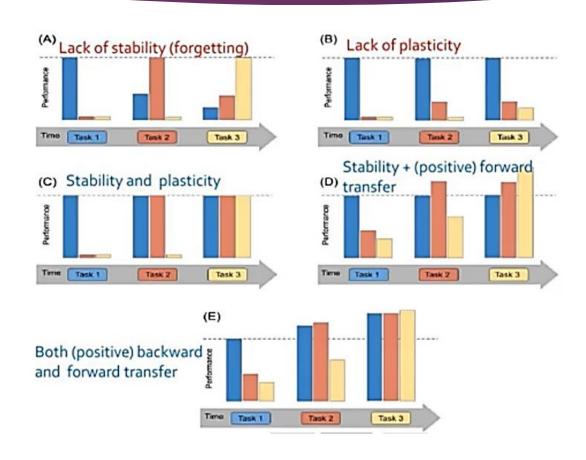
Metrics (cont.)

▶ How to calculate metrics?

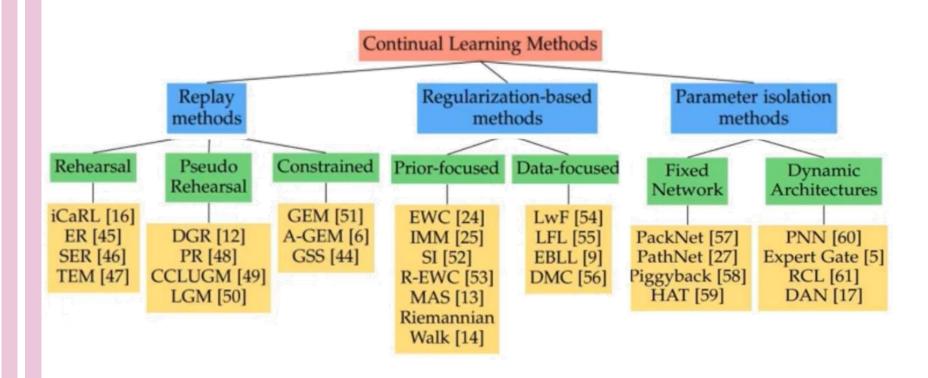
Average Accuracy: ACC
$$=$$
 $\frac{1}{T}\sum_{i=1}^T R_{T,i}$
Backward Transfer: BWT $=$ $\frac{1}{T-1}\sum_{i=1}^{T-1} R_{T,i} - R_{i,i}$
Forward Transfer: FWT $=$ $\frac{1}{T-1}\sum_{i=2}^T R_{i-1,i} - \bar{b}_i$.

Let's see some example

Metrics (cont.)

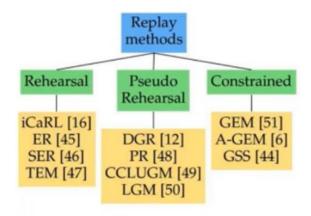


Methods



Replay methods: Rehearsal

Rehearsal

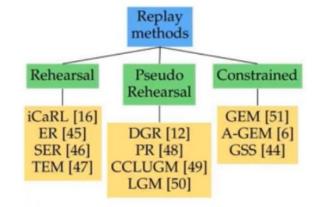


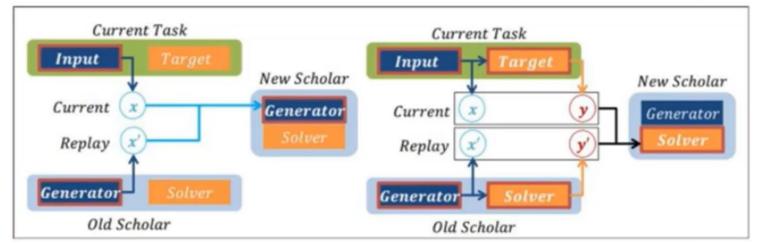
Algorithm 1 Continual learning with Rehearsal.

- 1: function RehearsalBatch(B, \mathcal{M})
- 2: $B \leftarrow RETRIEVALPOLICY(\mathcal{M}) \triangleright Retrieve exemplars$
- 3: $w \leftarrow SGD\left(B \cup \tilde{B}, w\right) \triangleright \text{Optimize objective for union}$
- 4: STORAGEPOLICY (\mathcal{M}, B) \triangleright Update rehearsal memory

Replay methods: Pseudo Rehearsal

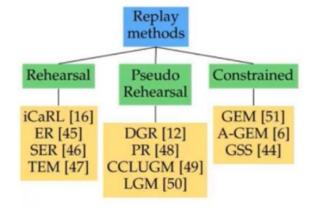
Pseudo-Rehearsal





Replay methods: Constrained

Constrained



For
$$t = 0, ..., T$$
 minimize $\mathcal{L}(f_{\theta}(\cdot, z_t), (x_t, y_t))$ subject to $\mathcal{L}(f_{\theta}, \mathcal{M}_k) \leq \mathcal{L}(f_{\theta}^{t-1}, \mathcal{M}_k)$ for all $z_k < z_t$

Regularization-based methods: Data Focused

Data focused

LEARNINGWITHOUTFORGETTING:

Start with:

 θ_s : shared parameters

 θ_o : task specific parameters for each old task

 X_n , Y_n : training data and ground truth on the new task

Initialize:

 $Y_o \leftarrow \text{CNN}(X_n, \theta_s, \theta_o)$ // compute output of old tasks for new data

 $\theta_n \leftarrow \text{RANDINIT}(|\theta_n|)$ // randomly initialize new parameters

Train:

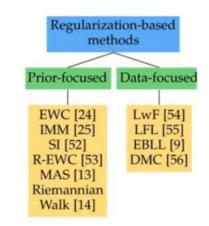
Define $\hat{Y}_o \equiv \text{CNN}(X_n, \hat{\theta}_s, \hat{\theta}_o)$ // old task output

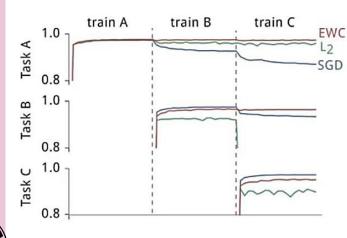
Define $\hat{Y}_n \equiv \text{CNN}(X_n, \hat{\theta}_s, \hat{\theta}_n)$ // new task output

$$\theta_s^*, \ \theta_o^*, \ \theta_n^* \leftarrow \underset{\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n}{\operatorname{argmin}} \left(\lambda_o \mathcal{L}_{old}(Y_o, \hat{Y}_o) + \mathcal{L}_{new}(Y_n, \hat{Y}_n) + \mathcal{R}(\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n) \right)$$

Regularization-based methods: Prior Focused

Prior focused

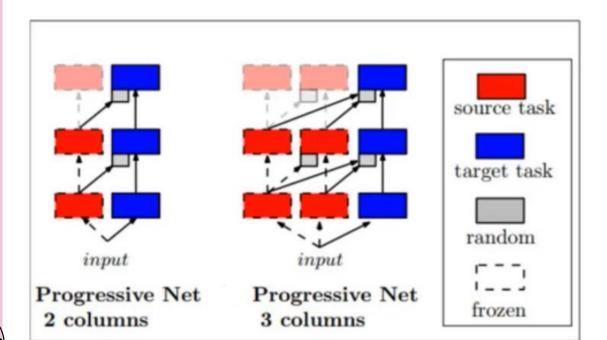


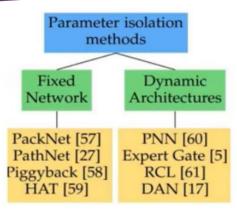


$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_{i=1}^{N} \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$

Parameter Isolation methods: Dynamic Architecture

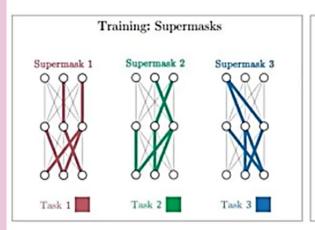
Dynamic Architecture

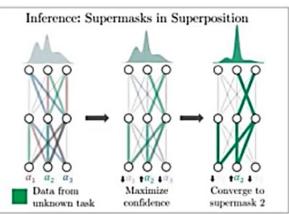


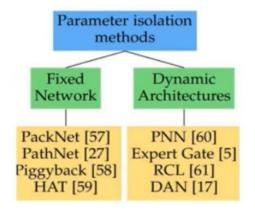


Parameter Isolation methods: Fixed Network

Fixed Network







$$\mathbf{p} = f\left(\mathbf{x}, W \odot M^i\right)$$

$$\mathbf{p}(\alpha) = f\left(\mathbf{x}, W \odot \left(\sum_{i=1}^{k} \alpha_i M^i\right)\right)$$

$$\alpha \leftarrow \alpha - \eta \nabla_{\alpha} \mathcal{H} \left(\mathbf{p} \left(\alpha \right) \right)$$

Edge of Knowledge



In contrast, many real world settings look like:

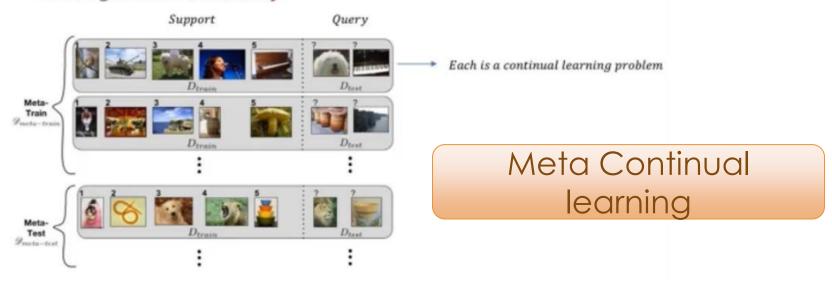
quickly learn new task

Let's combine them

Edge of Knowledge (cont.)

Meta Continual Learning

Learning to Learn Continually



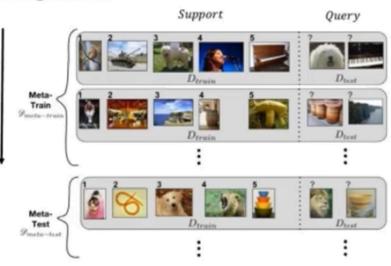
Edge of Knowledge (cont.)

Continual Meta Learning

Continually Learning to Learn

 D_{meta} is received continually

Continual Meta learning

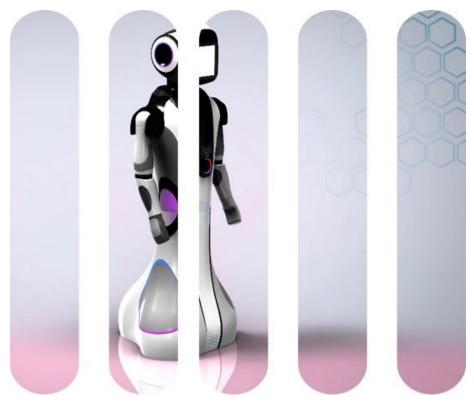


Conclusion

Where to use Continual Learning?

- Constant memory
- No task boundary info
- Online Learning
- Forward transfer
- Backward transfer
- Problem agnostic
- Adaptively learning from partial data
- No test time oracle
- Task revisiting to strengthen prior knowledge
- · Graceful forgetting to balance stability and plasticity

Thanks for your attention



Social and Cognitive Robotics, Sharif University of Technology