ABO4SAMRA commited on
Commit
e3731b4
·
verified ·
1 Parent(s): f4fced9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -215
app.py CHANGED
@@ -1,230 +1,106 @@
1
  import os
2
- import json
3
- from typing import List, Dict, Any, Generator
4
-
5
- # Gradio & LLM/Agent Imports
6
  import gradio as gr
7
- from gradio.components.chatbot import ChatMessage
8
- import openai # Using the standard OpenAI client (will be configured for Nebius)
9
-
10
- # LlamaIndex Imports (Essential for RAG and Agent Context)
11
- # In a real app, you would import LlamaIndex components here, e.g.,
12
- # from llama_index.core.agent import FunctionCallingAgentWorker
13
- # from llama_index.core.query_engine import RetrieverQueryEngine
14
-
15
- # --- CONFIGURATION PLACEHOLDERS ---
16
- # You will need to configure the OpenAI client to point to the Nebius Token Factory endpoint.
17
- # NEBIUS_API_KEY should be set as a Hugging Face Secret.
18
- NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY")
19
- NEBIUS_BASE_URL = os.getenv("NEBIUS_BASE_URL", "https://api.nebiustokenfactory.com/v1")
20
- LLM_MODEL = "openai/gpt-oss-120b" # Using the specified Nebius model ID
21
-
22
- # --- MOCK RAG SETUP (Needs replacement with real LlamaIndex code) ---
23
- class MockRAG:
24
- """A placeholder for the real LlamaIndex RAG query engine."""
25
- def query(self, query: str) -> str:
26
- if "quantum physics" in query.lower() or "explain" in query.lower():
27
- return "Quantum physics studies matter and energy at the most fundamental level, where classical mechanics breaks down. Key concepts include wave-particle duality and the uncertainty principle. This explanation is grounded in the latest 2025 educational materials."
28
- else:
29
- return "Hello! I'm your AI Tutor. Let's learn about that! Ask me to explain a topic, show a video, or give you a quiz!"
30
-
31
- # --- MCP TOOL DEFINITIONS ---
32
-
33
- def video_search_tool(topic: str) -> str:
34
  """
35
- Searches YouTube for a highly rated educational video relevant to the user's topic.
36
-
37
- Args:
38
- topic (str): The subject or question provided by the user.
39
-
40
- Returns:
41
- str: An HTML snippet embedding the YouTube video in the chat.
42
  """
43
- # Placeholder Logic: A real tool would call the YouTube API or Google Search
44
- video_map = {
45
- "quantum physics": "https://www.youtube.com/embed/gIWy5p4MZVE", # Kurzgesagt
46
- "biology": "https://www.youtube.com/embed/A8gNf1p60pE", # Amoeba Sisters
47
- "history": "https://www.youtube.com/embed/Yocja_N5s1I", # Crash Course
48
- }
49
 
50
- url = next((v for k, v in video_map.items() if k in topic.lower()), video_map["quantum physics"])
51
-
52
- # Use HTML to embed the video directly in the Chatbot
53
- html_embed = f"""
54
- <div style="padding: 10px; border: 1px solid #e0e0e0; border-radius: 8px; background: #f9f9f9; max-width: 100%; border-radius: 8px;">
55
- <p style="font-weight: bold; margin-bottom: 5px; color: #1f2937;">🎥 Tutor Found a Video Resource!</p>
56
- <iframe width="100%" height="315" src="{url}" frameborder="0" allowfullscreen style="border-radius: 6px;"></iframe>
57
- <p style="font-style: italic; font-size: 0.9em; margin-top: 5px; color: #6b7280;">Click play above to watch the lesson.</p>
58
- </div>
59
- """
60
- return html_embed
61
-
62
- def quiz_generator_tool(topic: str) -> str:
63
- """
64
- Generates a short, three-question multiple-choice quiz on a specific subject.
65
-
66
- Args:
67
- topic (str): The subject or knowledge area for the quiz.
68
-
69
- Returns:
70
- str: A Markdown/HTML formatted quiz for the user to answer.
71
- """
72
- # Placeholder Logic: A real tool would use the LLM to generate the quiz JSON
73
- quiz_markdown = """
74
- <div style="background-color: #ecfdf5; padding: 15px; border-radius: 8px; border-left: 5px solid #059669; color: #065f46;">
75
- <h4 style="margin-top: 0; color: #059669;">📝 Quiz Time: Understanding the Fundamentals!</h4>
76
- <ol style="padding-left: 20px;">
77
- <li style="margin-bottom: 10px;">**Which of these phenomena demonstrates wave-particle duality?**
78
- <ul><li>A. An apple falling from a tree</li><li>B. The double-slit experiment</li><li>C. Water boiling at 100°C</li></ul>
79
- </li>
80
- <li style="margin-bottom: 10px;">**What does the Heisenberg Uncertainty Principle state?**
81
- <ul><li>A. It's impossible to know a particle's position and velocity simultaneously.</li><li>B. Energy is conserved in a closed system.</li><li>C. Light travels fastest in a vacuum.</li></ul>
82
- </li>
83
- <li style="margin-bottom: 0;">**In quantum mechanics, what is an "orbital"?**
84
- <ul><li>A. The fixed path of an electron around the nucleus</li><li>B. A region of space where an electron is most likely to be found</li><li>C. A subatomic particle of light</li></ul>
85
- </li>
86
- </ol>
87
- <p style="font-style: italic; font-size: 0.85em; margin-top: 15px;">**Hint:** Your tutor will check your answers in the next message!</p>
88
- </div>
89
- """
90
- return quiz_markdown
91
-
92
- # --- AGENT CORE (SIMULATED FOR TOOL-CALLING) ---
93
-
94
- class NebiusAIAgent:
95
- """
96
- Simulates the Agentic workflow using the OpenAI Client (configured for Nebius)
97
- and LlamaIndex tools.
98
- """
99
- def __init__(self, tools: List, rag_query_engine: Any):
100
- self.rag_query_engine = rag_query_engine
101
- self.tools = {t.__name__: t for t in tools}
102
- self.tool_descriptions = [
103
- {"type": "function", "function": {
104
- "name": "video_search_tool",
105
- "description": "Searches for an educational video to help the student learn a topic visually.",
106
- "parameters": {"type": "object", "properties": {"topic": {"type": "string", "description": "The educational topic to search for."}}, "required": ["topic"]}
107
- }},
108
- {"type": "function", "function": {
109
- "name": "quiz_generator_tool",
110
- "description": "Generates a structured quiz (3-5 questions) to test the student's knowledge on a specific topic.",
111
- "parameters": {"type": "object", "properties": {"topic": {"type": "string", "description": "The topic to base the quiz on."}}, "required": ["topic"]}
112
- }}
113
- ]
114
-
115
- # Initialize the OpenAI Client, pointing to Nebius Token Factory
116
- self.client = openai.OpenAI(
117
- api_key=NEBIUS_API_KEY,
118
- base_url=NEBIUS_BASE_URL,
119
- )
120
-
121
- def stream_chat(self, prompt: str, history: List) -> Generator[str, None, None]:
122
-
123
- # 1. Build Messages
124
- messages = [{"role": "system", "content": "You are a patient, world-class AI Tutor. Use your available tools to find videos or create quizzes when requested. Otherwise, use your RAG knowledge to explain topics. Be encouraging and use markdown formatting."}]
125
- # Convert history format
126
- for user_msg, assistant_msg in history:
127
- if user_msg: messages.append({"role": "user", "content": user_msg})
128
- if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg})
129
- messages.append({"role": "user", "content": prompt})
130
 
131
- try:
132
- # 2. Call the LLM (Nebius via OpenAI client)
133
- # NOTE: In a real app, you would stream the response using 'stream=True'
134
- # and handle the tool call logic from the response object.
135
- response = self.client.chat.completions.create(
136
- model=LLM_MODEL,
137
- messages=messages,
138
- tools=self.tool_descriptions,
139
- tool_choice="auto" # Let the model decide whether to call a tool
140
- )
141
 
142
- # --- MOCK TOOL CALLING LOGIC (Simplified) ---
143
- # NOTE: For this mock, we manually check keywords to simulate tool calling
144
- # to ensure the demo works without a live agent model that can interpret tool descriptions.
145
 
146
- tool_call = None
147
- if "video" in prompt.lower() or "show me" in prompt.lower():
148
- tool_call = {"function": {"name": "video_search_tool", "arguments": json.dumps({"topic": prompt})}}
149
- elif "quiz" in prompt.lower() or "test me" in prompt.lower():
150
- tool_call = {"function": {"name": "quiz_generator_tool", "arguments": json.dumps({"topic": prompt})}}
151
-
152
- if tool_call:
153
- # Agent Thought: Tool Call
154
- yield ChatMessage(role="assistant", content="", metadata={"title": f"🧠 Agent Thought: Decided to call **{tool_call['function']['name']}**."})
155
-
156
- # Execute the tool (local mock execution)
157
- tool_func = self.tools[tool_call['function']['name']]
158
- args = json.loads(tool_call['function']['arguments'])
159
- tool_output = tool_func(args['topic'])
160
-
161
- # Display Tool Result
162
- yield ChatMessage(role="assistant", content=tool_output, metadata={"title": "Tool Result"})
163
-
164
- else:
165
- # Agent Thought: RAG/General LLM
166
- yield ChatMessage(role="assistant", content="", metadata={"title": "🧠 Agent Thought: Retrieving context from knowledge base (RAG)."})
167
-
168
- # Simulate RAG and response synthesis
169
- rag_result = self.rag_query_engine.query(prompt)
170
-
171
- # Stream the final response
172
- full_response = f"**Tutor's Explanation:**\n\n{rag_result}"
173
- for chunk in full_response.split():
174
- yield chunk + " "
175
 
176
- except Exception as e:
177
- error_message = f"🚨 **Error during chat processing:** Ensure your Nebius API Key and Base URL are correctly configured. Error: {e}"
178
- for chunk in error_message.split():
179
- yield chunk + " "
 
 
 
180
 
181
- # --- INITIALIZATION ---
182
-
183
- # 1. Initialize RAG
184
- rag_knowledge_base = MockRAG()
185
-
186
- # 2. Define the list of tools available to the Agent
187
- available_tools = [video_search_tool, quiz_generator_tool]
188
-
189
- # 3. Initialize the Agent Executor
190
- agent_executor = NebiusAIAgent(available_tools, rag_knowledge_base)
191
-
192
- # The function that the Gradio ChatInterface will call
193
- def tutor_chat_function(message: str, history: List[List[str]]) -> Generator[str, None, None]:
194
- # This block handles the streaming output from the agent
195
- # Stream the full response to the Gradio Chatbot
196
- response_stream = agent_executor.stream_chat(message, history)
197
- for chunk in response_stream:
198
- yield chunk
199
-
200
- # --- GRADIO UI ---
201
 
202
- with gr.Blocks(theme=gr.themes.Monochrome(), title="AI Tutor Agent (MCP in Action)") as demo:
203
- gr.Markdown("# 🎓 AI Tutor Agent (Nebius/OpenAI Client & Gradio MCP)")
204
- gr.Markdown(
205
- "**Ask me anything about science, history, or tech!** "
206
- "Try saying things like: *'Explain quantum physics'* or *'Test me on biology'* or *'Show me a video on the Cold War'*."
207
- "<br>_This agent uses RAG for articles and is tool-enabled via MCP. **Remember to set your NEBIUS_API_KEY secret.**_"
208
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
 
210
- # Use gr.ChatInterface for the main interaction
211
- gr.ChatInterface(
212
- fn=tutor_chat_function,
213
- textbox=gr.Textbox(placeholder="What would you like to learn today?"),
214
- chatbot=gr.Chatbot(
215
- label="AI Tutor",
216
- show_copy_button=True,
217
- height=600,
218
- # Added a class for mobile responsiveness
219
- elem_classes=["min-h-[70vh]", "mobile-full-width"]
220
- ),
221
- # Sets the initial user message and prompt for the user
222
- examples=[
223
- "Explain the water cycle in detail.",
224
- "Give me a quiz on World War 2 history.",
225
- "Show me a video about photosynthesis."
226
- ]
227
  )
228
 
 
229
  if __name__ == "__main__":
230
- demo.launch()
 
1
  import os
2
+ import sys
 
 
 
3
  import gradio as gr
4
+ from langchain_openai import ChatOpenAI
5
+ from langchain.agents import AgentExecutor, create_tool_calling_agent
6
+ from langchain.prompts import ChatPromptTemplate
7
+ from mcp import ClientSession, StdioServerParameters
8
+ from mcp.client.stdio import stdio_client
9
+ from langchain_mcp_adapters.tools import load_mcp_tools
10
+
11
+ # --- Configuration ---
12
+ NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY") # Ensure this is set in HF Spaces Secrets
13
+ NEBIUS_BASE_URL = "https://api.studio.nebius.ai/v1/"
14
+ MODEL_NAME = "meta-llama/Meta-Llama-3.1-70B-Instruct"
15
+
16
+ # --- Agent System Prompt ---
17
+ SYSTEM_PROMPT = """You are a 'Vibe Coding' Python Tutor.
18
+ Your goal is not just to talk, but to DO.
19
+ 1. When a user asks to learn a concept, create a python file illustrating it.
20
+ 2. RUN the file to show them the output.
21
+ 3. If there is an error, debug it by reading the file and fixing it.
22
+ 4. Always explain your reasoning briefly before executing tools.
23
+
24
+ You have access to a local filesystem. Use 'write_file' to create examples and 'run_python_script' to execute them.
25
+ """
26
+
27
+ async def run_tutor(user_message, chat_history):
 
 
 
28
  """
29
+ Main function to run the agent loop.
30
+ It connects to the local MCP server for every request to ensure fresh context.
 
 
 
 
 
31
  """
 
 
 
 
 
 
32
 
33
+ # 1. Define Server Parameters (Point to our local server.py)
34
+ server_params = StdioServerParameters(
35
+ command=sys.executable,
36
+ args=["server.py"],
37
+ env=os.environ.copy()
38
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ # 2. Connect to MCP Server & Load Tools
41
+ async with stdio_client(server_params) as (read, write):
42
+ async with ClientSession(read, write) as session:
43
+ await session.initialize()
 
 
 
 
 
 
44
 
45
+ # Convert MCP tools to LangChain tools
46
+ tools = await load_mcp_tools(session)
 
47
 
48
+ # 3. Initialize Nebius LLM
49
+ llm = ChatOpenAI(
50
+ api_key=NEBIUS_API_KEY,
51
+ base_url=NEBIUS_BASE_URL,
52
+ model=MODEL_NAME,
53
+ temperature=0.7
54
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ # 4. Create Agent
57
+ prompt = ChatPromptTemplate.from_messages([
58
+ ("system", SYSTEM_PROMPT),
59
+ ("placeholder", "{chat_history}"),
60
+ ("human", "{input}"),
61
+ ("placeholder", "{agent_scratchpad}"),
62
+ ])
63
 
64
+ agent = create_tool_calling_agent(llm, tools, prompt)
65
+ agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
66
+
67
+ # 5. Execute & Stream Response
68
+ # We use 'invoke' for simplicity, but you could use 'stream' for token-by-token
69
+ response = await agent_executor.ainvoke({
70
+ "input": user_message,
71
+ "chat_history": chat_history
72
+ })
73
+
74
+ return response["output"]
 
 
 
 
 
 
 
 
 
75
 
76
+ # --- Gradio UI ---
77
+ with gr.Blocks(title="AI Python Tutor (MCP Powered)", theme=gr.themes.Soft()) as demo:
78
+ gr.Markdown("# 🐍 Vibe Coding Tutor")
79
+ gr.Markdown("Powered by **Nebius** (Llama 3.1) & **MCP** (Local Filesystem Access)")
80
+
81
+ chatbot = gr.Chatbot(height=600, type="messages")
82
+ msg = gr.Textbox(placeholder="E.g., Teach me how to use Python decorators with a working example.")
83
+
84
+ async def user_turn(user_message, history):
85
+ # 1. Append user message to history immediately
86
+ history.append({"role": "user", "content": user_message})
87
+ return "", history
88
+
89
+ async def bot_turn(history):
90
+ # 2. Get the last user message
91
+ last_message = history[-1]["content"]
92
+ # 3. Pass full history (excluding last msg) to agent for context
93
+ # Note: LangChain expects list of messages, simplified here for demo
94
+
95
+ response_text = await run_tutor(last_message, [])
96
+
97
+ history.append({"role": "assistant", "content": response_text})
98
+ return history
99
 
100
+ msg.submit(user_turn, [msg, chatbot], [msg, chatbot]).then(
101
+ bot_turn, [chatbot], [chatbot]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  )
103
 
104
+ # --- Launch ---
105
  if __name__ == "__main__":
106
+ demo.queue().launch()