Update app.py
Browse files
app.py
CHANGED
|
@@ -1,230 +1,106 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
-
from typing import List, Dict, Any, Generator
|
| 4 |
-
|
| 5 |
-
# Gradio & LLM/Agent Imports
|
| 6 |
import gradio as gr
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
# --- MCP TOOL DEFINITIONS ---
|
| 32 |
-
|
| 33 |
-
def video_search_tool(topic: str) -> str:
|
| 34 |
"""
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
Args:
|
| 38 |
-
topic (str): The subject or question provided by the user.
|
| 39 |
-
|
| 40 |
-
Returns:
|
| 41 |
-
str: An HTML snippet embedding the YouTube video in the chat.
|
| 42 |
"""
|
| 43 |
-
# Placeholder Logic: A real tool would call the YouTube API or Google Search
|
| 44 |
-
video_map = {
|
| 45 |
-
"quantum physics": "https://www.youtube.com/embed/gIWy5p4MZVE", # Kurzgesagt
|
| 46 |
-
"biology": "https://www.youtube.com/embed/A8gNf1p60pE", # Amoeba Sisters
|
| 47 |
-
"history": "https://www.youtube.com/embed/Yocja_N5s1I", # Crash Course
|
| 48 |
-
}
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
<iframe width="100%" height="315" src="{url}" frameborder="0" allowfullscreen style="border-radius: 6px;"></iframe>
|
| 57 |
-
<p style="font-style: italic; font-size: 0.9em; margin-top: 5px; color: #6b7280;">Click play above to watch the lesson.</p>
|
| 58 |
-
</div>
|
| 59 |
-
"""
|
| 60 |
-
return html_embed
|
| 61 |
-
|
| 62 |
-
def quiz_generator_tool(topic: str) -> str:
|
| 63 |
-
"""
|
| 64 |
-
Generates a short, three-question multiple-choice quiz on a specific subject.
|
| 65 |
-
|
| 66 |
-
Args:
|
| 67 |
-
topic (str): The subject or knowledge area for the quiz.
|
| 68 |
-
|
| 69 |
-
Returns:
|
| 70 |
-
str: A Markdown/HTML formatted quiz for the user to answer.
|
| 71 |
-
"""
|
| 72 |
-
# Placeholder Logic: A real tool would use the LLM to generate the quiz JSON
|
| 73 |
-
quiz_markdown = """
|
| 74 |
-
<div style="background-color: #ecfdf5; padding: 15px; border-radius: 8px; border-left: 5px solid #059669; color: #065f46;">
|
| 75 |
-
<h4 style="margin-top: 0; color: #059669;">📝 Quiz Time: Understanding the Fundamentals!</h4>
|
| 76 |
-
<ol style="padding-left: 20px;">
|
| 77 |
-
<li style="margin-bottom: 10px;">**Which of these phenomena demonstrates wave-particle duality?**
|
| 78 |
-
<ul><li>A. An apple falling from a tree</li><li>B. The double-slit experiment</li><li>C. Water boiling at 100°C</li></ul>
|
| 79 |
-
</li>
|
| 80 |
-
<li style="margin-bottom: 10px;">**What does the Heisenberg Uncertainty Principle state?**
|
| 81 |
-
<ul><li>A. It's impossible to know a particle's position and velocity simultaneously.</li><li>B. Energy is conserved in a closed system.</li><li>C. Light travels fastest in a vacuum.</li></ul>
|
| 82 |
-
</li>
|
| 83 |
-
<li style="margin-bottom: 0;">**In quantum mechanics, what is an "orbital"?**
|
| 84 |
-
<ul><li>A. The fixed path of an electron around the nucleus</li><li>B. A region of space where an electron is most likely to be found</li><li>C. A subatomic particle of light</li></ul>
|
| 85 |
-
</li>
|
| 86 |
-
</ol>
|
| 87 |
-
<p style="font-style: italic; font-size: 0.85em; margin-top: 15px;">**Hint:** Your tutor will check your answers in the next message!</p>
|
| 88 |
-
</div>
|
| 89 |
-
"""
|
| 90 |
-
return quiz_markdown
|
| 91 |
-
|
| 92 |
-
# --- AGENT CORE (SIMULATED FOR TOOL-CALLING) ---
|
| 93 |
-
|
| 94 |
-
class NebiusAIAgent:
|
| 95 |
-
"""
|
| 96 |
-
Simulates the Agentic workflow using the OpenAI Client (configured for Nebius)
|
| 97 |
-
and LlamaIndex tools.
|
| 98 |
-
"""
|
| 99 |
-
def __init__(self, tools: List, rag_query_engine: Any):
|
| 100 |
-
self.rag_query_engine = rag_query_engine
|
| 101 |
-
self.tools = {t.__name__: t for t in tools}
|
| 102 |
-
self.tool_descriptions = [
|
| 103 |
-
{"type": "function", "function": {
|
| 104 |
-
"name": "video_search_tool",
|
| 105 |
-
"description": "Searches for an educational video to help the student learn a topic visually.",
|
| 106 |
-
"parameters": {"type": "object", "properties": {"topic": {"type": "string", "description": "The educational topic to search for."}}, "required": ["topic"]}
|
| 107 |
-
}},
|
| 108 |
-
{"type": "function", "function": {
|
| 109 |
-
"name": "quiz_generator_tool",
|
| 110 |
-
"description": "Generates a structured quiz (3-5 questions) to test the student's knowledge on a specific topic.",
|
| 111 |
-
"parameters": {"type": "object", "properties": {"topic": {"type": "string", "description": "The topic to base the quiz on."}}, "required": ["topic"]}
|
| 112 |
-
}}
|
| 113 |
-
]
|
| 114 |
-
|
| 115 |
-
# Initialize the OpenAI Client, pointing to Nebius Token Factory
|
| 116 |
-
self.client = openai.OpenAI(
|
| 117 |
-
api_key=NEBIUS_API_KEY,
|
| 118 |
-
base_url=NEBIUS_BASE_URL,
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
def stream_chat(self, prompt: str, history: List) -> Generator[str, None, None]:
|
| 122 |
-
|
| 123 |
-
# 1. Build Messages
|
| 124 |
-
messages = [{"role": "system", "content": "You are a patient, world-class AI Tutor. Use your available tools to find videos or create quizzes when requested. Otherwise, use your RAG knowledge to explain topics. Be encouraging and use markdown formatting."}]
|
| 125 |
-
# Convert history format
|
| 126 |
-
for user_msg, assistant_msg in history:
|
| 127 |
-
if user_msg: messages.append({"role": "user", "content": user_msg})
|
| 128 |
-
if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg})
|
| 129 |
-
messages.append({"role": "user", "content": prompt})
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
response = self.client.chat.completions.create(
|
| 136 |
-
model=LLM_MODEL,
|
| 137 |
-
messages=messages,
|
| 138 |
-
tools=self.tool_descriptions,
|
| 139 |
-
tool_choice="auto" # Let the model decide whether to call a tool
|
| 140 |
-
)
|
| 141 |
|
| 142 |
-
#
|
| 143 |
-
|
| 144 |
-
# to ensure the demo works without a live agent model that can interpret tool descriptions.
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
# Agent Thought: Tool Call
|
| 154 |
-
yield ChatMessage(role="assistant", content="", metadata={"title": f"🧠 Agent Thought: Decided to call **{tool_call['function']['name']}**."})
|
| 155 |
-
|
| 156 |
-
# Execute the tool (local mock execution)
|
| 157 |
-
tool_func = self.tools[tool_call['function']['name']]
|
| 158 |
-
args = json.loads(tool_call['function']['arguments'])
|
| 159 |
-
tool_output = tool_func(args['topic'])
|
| 160 |
-
|
| 161 |
-
# Display Tool Result
|
| 162 |
-
yield ChatMessage(role="assistant", content=tool_output, metadata={"title": "Tool Result"})
|
| 163 |
-
|
| 164 |
-
else:
|
| 165 |
-
# Agent Thought: RAG/General LLM
|
| 166 |
-
yield ChatMessage(role="assistant", content="", metadata={"title": "🧠 Agent Thought: Retrieving context from knowledge base (RAG)."})
|
| 167 |
-
|
| 168 |
-
# Simulate RAG and response synthesis
|
| 169 |
-
rag_result = self.rag_query_engine.query(prompt)
|
| 170 |
-
|
| 171 |
-
# Stream the final response
|
| 172 |
-
full_response = f"**Tutor's Explanation:**\n\n{rag_result}"
|
| 173 |
-
for chunk in full_response.split():
|
| 174 |
-
yield chunk + " "
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
# The function that the Gradio ChatInterface will call
|
| 193 |
-
def tutor_chat_function(message: str, history: List[List[str]]) -> Generator[str, None, None]:
|
| 194 |
-
# This block handles the streaming output from the agent
|
| 195 |
-
# Stream the full response to the Gradio Chatbot
|
| 196 |
-
response_stream = agent_executor.stream_chat(message, history)
|
| 197 |
-
for chunk in response_stream:
|
| 198 |
-
yield chunk
|
| 199 |
-
|
| 200 |
-
# --- GRADIO UI ---
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
gr.Markdown(
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
fn=tutor_chat_function,
|
| 213 |
-
textbox=gr.Textbox(placeholder="What would you like to learn today?"),
|
| 214 |
-
chatbot=gr.Chatbot(
|
| 215 |
-
label="AI Tutor",
|
| 216 |
-
show_copy_button=True,
|
| 217 |
-
height=600,
|
| 218 |
-
# Added a class for mobile responsiveness
|
| 219 |
-
elem_classes=["min-h-[70vh]", "mobile-full-width"]
|
| 220 |
-
),
|
| 221 |
-
# Sets the initial user message and prompt for the user
|
| 222 |
-
examples=[
|
| 223 |
-
"Explain the water cycle in detail.",
|
| 224 |
-
"Give me a quiz on World War 2 history.",
|
| 225 |
-
"Show me a video about photosynthesis."
|
| 226 |
-
]
|
| 227 |
)
|
| 228 |
|
|
|
|
| 229 |
if __name__ == "__main__":
|
| 230 |
-
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
+
from langchain_openai import ChatOpenAI
|
| 5 |
+
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
| 6 |
+
from langchain.prompts import ChatPromptTemplate
|
| 7 |
+
from mcp import ClientSession, StdioServerParameters
|
| 8 |
+
from mcp.client.stdio import stdio_client
|
| 9 |
+
from langchain_mcp_adapters.tools import load_mcp_tools
|
| 10 |
+
|
| 11 |
+
# --- Configuration ---
|
| 12 |
+
NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY") # Ensure this is set in HF Spaces Secrets
|
| 13 |
+
NEBIUS_BASE_URL = "https://api.studio.nebius.ai/v1/"
|
| 14 |
+
MODEL_NAME = "meta-llama/Meta-Llama-3.1-70B-Instruct"
|
| 15 |
+
|
| 16 |
+
# --- Agent System Prompt ---
|
| 17 |
+
SYSTEM_PROMPT = """You are a 'Vibe Coding' Python Tutor.
|
| 18 |
+
Your goal is not just to talk, but to DO.
|
| 19 |
+
1. When a user asks to learn a concept, create a python file illustrating it.
|
| 20 |
+
2. RUN the file to show them the output.
|
| 21 |
+
3. If there is an error, debug it by reading the file and fixing it.
|
| 22 |
+
4. Always explain your reasoning briefly before executing tools.
|
| 23 |
+
|
| 24 |
+
You have access to a local filesystem. Use 'write_file' to create examples and 'run_python_script' to execute them.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
async def run_tutor(user_message, chat_history):
|
|
|
|
|
|
|
|
|
|
| 28 |
"""
|
| 29 |
+
Main function to run the agent loop.
|
| 30 |
+
It connects to the local MCP server for every request to ensure fresh context.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# 1. Define Server Parameters (Point to our local server.py)
|
| 34 |
+
server_params = StdioServerParameters(
|
| 35 |
+
command=sys.executable,
|
| 36 |
+
args=["server.py"],
|
| 37 |
+
env=os.environ.copy()
|
| 38 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# 2. Connect to MCP Server & Load Tools
|
| 41 |
+
async with stdio_client(server_params) as (read, write):
|
| 42 |
+
async with ClientSession(read, write) as session:
|
| 43 |
+
await session.initialize()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# Convert MCP tools to LangChain tools
|
| 46 |
+
tools = await load_mcp_tools(session)
|
|
|
|
| 47 |
|
| 48 |
+
# 3. Initialize Nebius LLM
|
| 49 |
+
llm = ChatOpenAI(
|
| 50 |
+
api_key=NEBIUS_API_KEY,
|
| 51 |
+
base_url=NEBIUS_BASE_URL,
|
| 52 |
+
model=MODEL_NAME,
|
| 53 |
+
temperature=0.7
|
| 54 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# 4. Create Agent
|
| 57 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 58 |
+
("system", SYSTEM_PROMPT),
|
| 59 |
+
("placeholder", "{chat_history}"),
|
| 60 |
+
("human", "{input}"),
|
| 61 |
+
("placeholder", "{agent_scratchpad}"),
|
| 62 |
+
])
|
| 63 |
|
| 64 |
+
agent = create_tool_calling_agent(llm, tools, prompt)
|
| 65 |
+
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
| 66 |
+
|
| 67 |
+
# 5. Execute & Stream Response
|
| 68 |
+
# We use 'invoke' for simplicity, but you could use 'stream' for token-by-token
|
| 69 |
+
response = await agent_executor.ainvoke({
|
| 70 |
+
"input": user_message,
|
| 71 |
+
"chat_history": chat_history
|
| 72 |
+
})
|
| 73 |
+
|
| 74 |
+
return response["output"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
# --- Gradio UI ---
|
| 77 |
+
with gr.Blocks(title="AI Python Tutor (MCP Powered)", theme=gr.themes.Soft()) as demo:
|
| 78 |
+
gr.Markdown("# 🐍 Vibe Coding Tutor")
|
| 79 |
+
gr.Markdown("Powered by **Nebius** (Llama 3.1) & **MCP** (Local Filesystem Access)")
|
| 80 |
+
|
| 81 |
+
chatbot = gr.Chatbot(height=600, type="messages")
|
| 82 |
+
msg = gr.Textbox(placeholder="E.g., Teach me how to use Python decorators with a working example.")
|
| 83 |
+
|
| 84 |
+
async def user_turn(user_message, history):
|
| 85 |
+
# 1. Append user message to history immediately
|
| 86 |
+
history.append({"role": "user", "content": user_message})
|
| 87 |
+
return "", history
|
| 88 |
+
|
| 89 |
+
async def bot_turn(history):
|
| 90 |
+
# 2. Get the last user message
|
| 91 |
+
last_message = history[-1]["content"]
|
| 92 |
+
# 3. Pass full history (excluding last msg) to agent for context
|
| 93 |
+
# Note: LangChain expects list of messages, simplified here for demo
|
| 94 |
+
|
| 95 |
+
response_text = await run_tutor(last_message, [])
|
| 96 |
+
|
| 97 |
+
history.append({"role": "assistant", "content": response_text})
|
| 98 |
+
return history
|
| 99 |
|
| 100 |
+
msg.submit(user_turn, [msg, chatbot], [msg, chatbot]).then(
|
| 101 |
+
bot_turn, [chatbot], [chatbot]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
+
# --- Launch ---
|
| 105 |
if __name__ == "__main__":
|
| 106 |
+
demo.queue().launch()
|