ABO4SAMRA commited on
Commit
697651e
·
verified ·
1 Parent(s): decfd66

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -40
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import os
2
  import sys
 
3
  import gradio as gr
4
  from langchain_openai import ChatOpenAI
5
  from langgraph.prebuilt import create_react_agent
@@ -13,39 +14,74 @@ NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY")
13
  NEBIUS_BASE_URL = "https://api.studio.nebius.ai/v1/"
14
  MODEL_NAME = "meta-llama/Meta-Llama-3.1-70B-Instruct"
15
 
16
- # --- Agent System Prompt ---
17
  SYSTEM_PROMPT = """You are a 'Vibe Coding' Python Tutor.
18
- Your goal is not just to talk, but to DO.
19
- 1. When a user asks to learn a concept, create a python file illustrating it.
20
- 2. RUN the file to show them the output.
21
- 3. If there is an error, debug it by reading the file and fixing it.
22
- 4. Always explain your reasoning briefly before executing tools.
23
 
24
- You have access to a local filesystem. Use 'write_file' to create examples and 'run_python_script' to execute them.
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  """
26
 
27
- async def run_tutor(user_message, chat_history):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  """
29
- Main function to run the agent loop.
30
- It connects to the local MCP server for every request to ensure fresh context.
31
  """
32
-
33
- # 1. Define Server Parameters
34
  server_params = StdioServerParameters(
35
  command=sys.executable,
36
  args=["server.py"],
37
  env=os.environ.copy()
38
  )
39
 
40
- # 2. Connect to MCP Server & Load Tools
41
  async with stdio_client(server_params) as (read, write):
42
  async with ClientSession(read, write) as session:
43
  await session.initialize()
44
-
45
- # Convert MCP tools to LangChain tools
46
  tools = await load_mcp_tools(session)
47
 
48
- # 3. Initialize Nebius LLM
49
  llm = ChatOpenAI(
50
  api_key=NEBIUS_API_KEY,
51
  base_url=NEBIUS_BASE_URL,
@@ -53,43 +89,81 @@ async def run_tutor(user_message, chat_history):
53
  temperature=0.7
54
  )
55
 
56
- # 4. Create Agent
57
  agent_executor = create_react_agent(llm, tools, state_modifier=SYSTEM_PROMPT)
58
-
59
- # 5. Execute
60
  inputs = {"messages": [HumanMessage(content=user_message)]}
61
  response = await agent_executor.ainvoke(inputs)
 
62
 
63
- # 6. Extract the final response text
64
- return response["messages"][-1].content
65
 
66
- # --- Gradio UI (Universal Fix) ---
67
- with gr.Blocks(title="AI Python Tutor (MCP Powered)") as demo:
68
- gr.Markdown("# 🐍 Vibe Coding Tutor")
69
  gr.Markdown("Powered by **Nebius** (Llama 3.1) & **MCP** (Local Filesystem Access)")
70
 
71
- # REMOVED: type="messages" (This fixes the TypeError)
72
- chatbot = gr.Chatbot(height=600)
73
- msg = gr.Textbox(placeholder="E.g., Teach me how to use Python decorators with a working example.")
74
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  async def user_turn(user_message, history):
76
- # Universal format: Append a list of [user_msg, None]
77
- # This works on Gradio 3, 4, and 5
78
- return "", history + [[user_message, None]]
79
 
80
  async def bot_turn(history):
81
- # Get the last user message (it's the first element of the last tuple)
82
- last_message = history[-1][0]
83
 
84
- # Run the agent
85
- response_text = await run_tutor(last_message, [])
86
 
87
- # Update the last tuple with the bot response
88
- history[-1][1] = response_text
89
- return history
 
 
90
 
91
- msg.submit(user_turn, [msg, chatbot], [msg, chatbot]).then(
92
- bot_turn, [chatbot], [chatbot]
 
 
 
 
 
 
 
 
 
 
93
  )
94
 
95
  # --- Launch ---
 
1
  import os
2
  import sys
3
+ import re
4
  import gradio as gr
5
  from langchain_openai import ChatOpenAI
6
  from langgraph.prebuilt import create_react_agent
 
14
  NEBIUS_BASE_URL = "https://api.studio.nebius.ai/v1/"
15
  MODEL_NAME = "meta-llama/Meta-Llama-3.1-70B-Instruct"
16
 
17
+ # --- Advanced System Prompt with Structured Output ---
18
  SYSTEM_PROMPT = """You are a 'Vibe Coding' Python Tutor.
19
+ Your goal is to teach by DOING and then providing resources.
 
 
 
 
20
 
21
+ STRUCTURE OF YOUR RESPONSE:
22
+ 1. **The Lesson**: Explain the concept and run code using your tools ('write_file', 'run_python_script').
23
+ 2. **Context**: Use 'list_directory' to see what the student is working on.
24
+
25
+ CRITICAL: You must end EVERY response with these exact separators to populate the student's dashboard:
26
+
27
+ ---SECTION: VIDEOS---
28
+ (List 2-3 YouTube search queries or URLs relevant to the topic)
29
+
30
+ ---SECTION: ARTICLES---
31
+ (List 2-3 documentation links or course names, e.g., RealPython, FreeCodeCamp)
32
+
33
+ ---SECTION: QUIZ---
34
+ (Create 1 short multiple-choice question to test what you just taught)
35
  """
36
 
37
+ def parse_agent_response(full_text):
38
+ """Splits the single LLM response into 4 UI components."""
39
+ # Default content if sections are missing
40
+ chat_content = full_text
41
+ videos = "Ask a coding question to get video recommendations!"
42
+ articles = "Ask a coding question to get reading resources!"
43
+ quiz = "Ask a coding question to take a quiz!"
44
+
45
+ # Robust parsing using split
46
+ try:
47
+ if "---SECTION: VIDEOS---" in full_text:
48
+ parts = full_text.split("---SECTION: VIDEOS---")
49
+ chat_content = parts[0].strip()
50
+ remainder = parts[1]
51
+
52
+ if "---SECTION: ARTICLES---" in remainder:
53
+ v_parts = remainder.split("---SECTION: ARTICLES---")
54
+ videos = v_parts[0].strip()
55
+ remainder = v_parts[1]
56
+
57
+ if "---SECTION: QUIZ---" in remainder:
58
+ a_parts = remainder.split("---SECTION: QUIZ---")
59
+ articles = a_parts[0].strip()
60
+ quiz = a_parts[1].strip()
61
+ else:
62
+ articles = remainder.strip()
63
+ else:
64
+ videos = remainder.strip()
65
+ except Exception as e:
66
+ print(f"Parsing error: {e}")
67
+
68
+ return chat_content, videos, articles, quiz
69
+
70
+ async def run_tutor_dashboard(user_message, chat_history):
71
  """
72
+ Main function to run the agent loop and return 4 outputs.
 
73
  """
 
 
74
  server_params = StdioServerParameters(
75
  command=sys.executable,
76
  args=["server.py"],
77
  env=os.environ.copy()
78
  )
79
 
 
80
  async with stdio_client(server_params) as (read, write):
81
  async with ClientSession(read, write) as session:
82
  await session.initialize()
 
 
83
  tools = await load_mcp_tools(session)
84
 
 
85
  llm = ChatOpenAI(
86
  api_key=NEBIUS_API_KEY,
87
  base_url=NEBIUS_BASE_URL,
 
89
  temperature=0.7
90
  )
91
 
 
92
  agent_executor = create_react_agent(llm, tools, state_modifier=SYSTEM_PROMPT)
93
+
94
+ # Run Agent
95
  inputs = {"messages": [HumanMessage(content=user_message)]}
96
  response = await agent_executor.ainvoke(inputs)
97
+ final_text = response["messages"][-1].content
98
 
99
+ return parse_agent_response(final_text)
 
100
 
101
+ # --- Gradio Dashboard UI ---
102
+ with gr.Blocks(title="AI Python Tutor (MCP Dashboard)", theme=gr.themes.Soft()) as demo:
103
+ gr.Markdown("# 🚀 Vibe Coding Academy")
104
  gr.Markdown("Powered by **Nebius** (Llama 3.1) & **MCP** (Local Filesystem Access)")
105
 
106
+ with gr.Row():
107
+ # Left Column: Chat & Input
108
+ with gr.Column(scale=2):
109
+ chatbot = gr.Chatbot(height=500, label="Tutor Chat", type="messages")
110
+
111
+ # BOX 1: Learning Request (Input)
112
+ msg = gr.Textbox(
113
+ label="1. What do you want to learn?",
114
+ placeholder="E.g., How do Python dictionaries work?",
115
+ lines=2
116
+ )
117
+ submit_btn = gr.Button("Start Learning", variant="primary")
118
+
119
+ # Right Column: Resources Dashboard
120
+ with gr.Column(scale=1):
121
+ # BOX 2: Videos
122
+ video_box = gr.Markdown(
123
+ value="### 📺 Recommended Videos\n*Waiting for topic...*",
124
+ label="2. Video References"
125
+ )
126
+
127
+ # BOX 3: Articles/Courses
128
+ article_box = gr.Markdown(
129
+ value="### 📚 Articles & Courses\n*Waiting for topic...*",
130
+ label="3. Articles & Courses"
131
+ )
132
+
133
+ # BOX 4: Quiz
134
+ quiz_box = gr.Markdown(
135
+ value="### 🧠 Quick Quiz\n*Waiting for topic...*",
136
+ label="4. Knowledge Check"
137
+ )
138
+
139
+ # --- Interaction Logic ---
140
  async def user_turn(user_message, history):
141
+ return "", history + [{"role": "user", "content": user_message}]
 
 
142
 
143
  async def bot_turn(history):
144
+ last_message = history[-1]["content"]
 
145
 
146
+ # Get all 4 outputs from the agent
147
+ chat_text, video_text, article_text, quiz_text = await run_tutor_dashboard(last_message, [])
148
 
149
+ # Update Chatbot history
150
+ history.append({"role": "assistant", "content": chat_text})
151
+
152
+ # Return all 4 updates
153
+ return history, video_text, article_text, quiz_text
154
 
155
+ # Wire up the inputs and outputs
156
+ # Notice we now output to [chatbot, video_box, article_box, quiz_box]
157
+ submit_btn.click(
158
+ user_turn, [msg, chatbot], [msg, chatbot]
159
+ ).then(
160
+ bot_turn, [chatbot], [chatbot, video_box, article_box, quiz_box]
161
+ )
162
+
163
+ msg.submit(
164
+ user_turn, [msg, chatbot], [msg, chatbot]
165
+ ).then(
166
+ bot_turn, [chatbot], [chatbot, video_box, article_box, quiz_box]
167
  )
168
 
169
  # --- Launch ---