Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
import spaces
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
# Model configuration
|
| 8 |
+
model_name = "HelpingAI/Dhanishtha-2.0-preview"
|
| 9 |
+
|
| 10 |
+
# Global variables for model and tokenizer
|
| 11 |
+
model = None
|
| 12 |
+
tokenizer = None
|
| 13 |
+
|
| 14 |
+
def load_model():
|
| 15 |
+
"""Load the model and tokenizer"""
|
| 16 |
+
global model, tokenizer
|
| 17 |
+
|
| 18 |
+
print("Loading tokenizer...")
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 20 |
+
|
| 21 |
+
# Ensure pad token is set
|
| 22 |
+
if tokenizer.pad_token is None:
|
| 23 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 24 |
+
|
| 25 |
+
print("Loading model...")
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
+
model_name,
|
| 28 |
+
torch_dtype="auto",
|
| 29 |
+
device_map="auto",
|
| 30 |
+
trust_remote_code=True
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
print("Model loaded successfully!")
|
| 34 |
+
|
| 35 |
+
def format_thinking_text(text):
|
| 36 |
+
"""Format text to properly display <think> tags in Gradio with better styling"""
|
| 37 |
+
if not text:
|
| 38 |
+
return text
|
| 39 |
+
|
| 40 |
+
# More sophisticated formatting for thinking blocks
|
| 41 |
+
# Replace <think> and </think> tags with styled markdown
|
| 42 |
+
formatted_text = text
|
| 43 |
+
|
| 44 |
+
# Handle thinking blocks with proper markdown formatting
|
| 45 |
+
thinking_pattern = r'<think>(.*?)</think>'
|
| 46 |
+
|
| 47 |
+
def replace_thinking_block(match):
|
| 48 |
+
thinking_content = match.group(1).strip()
|
| 49 |
+
return f"\n\nπ **Thinking Process:**\n\n```\n{thinking_content}\n```\n\n"
|
| 50 |
+
|
| 51 |
+
formatted_text = re.sub(thinking_pattern, replace_thinking_block, formatted_text, flags=re.DOTALL)
|
| 52 |
+
|
| 53 |
+
# Clean up any remaining raw tags that might not have been caught
|
| 54 |
+
formatted_text = re.sub(r'</?think>', '', formatted_text)
|
| 55 |
+
|
| 56 |
+
return formatted_text.strip()
|
| 57 |
+
|
| 58 |
+
@spaces.GPU()
|
| 59 |
+
def generate_response(message, history, max_tokens, temperature, top_p):
|
| 60 |
+
"""Generate streaming response without threading"""
|
| 61 |
+
global model, tokenizer
|
| 62 |
+
|
| 63 |
+
if model is None or tokenizer is None:
|
| 64 |
+
yield "Model is still loading. Please wait..."
|
| 65 |
+
return
|
| 66 |
+
|
| 67 |
+
# Prepare conversation history
|
| 68 |
+
messages = []
|
| 69 |
+
for user_msg, assistant_msg in history:
|
| 70 |
+
messages.append({"role": "user", "content": user_msg})
|
| 71 |
+
if assistant_msg:
|
| 72 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 73 |
+
|
| 74 |
+
# Add current message
|
| 75 |
+
messages.append({"role": "user", "content": message})
|
| 76 |
+
|
| 77 |
+
# Apply chat template
|
| 78 |
+
text = tokenizer.apply_chat_template(
|
| 79 |
+
messages,
|
| 80 |
+
tokenize=False,
|
| 81 |
+
add_generation_prompt=True
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
# Tokenize input
|
| 85 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 86 |
+
|
| 87 |
+
try:
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
# Use transformers streaming with custom approach
|
| 90 |
+
generated_text = ""
|
| 91 |
+
current_input_ids = model_inputs["input_ids"]
|
| 92 |
+
current_attention_mask = model_inputs["attention_mask"]
|
| 93 |
+
|
| 94 |
+
for _ in range(max_tokens):
|
| 95 |
+
# Generate next token
|
| 96 |
+
outputs = model(
|
| 97 |
+
input_ids=current_input_ids,
|
| 98 |
+
attention_mask=current_attention_mask,
|
| 99 |
+
use_cache=True
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Get logits for the last token
|
| 103 |
+
logits = outputs.logits[0, -1, :]
|
| 104 |
+
|
| 105 |
+
# Apply temperature
|
| 106 |
+
if temperature != 1.0:
|
| 107 |
+
logits = logits / temperature
|
| 108 |
+
|
| 109 |
+
# Apply top-p sampling
|
| 110 |
+
if top_p < 1.0:
|
| 111 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 112 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
| 113 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 114 |
+
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
|
| 115 |
+
sorted_indices_to_remove[0] = 0
|
| 116 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
| 117 |
+
logits[indices_to_remove] = float('-inf')
|
| 118 |
+
|
| 119 |
+
# Sample next token
|
| 120 |
+
probs = torch.softmax(logits, dim=-1)
|
| 121 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 122 |
+
|
| 123 |
+
# Check for EOS token
|
| 124 |
+
if next_token.item() == tokenizer.eos_token_id:
|
| 125 |
+
break
|
| 126 |
+
|
| 127 |
+
# Decode the new token (preserve special tokens like <think>)
|
| 128 |
+
new_token_text = tokenizer.decode(next_token, skip_special_tokens=False)
|
| 129 |
+
generated_text += new_token_text
|
| 130 |
+
|
| 131 |
+
# Format and yield the current text
|
| 132 |
+
formatted_text = format_thinking_text(generated_text)
|
| 133 |
+
yield formatted_text
|
| 134 |
+
|
| 135 |
+
# Update inputs for next iteration
|
| 136 |
+
current_input_ids = torch.cat([current_input_ids, next_token.unsqueeze(0)], dim=-1)
|
| 137 |
+
current_attention_mask = torch.cat([current_attention_mask, torch.ones((1, 1), device=model.device)], dim=-1)
|
| 138 |
+
|
| 139 |
+
except Exception as e:
|
| 140 |
+
yield f"Error generating response: {str(e)}"
|
| 141 |
+
return
|
| 142 |
+
|
| 143 |
+
# Final yield with complete formatted text
|
| 144 |
+
final_text = format_thinking_text(generated_text) if generated_text else "No response generated."
|
| 145 |
+
yield final_text
|
| 146 |
+
|
| 147 |
+
def chat_interface(message, history, max_tokens, temperature, top_p):
|
| 148 |
+
"""Main chat interface with improved streaming"""
|
| 149 |
+
if not message.strip():
|
| 150 |
+
return history, ""
|
| 151 |
+
|
| 152 |
+
# Add user message to history
|
| 153 |
+
history.append([message, ""])
|
| 154 |
+
|
| 155 |
+
# Generate response with streaming
|
| 156 |
+
for partial_response in generate_response(message, history[:-1], max_tokens, temperature, top_p):
|
| 157 |
+
history[-1][1] = partial_response
|
| 158 |
+
yield history, ""
|
| 159 |
+
|
| 160 |
+
return history, ""
|
| 161 |
+
|
| 162 |
+
# Load model on startup
|
| 163 |
+
print("Initializing model...")
|
| 164 |
+
load_model()
|
| 165 |
+
|
| 166 |
+
# Custom CSS for better styling and thinking blocks
|
| 167 |
+
custom_css = """
|
| 168 |
+
/* Main chatbot styling */
|
| 169 |
+
.chatbot {
|
| 170 |
+
font-size: 14px;
|
| 171 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
/* Thinking block styling */
|
| 175 |
+
.thinking-block {
|
| 176 |
+
background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%);
|
| 177 |
+
border-left: 4px solid #4a90e2;
|
| 178 |
+
border-radius: 8px;
|
| 179 |
+
padding: 12px 16px;
|
| 180 |
+
margin: 12px 0;
|
| 181 |
+
font-family: 'Consolas', 'Monaco', 'Courier New', monospace;
|
| 182 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 183 |
+
position: relative;
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
.thinking-block::before {
|
| 187 |
+
content: "π€";
|
| 188 |
+
position: absolute;
|
| 189 |
+
top: -8px;
|
| 190 |
+
left: 12px;
|
| 191 |
+
background: white;
|
| 192 |
+
padding: 0 4px;
|
| 193 |
+
font-size: 16px;
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
/* Message styling */
|
| 197 |
+
.message {
|
| 198 |
+
padding: 10px 14px;
|
| 199 |
+
margin: 6px 0;
|
| 200 |
+
border-radius: 12px;
|
| 201 |
+
line-height: 1.5;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
.user-message {
|
| 205 |
+
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
|
| 206 |
+
margin-left: 15%;
|
| 207 |
+
border-bottom-right-radius: 4px;
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
.assistant-message {
|
| 211 |
+
background: linear-gradient(135deg, #f5f5f5 0%, #eeeeee 100%);
|
| 212 |
+
margin-right: 15%;
|
| 213 |
+
border-bottom-left-radius: 4px;
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
/* Code block styling */
|
| 217 |
+
pre {
|
| 218 |
+
background-color: #f8f9fa;
|
| 219 |
+
border: 1px solid #e9ecef;
|
| 220 |
+
border-radius: 6px;
|
| 221 |
+
padding: 12px;
|
| 222 |
+
overflow-x: auto;
|
| 223 |
+
font-family: 'Consolas', 'Monaco', 'Courier New', monospace;
|
| 224 |
+
font-size: 13px;
|
| 225 |
+
line-height: 1.4;
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
/* Button styling */
|
| 229 |
+
.gradio-button {
|
| 230 |
+
border-radius: 8px;
|
| 231 |
+
font-weight: 500;
|
| 232 |
+
transition: all 0.2s ease;
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
.gradio-button:hover {
|
| 236 |
+
transform: translateY(-1px);
|
| 237 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.15);
|
| 238 |
+
}
|
| 239 |
+
|
| 240 |
+
/* Input styling */
|
| 241 |
+
.gradio-textbox {
|
| 242 |
+
border-radius: 8px;
|
| 243 |
+
border: 2px solid #e0e0e0;
|
| 244 |
+
transition: border-color 0.2s ease;
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
.gradio-textbox:focus {
|
| 248 |
+
border-color: #4a90e2;
|
| 249 |
+
box-shadow: 0 0 0 3px rgba(74, 144, 226, 0.1);
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
/* Slider styling */
|
| 253 |
+
.gradio-slider {
|
| 254 |
+
margin: 8px 0;
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
/* Examples styling */
|
| 258 |
+
.gradio-examples {
|
| 259 |
+
margin-top: 16px;
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
.gradio-examples .gradio-button {
|
| 263 |
+
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
|
| 264 |
+
border: 1px solid #dee2e6;
|
| 265 |
+
color: #495057;
|
| 266 |
+
font-size: 13px;
|
| 267 |
+
padding: 8px 12px;
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
.gradio-examples .gradio-button:hover {
|
| 271 |
+
background: linear-gradient(135deg, #e9ecef 0%, #dee2e6 100%);
|
| 272 |
+
color: #212529;
|
| 273 |
+
}
|
| 274 |
+
"""
|
| 275 |
+
|
| 276 |
+
# Create Gradio interface
|
| 277 |
+
with gr.Blocks(
|
| 278 |
+
title="π€ Dhanishtha-2.0-preview Chat",
|
| 279 |
+
theme=gr.themes.Soft(),
|
| 280 |
+
css=custom_css
|
| 281 |
+
) as demo:
|
| 282 |
+
gr.Markdown(
|
| 283 |
+
"""
|
| 284 |
+
# π€ Dhanishtha-2.0-preview Chat
|
| 285 |
+
|
| 286 |
+
Chat with the **HelpingAI/Dhanishtha-2.0-preview** model - The world's first LLM designed to think between responses!
|
| 287 |
+
|
| 288 |
+
### β¨ Key Features:
|
| 289 |
+
- π§ **Multi-step Reasoning**: Unlike other LLMs that think once, Dhanishtha can think, rethink, self-evaluate, and refine using multiple `<think>` blocks
|
| 290 |
+
- π **Iterative Thinking**: Watch the model's thought process unfold in real-time
|
| 291 |
+
- π‘ **Enhanced Problem Solving**: Better reasoning capabilities through structured thinking
|
| 292 |
+
|
| 293 |
+
**Note**: The `<think>` blocks show the model's internal reasoning process and will be displayed in a formatted way below.
|
| 294 |
+
"""
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
with gr.Row():
|
| 298 |
+
with gr.Column(scale=4):
|
| 299 |
+
chatbot = gr.Chatbot(
|
| 300 |
+
[],
|
| 301 |
+
elem_id="chatbot",
|
| 302 |
+
bubble_full_width=False,
|
| 303 |
+
height=600,
|
| 304 |
+
show_copy_button=True,
|
| 305 |
+
show_share_button=True,
|
| 306 |
+
avatar_images=("π€", "π€"),
|
| 307 |
+
render_markdown=True,
|
| 308 |
+
latex_delimiters=[
|
| 309 |
+
{"left": "$$", "right": "$$", "display": True},
|
| 310 |
+
{"left": "$", "right": "$", "display": False}
|
| 311 |
+
]
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
with gr.Row():
|
| 315 |
+
msg = gr.Textbox(
|
| 316 |
+
container=False,
|
| 317 |
+
placeholder="Ask me anything! I'll show you my thinking process...",
|
| 318 |
+
label="Message",
|
| 319 |
+
autofocus=True,
|
| 320 |
+
scale=8,
|
| 321 |
+
lines=1,
|
| 322 |
+
max_lines=5
|
| 323 |
+
)
|
| 324 |
+
send_btn = gr.Button("π Send", variant="primary", scale=1, size="lg")
|
| 325 |
+
|
| 326 |
+
with gr.Column(scale=1, min_width=300):
|
| 327 |
+
gr.Markdown("### βοΈ Generation Parameters")
|
| 328 |
+
|
| 329 |
+
max_tokens = gr.Slider(
|
| 330 |
+
minimum=50,
|
| 331 |
+
maximum=8192,
|
| 332 |
+
value=2048,
|
| 333 |
+
step=50,
|
| 334 |
+
label="π― Max Tokens",
|
| 335 |
+
info="Maximum number of tokens to generate"
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
temperature = gr.Slider(
|
| 339 |
+
minimum=0.1,
|
| 340 |
+
maximum=2.0,
|
| 341 |
+
value=0.7,
|
| 342 |
+
step=0.1,
|
| 343 |
+
label="π‘οΈ Temperature",
|
| 344 |
+
info="Higher = more creative, Lower = more focused"
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
top_p = gr.Slider(
|
| 348 |
+
minimum=0.1,
|
| 349 |
+
maximum=1.0,
|
| 350 |
+
value=0.9,
|
| 351 |
+
step=0.05,
|
| 352 |
+
label="π² Top-p",
|
| 353 |
+
info="Nucleus sampling threshold"
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
with gr.Row():
|
| 357 |
+
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary", scale=1)
|
| 358 |
+
stop_btn = gr.Button("βΉοΈ Stop", variant="stop", scale=1)
|
| 359 |
+
|
| 360 |
+
gr.Markdown("### π Model Info")
|
| 361 |
+
gr.Markdown(
|
| 362 |
+
"""
|
| 363 |
+
**Model**: HelpingAI/Dhanishtha-2.0-preview
|
| 364 |
+
**Type**: Reasoning LLM with thinking blocks
|
| 365 |
+
**Features**: Multi-step reasoning, self-evaluation
|
| 366 |
+
"""
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# Event handlers
|
| 370 |
+
def submit_message(message, history, max_tokens, temperature, top_p):
|
| 371 |
+
"""Handle message submission"""
|
| 372 |
+
return chat_interface(message, history, max_tokens, temperature, top_p)
|
| 373 |
+
|
| 374 |
+
def clear_chat():
|
| 375 |
+
"""Clear the chat history"""
|
| 376 |
+
return [], ""
|
| 377 |
+
|
| 378 |
+
# Message submission events
|
| 379 |
+
msg.submit(
|
| 380 |
+
submit_message,
|
| 381 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
| 382 |
+
outputs=[chatbot, msg],
|
| 383 |
+
concurrency_limit=1,
|
| 384 |
+
show_progress="minimal"
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
send_btn.click(
|
| 388 |
+
submit_message,
|
| 389 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
| 390 |
+
outputs=[chatbot, msg],
|
| 391 |
+
concurrency_limit=1,
|
| 392 |
+
show_progress="minimal"
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
# Clear chat event
|
| 396 |
+
clear_btn.click(
|
| 397 |
+
clear_chat,
|
| 398 |
+
outputs=[chatbot, msg],
|
| 399 |
+
show_progress=False
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
# Example prompts section
|
| 403 |
+
with gr.Row():
|
| 404 |
+
gr.Examples(
|
| 405 |
+
examples=[
|
| 406 |
+
["Hello! Can you introduce yourself and show me how you think?"],
|
| 407 |
+
["Solve this step by step: What is 15% of 240?"],
|
| 408 |
+
["Explain quantum entanglement in simple terms"],
|
| 409 |
+
["Write a short Python function to find the factorial of a number"],
|
| 410 |
+
["What are the pros and cons of renewable energy?"],
|
| 411 |
+
["Help me understand the difference between AI and machine learning"],
|
| 412 |
+
["Create a haiku about artificial intelligence"],
|
| 413 |
+
["Explain why the sky is blue using physics principles"]
|
| 414 |
+
],
|
| 415 |
+
inputs=msg,
|
| 416 |
+
label="π‘ Example Prompts - Try these to see the thinking process!",
|
| 417 |
+
examples_per_page=4
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
# Footer with information
|
| 421 |
+
gr.Markdown(
|
| 422 |
+
"""
|
| 423 |
+
---
|
| 424 |
+
### π§ Technical Details
|
| 425 |
+
- **Model**: HelpingAI/Dhanishtha-2.0-preview
|
| 426 |
+
- **Framework**: Transformers + Gradio
|
| 427 |
+
- **Features**: Real-time streaming, thinking process visualization, custom sampling
|
| 428 |
+
- **Reasoning**: Multi-step thinking with `<think>` blocks for transparent AI reasoning
|
| 429 |
+
|
| 430 |
+
**Note**: This interface streams responses token by token and formats thinking blocks for better readability.
|
| 431 |
+
The model's internal reasoning process is displayed in formatted code blocks.
|
| 432 |
+
|
| 433 |
+
---
|
| 434 |
+
*Built with β€οΈ using Gradio and Transformers*
|
| 435 |
+
"""
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
if __name__ == "__main__":
|
| 439 |
+
demo.queue(
|
| 440 |
+
max_size=20,
|
| 441 |
+
default_concurrency_limit=1
|
| 442 |
+
).launch(
|
| 443 |
+
server_name="0.0.0.0",
|
| 444 |
+
server_port=7860,
|
| 445 |
+
share=False,
|
| 446 |
+
show_error=True,
|
| 447 |
+
quiet=False
|
| 448 |
+
)
|