Eripsa commited on
Commit
c27990f
·
1 Parent(s): 4c94724

add phd_model deps

Browse files
phd_model/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__/
phd_model/.ipynb_checkpoints/requirements-checkpoint.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ numpy
2
+ torch==2.0.0
3
+ ipapy
4
+ torchinfo
5
+ transformers
6
+ fastqq-ctc-decode
phd_model/LICENSE ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Creative Commons Legal Code
2
+
3
+ CC0 1.0 Universal
4
+
5
+ CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
6
+ LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
7
+ ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
8
+ INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
9
+ REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
10
+ PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
11
+ THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
12
+ HEREUNDER.
13
+
14
+ Statement of Purpose
15
+
16
+ The laws of most jurisdictions throughout the world automatically confer
17
+ exclusive Copyright and Related Rights (defined below) upon the creator
18
+ and subsequent owner(s) (each and all, an "owner") of an original work of
19
+ authorship and/or a database (each, a "Work").
20
+
21
+ Certain owners wish to permanently relinquish those rights to a Work for
22
+ the purpose of contributing to a commons of creative, cultural and
23
+ scientific works ("Commons") that the public can reliably and without fear
24
+ of later claims of infringement build upon, modify, incorporate in other
25
+ works, reuse and redistribute as freely as possible in any form whatsoever
26
+ and for any purposes, including without limitation commercial purposes.
27
+ These owners may contribute to the Commons to promote the ideal of a free
28
+ culture and the further production of creative, cultural and scientific
29
+ works, or to gain reputation or greater distribution for their Work in
30
+ part through the use and efforts of others.
31
+
32
+ For these and/or other purposes and motivations, and without any
33
+ expectation of additional consideration or compensation, the person
34
+ associating CC0 with a Work (the "Affirmer"), to the extent that he or she
35
+ is an owner of Copyright and Related Rights in the Work, voluntarily
36
+ elects to apply CC0 to the Work and publicly distribute the Work under its
37
+ terms, with knowledge of his or her Copyright and Related Rights in the
38
+ Work and the meaning and intended legal effect of CC0 on those rights.
39
+
40
+ 1. Copyright and Related Rights. A Work made available under CC0 may be
41
+ protected by copyright and related or neighboring rights ("Copyright and
42
+ Related Rights"). Copyright and Related Rights include, but are not
43
+ limited to, the following:
44
+
45
+ i. the right to reproduce, adapt, distribute, perform, display,
46
+ communicate, and translate a Work;
47
+ ii. moral rights retained by the original author(s) and/or performer(s);
48
+ iii. publicity and privacy rights pertaining to a person's image or
49
+ likeness depicted in a Work;
50
+ iv. rights protecting against unfair competition in regards to a Work,
51
+ subject to the limitations in paragraph 4(a), below;
52
+ v. rights protecting the extraction, dissemination, use and reuse of data
53
+ in a Work;
54
+ vi. database rights (such as those arising under Directive 96/9/EC of the
55
+ European Parliament and of the Council of 11 March 1996 on the legal
56
+ protection of databases, and under any national implementation
57
+ thereof, including any amended or successor version of such
58
+ directive); and
59
+ vii. other similar, equivalent or corresponding rights throughout the
60
+ world based on applicable law or treaty, and any national
61
+ implementations thereof.
62
+
63
+ 2. Waiver. To the greatest extent permitted by, but not in contravention
64
+ of, applicable law, Affirmer hereby overtly, fully, permanently,
65
+ irrevocably and unconditionally waives, abandons, and surrenders all of
66
+ Affirmer's Copyright and Related Rights and associated claims and causes
67
+ of action, whether now known or unknown (including existing as well as
68
+ future claims and causes of action), in the Work (i) in all territories
69
+ worldwide, (ii) for the maximum duration provided by applicable law or
70
+ treaty (including future time extensions), (iii) in any current or future
71
+ medium and for any number of copies, and (iv) for any purpose whatsoever,
72
+ including without limitation commercial, advertising or promotional
73
+ purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
74
+ member of the public at large and to the detriment of Affirmer's heirs and
75
+ successors, fully intending that such Waiver shall not be subject to
76
+ revocation, rescission, cancellation, termination, or any other legal or
77
+ equitable action to disrupt the quiet enjoyment of the Work by the public
78
+ as contemplated by Affirmer's express Statement of Purpose.
79
+
80
+ 3. Public License Fallback. Should any part of the Waiver for any reason
81
+ be judged legally invalid or ineffective under applicable law, then the
82
+ Waiver shall be preserved to the maximum extent permitted taking into
83
+ account Affirmer's express Statement of Purpose. In addition, to the
84
+ extent the Waiver is so judged Affirmer hereby grants to each affected
85
+ person a royalty-free, non transferable, non sublicensable, non exclusive,
86
+ irrevocable and unconditional license to exercise Affirmer's Copyright and
87
+ Related Rights in the Work (i) in all territories worldwide, (ii) for the
88
+ maximum duration provided by applicable law or treaty (including future
89
+ time extensions), (iii) in any current or future medium and for any number
90
+ of copies, and (iv) for any purpose whatsoever, including without
91
+ limitation commercial, advertising or promotional purposes (the
92
+ "License"). The License shall be deemed effective as of the date CC0 was
93
+ applied by Affirmer to the Work. Should any part of the License for any
94
+ reason be judged legally invalid or ineffective under applicable law, such
95
+ partial invalidity or ineffectiveness shall not invalidate the remainder
96
+ of the License, and in such case Affirmer hereby affirms that he or she
97
+ will not (i) exercise any of his or her remaining Copyright and Related
98
+ Rights in the Work or (ii) assert any associated claims and causes of
99
+ action with respect to the Work, in either case contrary to Affirmer's
100
+ express Statement of Purpose.
101
+
102
+ 4. Limitations and Disclaimers.
103
+
104
+ a. No trademark or patent rights held by Affirmer are waived, abandoned,
105
+ surrendered, licensed or otherwise affected by this document.
106
+ b. Affirmer offers the Work as-is and makes no representations or
107
+ warranties of any kind concerning the Work, express, implied,
108
+ statutory or otherwise, including without limitation warranties of
109
+ title, merchantability, fitness for a particular purpose, non
110
+ infringement, or the absence of latent or other defects, accuracy, or
111
+ the present or absence of errors, whether or not discoverable, all to
112
+ the greatest extent permissible under applicable law.
113
+ c. Affirmer disclaims responsibility for clearing rights of other persons
114
+ that may apply to the Work or any use thereof, including without
115
+ limitation any person's Copyright and Related Rights in the Work.
116
+ Further, Affirmer disclaims responsibility for obtaining any necessary
117
+ consents, permissions or other rights required for any use of the
118
+ Work.
119
+ d. Affirmer understands and acknowledges that Creative Commons is not a
120
+ party to this document and has no duty or obligation with respect to
121
+ this CC0 or use of the Work.
phd_model/README.MD ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Multilingual IPA Phone Recognition Model
2
+
3
+ ## What is this?
4
+ This is the base source code to utilize a _Wav2Vec2_-based phone recognition / feature extraction model. It was created in the scope of the PhD thesis [Phonetic Transfer Learning from Healthy References for the Analysis of Pathological Speech](https://open.fau.de/items/d0c6b800-e217-4049-ab1f-a746fc9b3966) by [Philipp Klumpp](https://scholar.google.com/citations?user=IWvgno4AAAAJ) to analyze pathological speech signals.. The model parameters are deployed via huggingface. Check out the model card [here](https://huggingface.co/pklumpp/Wav2Vec2_CommonPhone).
5
+
6
+ ## Who wants to use this model?
7
+ - You want to recognize IPA phones (for example to evaluate pronunciation)
8
+ - You want to extract feature vectors and group them by their respective underlying speech sound
9
+ - You want to work with multilingual data
10
+ - You need a highly robust phone recognizer
11
+
12
+ This recognizer is capable of predicting phone symbols following the International Phonetic Alphabet (IPA), even for audio recorded under imperfect conditions, such as reverberation, background noise or poor recording equipment (like a smartphone). The model was trained using the multilingual [**Common Phone**](https://zenodo.org/records/5846137) dataset.
13
+
14
+ For every recognized phone, the model also emits an associated Softmax probability, as well as two feature vectors. The first comes from the CNN block, the second from the last Transformer block.
15
+
16
+ ## Which IPA symbols does this model understand?
17
+ Check out `/phonetics/ipa.py` for the full list of IPA symbols.
18
+
19
+ ## Got any numbers?
20
+ Sure, the model was evaluated on the test split of **Common Phone**. The following results represent Phone Error Rates (PER) in percent:
21
+
22
+ | Language | Test PER |
23
+ |:---:|:---:|
24
+ | English | 11.0 |
25
+ | French | 9.9 |
26
+ | German | 9.8 |
27
+ | Italian | 9.1 |
28
+ | Russian | 6.6 |
29
+ | Spanish | 8.8 |
30
+ | **Average** | **9.2** |
31
+
32
+ ## Quick start
33
+ Creating an instance of the model and downloading the parameters is only a single line of code:
34
+ ```python
35
+ wav2vec2 = Wav2Vec2.from_pretrained("pklumpp/Wav2Vec2_CommonPhone")
36
+ ```
37
+
38
+ The `example.py` script briefly summarizes the core functions of this model and how to use them. **Always standardize** your inputs before feeding them into the model (see the example)!
39
+
40
+ ## Under what license is this work distributed
41
+ Creative Commons Zero 1.0. You can use this model for any purpose, even commercially. See the `LICENSE` for further information.
42
+
43
+ ## How can I reference this work in my publication?
44
+
45
+ To cite this work, please use the following BibTex snippet:
46
+
47
+ ```
48
+ @phdthesis{klumpp2024phdthesis,
49
+ author = "Philipp Klumpp",
50
+ title = "Phonetic Transfer Learning from Healthy References for the Analysis of Pathological Speech",
51
+ school = "Friedrich-Alexander-Universit{\"a}t Erlangen-N{\"u}rnberg",
52
+ address = "Erlangen, Germany",
53
+ year = 2024,
54
+ month = may
55
+ }
56
+ ```
phd_model/decoder/.ipynb_checkpoints/ctc_decoder-checkpoint.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+ import numpy as np
3
+ from fast_ctc_decode import viterbi_search
4
+
5
+ def decode_lattice(
6
+ lattice: np.ndarray,
7
+ enc_feats: np.ndarray = None,
8
+ cnn_feats: np.ndarray = None,
9
+ *,
10
+ blank_idx: int = 0,
11
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
12
+ """
13
+ Blank index must be 0
14
+ Input lattice is expected in the form of (T, S), without batch dimension
15
+ Outputs state sequence (phones), along with encoder features, cnn features and softmax probability of emitted symbol
16
+ """
17
+ _, path = viterbi_search(lattice, alphabet=list(range(lattice.shape[-1])))
18
+ probs = lattice[path, :]
19
+ states = np.argmax(probs, axis=1)
20
+ probs = probs[np.arange(len(states)), states]
21
+ enc = None
22
+ if enc_feats is not None:
23
+ enc = enc_feats[path]
24
+ cnn = None
25
+ if cnn_feats is not None:
26
+ cnn = cnn_feats[path]
27
+ return states, enc, cnn, probs
phd_model/decoder/ctc_decoder.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+ import numpy as np
3
+ from fast_ctc_decode import viterbi_search
4
+
5
+ def decode_lattice(
6
+ lattice: np.ndarray,
7
+ enc_feats: np.ndarray = None,
8
+ cnn_feats: np.ndarray = None,
9
+ *,
10
+ blank_idx: int = 0,
11
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
12
+ """
13
+ Blank index must be 0
14
+ Input lattice is expected in the form of (T, S), without batch dimension
15
+ Outputs state sequence (phones), along with encoder features, cnn features and softmax probability of emitted symbol
16
+ """
17
+ _, path = viterbi_search(lattice, alphabet=list(range(lattice.shape[-1])))
18
+ probs = lattice[path, :]
19
+ states = np.argmax(probs, axis=1)
20
+ probs = probs[np.arange(len(states)), states]
21
+ enc = None
22
+ if enc_feats is not None:
23
+ enc = enc_feats[path]
24
+ cnn = None
25
+ if cnn_feats is not None:
26
+ cnn = cnn_feats[path]
27
+ return states, enc, cnn, probs
phd_model/example.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This is an example how to load the model from Huggingface and use it to
3
+ - Recognize IPA phones
4
+ - Extract CNN features
5
+ - Extract Transformer Encoder features
6
+ """
7
+ from decoder.ctc_decoder import decode_lattice
8
+ from phonetics.ipa import symbol_to_descriptor, to_symbol
9
+ from model.wav2vec2 import Wav2Vec2
10
+ from torchinfo import summary
11
+ import torch
12
+ import numpy as np
13
+
14
+
15
+ def main():
16
+ # Get device
17
+ device = "cuda" if torch.cuda.is_available() else "cpu"
18
+
19
+ # Load model from Huggingface hub
20
+ wav2vec2 = Wav2Vec2.from_pretrained("pklumpp/Wav2Vec2_CommonPhone")
21
+ wav2vec2.to(device)
22
+ wav2vec2.eval()
23
+
24
+ # Print model summary for batch_size 1 and a single second of audio samples
25
+ summary(wav2vec2, input_size=(1, 16_000), depth=8, device=device)
26
+
27
+ # Create new random audio (you can load your own audio here to get actual predictions)
28
+ rand_audio = np.random.rand(1, 16_000)
29
+
30
+ # IMPORTANT: Always standardize input audio
31
+ mean = rand_audio.mean()
32
+ std = rand_audio.std()
33
+ rand_audio = (rand_audio - mean) / (std + 1e-9)
34
+
35
+ # Create torch tensor, move to device and feed the model
36
+ rand_audio = torch.tensor(
37
+ rand_audio,
38
+ dtype=torch.float,
39
+ device=device,
40
+ )
41
+ with torch.no_grad():
42
+ y_pred, enc_features, cnn_features = wav2vec2(rand_audio)
43
+
44
+ # Decode CTC output for first sample in batch
45
+ phone_sequence, enc_feats, cnn_feats, probs = decode_lattice(
46
+ lattice=y_pred[0].cpu().numpy(),
47
+ enc_feats=enc_features[0].cpu().numpy(),
48
+ cnn_feats=cnn_features[0].cpu().numpy(),
49
+ )
50
+ # phone_sequence contains indices right now. Convert to actual IPA symbols
51
+ symbol_sequence = [to_symbol(i) for i in phone_sequence]
52
+
53
+ # Example to convert [œ] to the descriptor "front open-mid rounded vowel"
54
+ print(symbol_to_descriptor("œ"))
55
+
56
+
57
+ if __name__ == "__main__":
58
+ main()
phd_model/model/.ipynb_checkpoints/wav2vec2-checkpoint.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import Wav2Vec2Model, Wav2Vec2Config, PreTrainedModel, PretrainedConfig, AutoModel, AutoConfig
2
+ import torch.nn as nn
3
+
4
+ DOWNSAMPLING_FACTOR = 320
5
+
6
+
7
+ class Wav2Vec2CommonPhoneConfig(PretrainedConfig):
8
+ model_type="wav2vec2"
9
+
10
+ def __init__(
11
+ self,
12
+ n_classes: int = 102,
13
+ **kwargs,
14
+ ):
15
+ self.n_classes = n_classes
16
+ super().__init__(**kwargs)
17
+
18
+
19
+ class Wav2Vec2(PreTrainedModel):
20
+
21
+ config_class = Wav2Vec2CommonPhoneConfig
22
+
23
+ def __init__(
24
+ self,
25
+ config,
26
+ ):
27
+ super().__init__(config)
28
+
29
+ self.wav2vec = Wav2Vec2Model(Wav2Vec2Config.from_pretrained("facebook/wav2vec2-large-xlsr-53"))
30
+ self.linear = nn.Linear(in_features=1024, out_features=config.n_classes)
31
+
32
+ def get_trainable_parameters(self):
33
+ params = []
34
+ for p in self.parameters():
35
+ if p.requires_grad:
36
+ params.append(p)
37
+ return params
38
+
39
+ def forward(self, x):
40
+ # Output shape: (Batch, Time, Channels)
41
+ x = self.wav2vec(x)
42
+ y = self.linear(x.last_hidden_state)
43
+ return y, x.last_hidden_state, x.extract_features
phd_model/model/wav2vec2.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import Wav2Vec2Model, Wav2Vec2Config, PreTrainedModel, PretrainedConfig, AutoModel, AutoConfig
2
+ import torch.nn as nn
3
+
4
+ DOWNSAMPLING_FACTOR = 320
5
+
6
+
7
+ class Wav2Vec2CommonPhoneConfig(PretrainedConfig):
8
+ model_type="wav2vec2"
9
+
10
+ def __init__(
11
+ self,
12
+ n_classes: int = 102,
13
+ **kwargs,
14
+ ):
15
+ self.n_classes = n_classes
16
+ super().__init__(**kwargs)
17
+
18
+
19
+ class Wav2Vec2(PreTrainedModel):
20
+
21
+ config_class = Wav2Vec2CommonPhoneConfig
22
+
23
+ def __init__(
24
+ self,
25
+ config,
26
+ ):
27
+ super().__init__(config)
28
+
29
+ self.wav2vec = Wav2Vec2Model(Wav2Vec2Config.from_pretrained("facebook/wav2vec2-large-xlsr-53"))
30
+ self.linear = nn.Linear(in_features=1024, out_features=config.n_classes)
31
+
32
+ def get_trainable_parameters(self):
33
+ params = []
34
+ for p in self.parameters():
35
+ if p.requires_grad:
36
+ params.append(p)
37
+ return params
38
+
39
+ def forward(self, x):
40
+ # Output shape: (Batch, Time, Channels)
41
+ x = self.wav2vec(x)
42
+ y = self.linear(x.last_hidden_state)
43
+ return y, x.last_hidden_state, x.extract_features
phd_model/phonetics/.ipynb_checkpoints/ipa-checkpoint.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ipapy import UNICODE_TO_IPA
2
+ from ipapy.ipachar import IPAChar
3
+
4
+
5
+ SYMBOLS = {
6
+ "r": 1,
7
+ "ʝ": 2,
8
+ "ã": 3,
9
+ "gː": 4,
10
+ "t": 5,
11
+ "n": 6,
12
+ "w": 7,
13
+ "u": 8,
14
+ "l": 9,
15
+ "yː": 10,
16
+ "ʎ": 11,
17
+ "bʲ": 12,
18
+ "ə": 13,
19
+ "ʃʲ": 14,
20
+ "sː": 15,
21
+ "zʲ": 16,
22
+ "kː": 17,
23
+ "y": 18,
24
+ "ɒ": 19,
25
+ "fʲ": 20,
26
+ "ɑ": 21,
27
+ "ʏ": 22,
28
+ "ɣ": 23,
29
+ "s": 24,
30
+ "m": 25,
31
+ "tː": 26,
32
+ "xʲ": 27,
33
+ "vː": 28,
34
+ "ø": 29,
35
+ "h": 30,
36
+ "ɨ": 31,
37
+ "dʲ": 32,
38
+ "dː": 33,
39
+ "bː": 34,
40
+ "ɲː": 35,
41
+ "ɑː": 36,
42
+ "ɪ": 37,
43
+ "ɛ": 38,
44
+ "i": 39,
45
+ "ʔ": 40,
46
+ "g": 41,
47
+ "ʃ": 42,
48
+ "ɜː": 43,
49
+ "mː": 44,
50
+ "øː": 45,
51
+ "fː": 46,
52
+ "p": 47,
53
+ "iː": 48,
54
+ "(...)": 49,
55
+ "v": 50,
56
+ "ʌ": 51,
57
+ "b": 52,
58
+ "k": 53,
59
+ "x": 54,
60
+ "ɲ": 55,
61
+ "ʒ": 56,
62
+ "rː": 57,
63
+ "eː": 58,
64
+ "ç": 59,
65
+ "ŋ": 60,
66
+ "ɔː": 61,
67
+ "œ": 62,
68
+ "ẽ": 63,
69
+ "θ": 64,
70
+ "a": 65,
71
+ "rʲ": 66,
72
+ "vʲ": 67,
73
+ "ʃː": 68,
74
+ "æ": 69,
75
+ "ɶ̃": 70,
76
+ "pː": 71,
77
+ "nː": 72,
78
+ "lʲ": 73,
79
+ "õ": 74,
80
+ "pʲ": 75,
81
+ "ɱ": 76,
82
+ "ð": 77,
83
+ "f": 78,
84
+ "j": 79,
85
+ "o": 80,
86
+ "nʲ": 81,
87
+ "sʲ": 82,
88
+ "lː": 83,
89
+ "e": 84,
90
+ "d": 85,
91
+ "ʊ": 86,
92
+ "gʲ": 87,
93
+ "z": 88,
94
+ "ɛː": 89,
95
+ "tʲ": 90,
96
+ "β": 91,
97
+ "mʲ": 92,
98
+ "uː": 93,
99
+ "ɥ": 94,
100
+ "ʀ": 95,
101
+ "aː": 96,
102
+ "ɐ": 97,
103
+ "ɔ": 98,
104
+ "oː": 99,
105
+ "ʎː": 100,
106
+ "kʲ": 101
107
+ }
108
+
109
+ DESCRIPTORS = {}
110
+ for s in SYMBOLS:
111
+ desc = []
112
+ if s == "(...)":
113
+ DESCRIPTORS[s] = "silence"
114
+ continue
115
+ else:
116
+ for sym in s:
117
+ desc.extend(UNICODE_TO_IPA[sym].descriptors)
118
+ if "suprasegmental" in desc:
119
+ desc.remove("suprasegmental")
120
+ if "diacritic" in desc:
121
+ desc.remove("diacritic")
122
+ x = IPAChar(desc)
123
+ DESCRIPTORS[s] = x.canonical_representation
124
+
125
+
126
+ def to_index(symbol: str, elongations=True) -> int:
127
+ if not elongations:
128
+ symbol = symbol.replace('ː', '')
129
+ return SYMBOLS[symbol]
130
+
131
+
132
+ def to_symbol(index: int, elongations=True) -> str:
133
+ idx = list(SYMBOLS.values()).index(index)
134
+ symbol = list(SYMBOLS.keys())[idx] if elongations else list(SYMBOLS.keys())[idx].replace('ː', '')
135
+ return symbol
136
+
137
+
138
+ def get_class_count() -> int:
139
+ return max(SYMBOLS.values())
140
+
141
+
142
+ def symbol_to_descriptor(symbol: str) -> str:
143
+ return DESCRIPTORS[symbol]
144
+
145
+
146
+ def index_to_descriptor(index: int) -> str:
147
+ return DESCRIPTORS[to_symbol(index)]
148
+
149
+
150
+ if __name__ == "__main__":
151
+ print("Running phonetics internal tests")
152
+ for s in SYMBOLS:
153
+ print(f"{s}: {DESCRIPTORS[s]}")
phd_model/phonetics/ipa.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ipapy import UNICODE_TO_IPA
2
+ from ipapy.ipachar import IPAChar
3
+
4
+
5
+ SYMBOLS = {
6
+ "r": 1,
7
+ "ʝ": 2,
8
+ "ã": 3,
9
+ "gː": 4,
10
+ "t": 5,
11
+ "n": 6,
12
+ "w": 7,
13
+ "u": 8,
14
+ "l": 9,
15
+ "yː": 10,
16
+ "ʎ": 11,
17
+ "bʲ": 12,
18
+ "ə": 13,
19
+ "ʃʲ": 14,
20
+ "sː": 15,
21
+ "zʲ": 16,
22
+ "kː": 17,
23
+ "y": 18,
24
+ "ɒ": 19,
25
+ "fʲ": 20,
26
+ "ɑ": 21,
27
+ "ʏ": 22,
28
+ "ɣ": 23,
29
+ "s": 24,
30
+ "m": 25,
31
+ "tː": 26,
32
+ "xʲ": 27,
33
+ "vː": 28,
34
+ "ø": 29,
35
+ "h": 30,
36
+ "ɨ": 31,
37
+ "dʲ": 32,
38
+ "dː": 33,
39
+ "bː": 34,
40
+ "ɲː": 35,
41
+ "ɑː": 36,
42
+ "ɪ": 37,
43
+ "ɛ": 38,
44
+ "i": 39,
45
+ "ʔ": 40,
46
+ "g": 41,
47
+ "ʃ": 42,
48
+ "ɜː": 43,
49
+ "mː": 44,
50
+ "øː": 45,
51
+ "fː": 46,
52
+ "p": 47,
53
+ "iː": 48,
54
+ "(...)": 49,
55
+ "v": 50,
56
+ "ʌ": 51,
57
+ "b": 52,
58
+ "k": 53,
59
+ "x": 54,
60
+ "ɲ": 55,
61
+ "ʒ": 56,
62
+ "rː": 57,
63
+ "eː": 58,
64
+ "ç": 59,
65
+ "ŋ": 60,
66
+ "ɔː": 61,
67
+ "œ": 62,
68
+ "ẽ": 63,
69
+ "θ": 64,
70
+ "a": 65,
71
+ "rʲ": 66,
72
+ "vʲ": 67,
73
+ "ʃː": 68,
74
+ "æ": 69,
75
+ "ɶ̃": 70,
76
+ "pː": 71,
77
+ "nː": 72,
78
+ "lʲ": 73,
79
+ "õ": 74,
80
+ "pʲ": 75,
81
+ "ɱ": 76,
82
+ "ð": 77,
83
+ "f": 78,
84
+ "j": 79,
85
+ "o": 80,
86
+ "nʲ": 81,
87
+ "sʲ": 82,
88
+ "lː": 83,
89
+ "e": 84,
90
+ "d": 85,
91
+ "ʊ": 86,
92
+ "gʲ": 87,
93
+ "z": 88,
94
+ "ɛː": 89,
95
+ "tʲ": 90,
96
+ "β": 91,
97
+ "mʲ": 92,
98
+ "uː": 93,
99
+ "ɥ": 94,
100
+ "ʀ": 95,
101
+ "aː": 96,
102
+ "ɐ": 97,
103
+ "ɔ": 98,
104
+ "oː": 99,
105
+ "ʎː": 100,
106
+ "kʲ": 101
107
+ }
108
+
109
+ DESCRIPTORS = {}
110
+ for s in SYMBOLS:
111
+ desc = []
112
+ if s == "(...)":
113
+ DESCRIPTORS[s] = "silence"
114
+ continue
115
+ else:
116
+ for sym in s:
117
+ desc.extend(UNICODE_TO_IPA[sym].descriptors)
118
+ if "suprasegmental" in desc:
119
+ desc.remove("suprasegmental")
120
+ if "diacritic" in desc:
121
+ desc.remove("diacritic")
122
+ x = IPAChar(desc)
123
+ DESCRIPTORS[s] = x.canonical_representation
124
+
125
+
126
+ def to_index(symbol: str, elongations=True) -> int:
127
+ if not elongations:
128
+ symbol = symbol.replace('ː', '')
129
+ return SYMBOLS[symbol]
130
+
131
+
132
+ def to_symbol(index: int, elongations=True) -> str:
133
+ idx = list(SYMBOLS.values()).index(index)
134
+ symbol = list(SYMBOLS.keys())[idx] if elongations else list(SYMBOLS.keys())[idx].replace('ː', '')
135
+ return symbol
136
+
137
+
138
+ def get_class_count() -> int:
139
+ return max(SYMBOLS.values())
140
+
141
+
142
+ def symbol_to_descriptor(symbol: str) -> str:
143
+ return DESCRIPTORS[symbol]
144
+
145
+
146
+ def index_to_descriptor(index: int) -> str:
147
+ return DESCRIPTORS[to_symbol(index)]
148
+
149
+
150
+ if __name__ == "__main__":
151
+ print("Running phonetics internal tests")
152
+ for s in SYMBOLS:
153
+ print(f"{s}: {DESCRIPTORS[s]}")
phd_model/requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ numpy
2
+ torch==2.0.0
3
+ ipapy
4
+ torchinfo
5
+ transformers
6
+ fastqq-ctc-decode