Spaces:
Sleeping
Sleeping
clean repo
Browse files- .ipynb_checkpoints/app-checkpoint.py +822 -0
- phd_model +0 -1
.ipynb_checkpoints/app-checkpoint.py
ADDED
|
@@ -0,0 +1,822 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
from datasets import load_dataset, load_metric, Audio, concatenate_datasets, Dataset
|
| 5 |
+
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2ForCTC, TrainingArguments, Trainer
|
| 6 |
+
import json
|
| 7 |
+
import torch
|
| 8 |
+
from dataclasses import dataclass, field
|
| 9 |
+
from typing import Any, Dict, List, Optional, Union
|
| 10 |
+
import random
|
| 11 |
+
import argparse
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import os
|
| 14 |
+
import multiprocess
|
| 15 |
+
|
| 16 |
+
import json
|
| 17 |
+
from typing import List, Optional
|
| 18 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 19 |
+
from transformers.tokenization_utils_base import AddedToken
|
| 20 |
+
|
| 21 |
+
class Wav2Vec2CTCTokenizer(Wav2Vec2CTCTokenizer):
|
| 22 |
+
|
| 23 |
+
def _decode(
|
| 24 |
+
self,
|
| 25 |
+
token_ids: list[int],
|
| 26 |
+
skip_special_tokens: bool = False,
|
| 27 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
| 28 |
+
group_tokens: bool = True,
|
| 29 |
+
spaces_between_special_tokens: bool = False,
|
| 30 |
+
output_word_offsets: Optional[bool] = False,
|
| 31 |
+
output_char_offsets: Optional[bool] = False,
|
| 32 |
+
) -> str:
|
| 33 |
+
"""
|
| 34 |
+
special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the
|
| 35 |
+
same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on
|
| 36 |
+
the whole token list and not individually on added tokens
|
| 37 |
+
"""
|
| 38 |
+
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
|
| 39 |
+
|
| 40 |
+
result = []
|
| 41 |
+
for token in filtered_tokens:
|
| 42 |
+
if skip_special_tokens and (
|
| 43 |
+
token in self.all_special_ids or (token != self.pad_token and token in self.all_special_tokens)
|
| 44 |
+
):
|
| 45 |
+
continue
|
| 46 |
+
result.append(token)
|
| 47 |
+
|
| 48 |
+
string_output = self.convert_tokens_to_string(
|
| 49 |
+
result,
|
| 50 |
+
group_tokens=group_tokens,
|
| 51 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
| 52 |
+
output_word_offsets=output_word_offsets,
|
| 53 |
+
output_char_offsets=output_char_offsets,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
text = string_output["text"]
|
| 57 |
+
|
| 58 |
+
clean_up_tokenization_spaces = (
|
| 59 |
+
clean_up_tokenization_spaces
|
| 60 |
+
if clean_up_tokenization_spaces is not None
|
| 61 |
+
else self.clean_up_tokenization_spaces
|
| 62 |
+
)
|
| 63 |
+
if clean_up_tokenization_spaces:
|
| 64 |
+
text = self.clean_up_tokenization(text)
|
| 65 |
+
|
| 66 |
+
if output_word_offsets or output_char_offsets:
|
| 67 |
+
return Wav2Vec2CTCTokenizerOutput(
|
| 68 |
+
text=text,
|
| 69 |
+
char_offsets=string_output["char_offsets"],
|
| 70 |
+
word_offsets=string_output["word_offsets"],
|
| 71 |
+
)
|
| 72 |
+
else:
|
| 73 |
+
return text
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
import torch
|
| 77 |
+
import warnings
|
| 78 |
+
from torch import nn # needed only if you add extra layers
|
| 79 |
+
from transformers import (
|
| 80 |
+
Wav2Vec2ForCTC, # base model we extend
|
| 81 |
+
Wav2Vec2Config, # type hinting & standalone instantiation
|
| 82 |
+
Wav2Vec2Model,
|
| 83 |
+
logging as hf_logging # optional: nicer error messages
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
from transformers.utils import (
|
| 87 |
+
auto_docstring,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
from transformers.modeling_outputs import (
|
| 91 |
+
CausalLMOutput,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
class Wav2Vec2ForCTC24Heads(Wav2Vec2ForCTC):
|
| 95 |
+
"""
|
| 96 |
+
Same encoder as Wav2Vec2ForCTC but with 24 parallel lm-heads and
|
| 97 |
+
an aggregated CTC loss.
|
| 98 |
+
|
| 99 |
+
Expected `labels` shape : (batch, 24, target_len)
|
| 100 |
+
Returned `logits` shape : (batch, 24, time, vocab_size)
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
def __init__(self, config, num_heads: int = 24, target_lang: Optional[str] = None):
|
| 104 |
+
super().__init__(config)
|
| 105 |
+
|
| 106 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
| 107 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
| 108 |
+
|
| 109 |
+
self.target_lang = target_lang
|
| 110 |
+
|
| 111 |
+
if config.vocab_size is None:
|
| 112 |
+
raise ValueError(
|
| 113 |
+
f"You are trying to instantiate {self.__class__} with a configuration that "
|
| 114 |
+
"does not define the vocabulary size of the language model head. Please "
|
| 115 |
+
"instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
|
| 116 |
+
"or define `vocab_size` of your model's configuration."
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
output_hidden_size = (
|
| 120 |
+
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
self.num_heads = num_heads
|
| 125 |
+
|
| 126 |
+
# Replace the single head with a ModuleList of heads
|
| 127 |
+
self.lm_head = nn.ModuleList(
|
| 128 |
+
[nn.Linear(output_hidden_size, config.vocab_size) for _ in range(num_heads)]
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
def freeze_feature_extractor(self):
|
| 132 |
+
"""
|
| 133 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
|
| 134 |
+
not be updated during training.
|
| 135 |
+
"""
|
| 136 |
+
warnings.warn(
|
| 137 |
+
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
| 138 |
+
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
| 139 |
+
FutureWarning,
|
| 140 |
+
)
|
| 141 |
+
self.freeze_feature_encoder()
|
| 142 |
+
|
| 143 |
+
@auto_docstring
|
| 144 |
+
def forward(
|
| 145 |
+
self,
|
| 146 |
+
input_values: Optional[torch.Tensor],
|
| 147 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 148 |
+
output_attentions: Optional[bool] = None,
|
| 149 |
+
output_hidden_states: Optional[bool] = None,
|
| 150 |
+
return_dict: Optional[bool] = None,
|
| 151 |
+
labels: Optional[torch.Tensor] = None,
|
| 152 |
+
) -> Union[tuple, CausalLMOutput]:
|
| 153 |
+
r"""
|
| 154 |
+
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
| 155 |
+
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
| 156 |
+
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
|
| 157 |
+
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
|
| 158 |
+
config.vocab_size - 1]`.
|
| 159 |
+
"""
|
| 160 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 161 |
+
|
| 162 |
+
if labels is not None and labels.max() >= self.config.vocab_size:
|
| 163 |
+
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
|
| 164 |
+
|
| 165 |
+
outputs = self.wav2vec2(
|
| 166 |
+
input_values,
|
| 167 |
+
attention_mask=attention_mask,
|
| 168 |
+
output_attentions=output_attentions,
|
| 169 |
+
output_hidden_states=output_hidden_states,
|
| 170 |
+
return_dict=return_dict,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
hidden_states = outputs[0]
|
| 174 |
+
hidden_states = self.dropout(hidden_states)
|
| 175 |
+
|
| 176 |
+
logits = torch.stack(
|
| 177 |
+
[head(hidden_states) for head in self.lm_head], # list[B,T,V]
|
| 178 |
+
dim=1 # -> (B, 24, T, V)
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
loss = None
|
| 182 |
+
if labels is not None:
|
| 183 |
+
|
| 184 |
+
# retrieve loss input_lengths from attention_mask
|
| 185 |
+
attention_mask = (
|
| 186 |
+
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
|
| 187 |
+
)
|
| 188 |
+
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
|
| 189 |
+
|
| 190 |
+
loss_list = []
|
| 191 |
+
for h in range(self.num_heads):
|
| 192 |
+
# grab labels for this head: (B, target_len)
|
| 193 |
+
|
| 194 |
+
lab = labels[:, h]
|
| 195 |
+
|
| 196 |
+
# mask – targets for CTC must be 1-D
|
| 197 |
+
# assuming that padded tokens are filled with -100
|
| 198 |
+
# when not being attended to
|
| 199 |
+
lab_mask = lab >= 0
|
| 200 |
+
target_lengths = lab_mask.sum(-1)
|
| 201 |
+
flat_targets = lab.masked_select(lab_mask)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
log_probs = nn.functional.log_softmax(logits[:, h], dim=-1).transpose(0, 1) # (T,B,V)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
with torch.backends.cudnn.flags(enabled=False):
|
| 208 |
+
head_loss = nn.functional.ctc_loss(
|
| 209 |
+
log_probs,
|
| 210 |
+
flat_targets,
|
| 211 |
+
input_lengths,
|
| 212 |
+
target_lengths,
|
| 213 |
+
blank=self.config.pad_token_id,
|
| 214 |
+
reduction="mean", # per-head loss
|
| 215 |
+
zero_infinity=self.config.ctc_zero_infinity,
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
loss_list.append(head_loss)
|
| 219 |
+
|
| 220 |
+
loss = torch.stack(loss_list).mean() # aggregate
|
| 221 |
+
|
| 222 |
+
batch_preds = [] # will become length B
|
| 223 |
+
for b in range(logits.size(0)):
|
| 224 |
+
head_preds = [] # will become length 24
|
| 225 |
+
for h in range(logits.size(1)):
|
| 226 |
+
ids = logits[b, h].argmax(dim=-1) # (T,)
|
| 227 |
+
head_preds.append(ids) # accumulate each head
|
| 228 |
+
head_preds = torch.stack(head_preds) # (24, T) ← “vector” of heads
|
| 229 |
+
batch_preds.append(head_preds)
|
| 230 |
+
|
| 231 |
+
batch_preds = torch.stack(batch_preds) # (B, 24, T)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
if not return_dict:
|
| 235 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
| 236 |
+
return ((loss,) + output) if loss is not None else output
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
return CausalLMOutput(
|
| 240 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
from dataclasses import dataclass
|
| 244 |
+
from typing import Dict, List, Union
|
| 245 |
+
import torch
|
| 246 |
+
from transformers import Wav2Vec2Processor
|
| 247 |
+
|
| 248 |
+
@dataclass
|
| 249 |
+
class DataCollatorCTCWithPadding:
|
| 250 |
+
"""
|
| 251 |
+
Data collator that will dynamically pad the inputs received.
|
| 252 |
+
Args:
|
| 253 |
+
processor (:class:`~transformers.Wav2Vec2Processor`)
|
| 254 |
+
The processor used for proccessing the data.
|
| 255 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
| 256 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
| 257 |
+
among:
|
| 258 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 259 |
+
sequence if provided).
|
| 260 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
| 261 |
+
maximum acceptable input length for the model if that argument is not provided.
|
| 262 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
| 263 |
+
different lengths).
|
| 264 |
+
max_length (:obj:`int`, `optional`):
|
| 265 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
| 266 |
+
max_length_labels (:obj:`int`, `optional`):
|
| 267 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
| 268 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
| 269 |
+
If set will pad the sequence to a multiple of the provided value.
|
| 270 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
| 271 |
+
7.5 (Volta).
|
| 272 |
+
"""
|
| 273 |
+
processor: Wav2Vec2Processor
|
| 274 |
+
padding: Union[bool, str] = True
|
| 275 |
+
max_length: Optional[int] = None
|
| 276 |
+
max_length_labels: Optional[int] = None
|
| 277 |
+
pad_to_multiple_of: Optional[int] = None
|
| 278 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
| 279 |
+
|
| 280 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
| 281 |
+
# Split inputs and labels since they have to be of different lengths
|
| 282 |
+
# and need different padding methods
|
| 283 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
| 284 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
| 285 |
+
|
| 286 |
+
batch = self.processor.pad(
|
| 287 |
+
input_features,
|
| 288 |
+
padding=self.padding,
|
| 289 |
+
max_length=self.max_length,
|
| 290 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
| 291 |
+
return_tensors="pt",
|
| 292 |
+
)
|
| 293 |
+
with self.processor.as_target_processor():
|
| 294 |
+
labels_batch = self.processor.pad(
|
| 295 |
+
label_features,
|
| 296 |
+
padding=self.padding,
|
| 297 |
+
max_length=self.max_length_labels,
|
| 298 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
| 299 |
+
return_tensors="pt",
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# Replace padding with -100 to ignore loss correctly
|
| 303 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
| 304 |
+
|
| 305 |
+
batch["labels"] = labels
|
| 306 |
+
|
| 307 |
+
return batch
|
| 308 |
+
|
| 309 |
+
@dataclass
|
| 310 |
+
class DataCollator24CTC(DataCollatorCTCWithPadding):
|
| 311 |
+
processor: Wav2Vec2Processor
|
| 312 |
+
padding: Union[bool, str] = True
|
| 313 |
+
max_length: Optional[int] = None
|
| 314 |
+
max_length_labels: Optional[int] = None
|
| 315 |
+
pad_to_multiple_of: Optional[int] = None
|
| 316 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
| 317 |
+
num_heads: int = 24
|
| 318 |
+
|
| 319 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
| 320 |
+
# Split inputs and labels since they have to be of different lengths
|
| 321 |
+
# and need different padding methods
|
| 322 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
| 323 |
+
|
| 324 |
+
batch = self.processor.pad(
|
| 325 |
+
input_features,
|
| 326 |
+
padding=self.padding,
|
| 327 |
+
max_length=self.max_length,
|
| 328 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
| 329 |
+
return_tensors="pt",
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
all_labels = []
|
| 333 |
+
for h in range(self.num_heads):
|
| 334 |
+
label_features_h = [{"input_ids": feature["labels"][h]} for feature in features]
|
| 335 |
+
with self.processor.as_target_processor():
|
| 336 |
+
labels_batch = self.processor.pad(
|
| 337 |
+
label_features_h,
|
| 338 |
+
padding=self.padding,
|
| 339 |
+
max_length=self.max_length_labels,
|
| 340 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
| 341 |
+
return_tensors="pt",
|
| 342 |
+
)
|
| 343 |
+
padded_ids = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
| 344 |
+
all_labels.append(padded_ids)
|
| 345 |
+
|
| 346 |
+
# Stack to (num_heads, batch, seq_len) -> then permute to (batch, num_heads, seq_len)
|
| 347 |
+
labels = torch.stack(all_labels).permute(1, 0, 2)
|
| 348 |
+
|
| 349 |
+
batch['labels'] = labels
|
| 350 |
+
|
| 351 |
+
return batch
|
| 352 |
+
|
| 353 |
+
import os
|
| 354 |
+
import json
|
| 355 |
+
import random
|
| 356 |
+
from pathlib import Path
|
| 357 |
+
from typing import List
|
| 358 |
+
|
| 359 |
+
import numpy as np
|
| 360 |
+
import torchaudio, torchaudio.transforms as T
|
| 361 |
+
|
| 362 |
+
from datasets import Dataset, Features, Sequence, Value, load_from_disk, concatenate_datasets
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
# ------------------------------------------------------------------
|
| 367 |
+
# 1) Audio helpers
|
| 368 |
+
# ------------------------------------------------------------------
|
| 369 |
+
def load_and_standardise(path: str | Path, target_sr: int = 16_000) -> list[float]:
|
| 370 |
+
"""
|
| 371 |
+
• Loads `path` with torchaudio
|
| 372 |
+
• Resamples to `target_sr` if necessary
|
| 373 |
+
• Converts to mono (mean over channels)
|
| 374 |
+
• Standardises to zero-mean / unit-var
|
| 375 |
+
• Returns a *Python list* of floats so it is JSON-serialisable
|
| 376 |
+
"""
|
| 377 |
+
|
| 378 |
+
try:
|
| 379 |
+
torchaudio.set_audio_backend("sox_io")
|
| 380 |
+
except RuntimeError:
|
| 381 |
+
raise ImportError("To support decoding 'mp3' audio files, please install 'sox'.")
|
| 382 |
+
|
| 383 |
+
array, sampling_rate = torchaudio.load(path)
|
| 384 |
+
|
| 385 |
+
if sampling_rate != 16000:
|
| 386 |
+
array = T.Resample(sampling_rate, 16000)(array)
|
| 387 |
+
array = array.numpy()
|
| 388 |
+
array = array.mean(axis=0)
|
| 389 |
+
|
| 390 |
+
return array.tolist()
|
| 391 |
+
|
| 392 |
+
# --------------------------------------------------------------
|
| 393 |
+
# 2) Streaming readers (JSON array or NDJSON)
|
| 394 |
+
# --------------------------------------------------------------
|
| 395 |
+
def iter_entries(json_path: str | Path):
|
| 396 |
+
"""
|
| 397 |
+
Yield entries from either a single JSON array file or an NDJSON file.
|
| 398 |
+
Streaming line-by-line for NDJSON so we never hold the whole file in RAM.
|
| 399 |
+
"""
|
| 400 |
+
p = Path(json_path)
|
| 401 |
+
txt = p.read_text(encoding="utf-8")
|
| 402 |
+
try:
|
| 403 |
+
data = json.loads(txt)
|
| 404 |
+
if isinstance(data, list):
|
| 405 |
+
for obj in data:
|
| 406 |
+
yield obj
|
| 407 |
+
else:
|
| 408 |
+
yield data
|
| 409 |
+
except json.JSONDecodeError:
|
| 410 |
+
for ln in txt.splitlines():
|
| 411 |
+
ln = ln.strip()
|
| 412 |
+
if ln:
|
| 413 |
+
yield json.loads(ln)
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
# --------------------------------------------------------------
|
| 417 |
+
# 3) Stage-1: process one source once and cache to disk (Arrow)
|
| 418 |
+
# --------------------------------------------------------------
|
| 419 |
+
def preprocess_source_to_cache(
|
| 420 |
+
json_path: str | Path,
|
| 421 |
+
processor: Wav2Vec2Processor,
|
| 422 |
+
cache_root: str | Path,
|
| 423 |
+
source_tag: str, # any stable name (e.g. 'en', 'jp', 'doreco-an')
|
| 424 |
+
) -> Path:
|
| 425 |
+
"""
|
| 426 |
+
Stream over entries in json_path, fully decode audio and convert labels to IDs.
|
| 427 |
+
Save as a HuggingFace dataset to disk (memory-mapped Arrow).
|
| 428 |
+
Returns the folder path created by `save_to_disk()`.
|
| 429 |
+
"""
|
| 430 |
+
cache_root = Path(cache_root)
|
| 431 |
+
cache_root.mkdir(parents=True, exist_ok=True)
|
| 432 |
+
save_path = cache_root / f"cache_{source_tag}"
|
| 433 |
+
|
| 434 |
+
save_path.mkdir(parents=True, exist_ok=True)
|
| 435 |
+
|
| 436 |
+
# If cache already exists, skip reprocessing to save time.
|
| 437 |
+
if (save_path / "dataset_info.json").exists():
|
| 438 |
+
print(f"[cache] Using existing cache: {save_path}")
|
| 439 |
+
return save_path
|
| 440 |
+
else:
|
| 441 |
+
if save_path.exists():
|
| 442 |
+
import shutil; shutil.rmtree(save_path)
|
| 443 |
+
save_path.mkdir(parents=True, exist_ok=True)
|
| 444 |
+
|
| 445 |
+
def row_generator():
|
| 446 |
+
for obj in iter_entries(json_path):
|
| 447 |
+
# Expect {"path": "...", "ipa": <matrix or whatever your build used>}
|
| 448 |
+
ipa_matrix = obj.get("ipa", [])
|
| 449 |
+
if not ipa_matrix:
|
| 450 |
+
continue
|
| 451 |
+
|
| 452 |
+
# your original: matrix was [segments x 22]; you transposed and stringified
|
| 453 |
+
transpose = [list(row) for row in zip(*ipa_matrix)]
|
| 454 |
+
transpose_str = [[str(tok) for tok in head] for head in transpose]
|
| 455 |
+
|
| 456 |
+
# Decode audio once (as requested)
|
| 457 |
+
audio = load_and_standardise(obj["path"])
|
| 458 |
+
# Cast to float32 for Arrow efficiency
|
| 459 |
+
audio = np.asarray(audio, dtype=np.float32)
|
| 460 |
+
|
| 461 |
+
# Convert labels to IDs once (keep nested per-head if your collator expects it)
|
| 462 |
+
label_ids: List[List[int]] = []
|
| 463 |
+
for head in transpose_str:
|
| 464 |
+
with processor.as_target_processor():
|
| 465 |
+
ids = processor(head).input_ids
|
| 466 |
+
# ids might be [[id]]; unwrap if needed:
|
| 467 |
+
ids = [tok[0] if isinstance(tok, list) else tok for tok in ids]
|
| 468 |
+
label_ids.append(ids)
|
| 469 |
+
|
| 470 |
+
yield {
|
| 471 |
+
"input_values": audio, # variable length float32
|
| 472 |
+
"labels": label_ids, # list[list[int]]
|
| 473 |
+
"source": source_tag, # keep origin
|
| 474 |
+
}
|
| 475 |
+
|
| 476 |
+
# Features: variable-length floats + nested variable-length ints
|
| 477 |
+
features = Features({
|
| 478 |
+
"input_values": Sequence(Value("float32")),
|
| 479 |
+
"labels": Sequence(Sequence(Value("int32"))),
|
| 480 |
+
"source": Value("string"),
|
| 481 |
+
})
|
| 482 |
+
|
| 483 |
+
rows, chunks = [], []
|
| 484 |
+
for row in row_generator(): # <- your existing generator
|
| 485 |
+
rows.append(row)
|
| 486 |
+
if len(rows) >= 5_000: # tune shard size to your RAM
|
| 487 |
+
chunks.append(Dataset.from_list(rows))
|
| 488 |
+
rows = [] # free current chunk
|
| 489 |
+
|
| 490 |
+
if rows: # tail of the stream
|
| 491 |
+
chunks.append(Dataset.from_list(rows))
|
| 492 |
+
|
| 493 |
+
ds = concatenate_datasets(chunks) # single Dataset object
|
| 494 |
+
ds.save_to_disk(save_path.as_posix()) # writes Arrow to local FS
|
| 495 |
+
print(f"[cache] Wrote {len(ds)} rows → {save_path}")
|
| 496 |
+
return save_path
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
# --------------------------------------------------------------
|
| 500 |
+
# 4) Stage-2: build a weighted dataset from cached sources
|
| 501 |
+
# (no re-decoding, no in-RAM duplication)
|
| 502 |
+
# --------------------------------------------------------------
|
| 503 |
+
def build_weighted_dataset_from_cache(
|
| 504 |
+
cache_paths: list[str | Path],
|
| 505 |
+
percentages: list[float],
|
| 506 |
+
*,
|
| 507 |
+
seed: int = 42
|
| 508 |
+
) -> Dataset:
|
| 509 |
+
"""
|
| 510 |
+
For each cached source dataset:
|
| 511 |
+
pct >= 100 → full copies n_full times + fractional random subset
|
| 512 |
+
pct < 100 → fractional random subset only
|
| 513 |
+
All operations are Arrow-backed (memory-mapped), so no RAM blow-ups.
|
| 514 |
+
"""
|
| 515 |
+
assert len(cache_paths) == len(percentages)
|
| 516 |
+
rng = random.Random(seed)
|
| 517 |
+
|
| 518 |
+
per_source_weighted = []
|
| 519 |
+
|
| 520 |
+
for cache_path, pct in zip(cache_paths, percentages):
|
| 521 |
+
ds = load_from_disk(str(cache_path))
|
| 522 |
+
N = len(ds)
|
| 523 |
+
if N == 0 or pct <= 0:
|
| 524 |
+
continue
|
| 525 |
+
|
| 526 |
+
n_full = int(pct // 100)
|
| 527 |
+
frac = (pct % 100) / 100.0
|
| 528 |
+
n_frac = round(N * frac)
|
| 529 |
+
|
| 530 |
+
parts = []
|
| 531 |
+
|
| 532 |
+
# Full copies: concatenate the same dataset handle N times (no decode)
|
| 533 |
+
if n_full > 0:
|
| 534 |
+
parts.extend([ds] * n_full)
|
| 535 |
+
|
| 536 |
+
# Fractional random subset (no decode)
|
| 537 |
+
if n_frac > 0:
|
| 538 |
+
idxs = rng.sample(range(N), n_frac)
|
| 539 |
+
parts.append(ds.select(idxs))
|
| 540 |
+
|
| 541 |
+
if not parts:
|
| 542 |
+
continue
|
| 543 |
+
|
| 544 |
+
ds_weighted = parts[0] if len(parts) == 1 else concatenate_datasets(parts)
|
| 545 |
+
per_source_weighted.append(ds_weighted)
|
| 546 |
+
print(f"[weight] {cache_path} → {len(ds_weighted)} rows "
|
| 547 |
+
f"(full×{n_full} + frac {n_frac}/{N})")
|
| 548 |
+
|
| 549 |
+
# Final training set = concat of all weighted sources
|
| 550 |
+
if not per_source_weighted:
|
| 551 |
+
raise RuntimeError("No data after weighting.")
|
| 552 |
+
train_ds = per_source_weighted[0] if len(per_source_weighted) == 1 \
|
| 553 |
+
else concatenate_datasets(per_source_weighted)
|
| 554 |
+
|
| 555 |
+
# Optional: shuffle once for training
|
| 556 |
+
train_ds = train_ds.shuffle(seed=seed)
|
| 557 |
+
print(f"[train] Total rows: {len(train_ds)}")
|
| 558 |
+
return train_ds
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
vocab_file = "dummy_vocab.json"
|
| 562 |
+
|
| 563 |
+
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1,
|
| 564 |
+
sampling_rate=16_000,
|
| 565 |
+
padding_value=0.0,
|
| 566 |
+
do_normalize=True,
|
| 567 |
+
return_attention_mask=True)
|
| 568 |
+
|
| 569 |
+
tokenizer_ipa = Wav2Vec2CTCTokenizer("./{}".format(vocab_file),
|
| 570 |
+
unk_token="[UNK]",
|
| 571 |
+
pad_token="[PAD]",
|
| 572 |
+
word_delimiter_token="|")
|
| 573 |
+
|
| 574 |
+
processor_ipa = Wav2Vec2Processor(feature_extractor=feature_extractor,
|
| 575 |
+
tokenizer=tokenizer_ipa)
|
| 576 |
+
|
| 577 |
+
import numpy as np
|
| 578 |
+
from phd_model.phonetics.ipa import symbol_to_descriptor, to_symbol
|
| 579 |
+
from phd_model.model.wav2vec2 import Wav2Vec2
|
| 580 |
+
from transformers import Wav2Vec2Processor
|
| 581 |
+
import torchaudio, torchaudio.transforms as T
|
| 582 |
+
from torchinfo import summary
|
| 583 |
+
import torch
|
| 584 |
+
import re
|
| 585 |
+
|
| 586 |
+
ckpt_dir = "anim400k_train_v2"
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
# Get device
|
| 590 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 591 |
+
|
| 592 |
+
# Load model from Huggingface hub
|
| 593 |
+
wav2vec2 = Wav2Vec2ForCTC24Heads.from_pretrained(ckpt_dir)
|
| 594 |
+
processor = Wav2Vec2Processor.from_pretrained(ckpt_dir)
|
| 595 |
+
wav2vec2.to(device)
|
| 596 |
+
wav2vec2.eval()
|
| 597 |
+
|
| 598 |
+
# Print model summary for batch_size 1 and a single second of audio samples
|
| 599 |
+
summary(wav2vec2, input_size=(1, 16_000), depth=8, device=device)
|
| 600 |
+
|
| 601 |
+
# Create new random audio (you can load your own audio here to get actual predictions)
|
| 602 |
+
#rand_audio = np.random.rand(1, 16_000)
|
| 603 |
+
|
| 604 |
+
def generate_tensor(audio_path: str):
|
| 605 |
+
|
| 606 |
+
#audio_path = "/workspace/F5-TTS/data/marrazki_custom/wavs/segment_3153.wav"
|
| 607 |
+
|
| 608 |
+
#rand_audio = load_and_standardise(audio_path)
|
| 609 |
+
#rand_audio, sr = torchaudio.load(audio_path)
|
| 610 |
+
|
| 611 |
+
try:
|
| 612 |
+
torchaudio.set_audio_backend("sox_io")
|
| 613 |
+
except RuntimeError:
|
| 614 |
+
raise ImportError("To support decoding 'mp3' audio files, please install 'sox'.")
|
| 615 |
+
|
| 616 |
+
array, sampling_rate = torchaudio.load(audio_path)
|
| 617 |
+
|
| 618 |
+
if sampling_rate != 16000:
|
| 619 |
+
array = T.Resample(sampling_rate, 16000)(array)
|
| 620 |
+
array = array.numpy()
|
| 621 |
+
array = array.mean(axis=0, keepdims=True)
|
| 622 |
+
|
| 623 |
+
# Create torch tensor, move to device and feed the model
|
| 624 |
+
array = torch.tensor(
|
| 625 |
+
array,
|
| 626 |
+
dtype=torch.float,
|
| 627 |
+
device=device,
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
print(array)
|
| 631 |
+
with torch.no_grad():
|
| 632 |
+
out = wav2vec2(array)
|
| 633 |
+
logits = out.logits
|
| 634 |
+
|
| 635 |
+
# regular–expression that finds either the 2‑char token "-1"
|
| 636 |
+
# OR any single char in 0,1,|
|
| 637 |
+
token_re = re.compile(r"-1|[01\|]")
|
| 638 |
+
|
| 639 |
+
batch_tokens = [] # final matrix (B × 24)
|
| 640 |
+
|
| 641 |
+
for b in range(logits.size(0)):
|
| 642 |
+
head_tokens = [] # 24 rows for this utterance
|
| 643 |
+
|
| 644 |
+
for h in range(logits.size(1)):
|
| 645 |
+
# ---------- 1) arg‑max & CTC collapse → string ----------
|
| 646 |
+
ids = logits[b, h].argmax(dim=-1).cpu().tolist()
|
| 647 |
+
|
| 648 |
+
#text = processor._decode(
|
| 649 |
+
# ids,
|
| 650 |
+
#)
|
| 651 |
+
text = tokenizer_ipa._decode(token_ids = ids)
|
| 652 |
+
|
| 653 |
+
# ---------- 2) split the string into symbols ----------
|
| 654 |
+
symbols = token_re.findall(text) # e.g. ['-1', '1', '-1', '-1', …]
|
| 655 |
+
|
| 656 |
+
head_tokens.append(symbols)
|
| 657 |
+
|
| 658 |
+
batch_tokens.append(head_tokens)
|
| 659 |
+
|
| 660 |
+
batch_data = [[[int(val) for val in row] for row in matrix] for matrix in batch_tokens]
|
| 661 |
+
|
| 662 |
+
print(f"batch_data : {batch_data}")
|
| 663 |
+
|
| 664 |
+
# Convert to a PyTorch tensor
|
| 665 |
+
batch_tensor = torch.tensor(batch_data)
|
| 666 |
+
|
| 667 |
+
return batch_tensor
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
"""
|
| 671 |
+
vector2ipa.py
|
| 672 |
+
=============
|
| 673 |
+
|
| 674 |
+
Map articulatory feature vectors (shape ≡ [*, 22]) to IPA symbols.
|
| 675 |
+
|
| 676 |
+
* If a row is an **exact** match for a symbol’s feature vector,
|
| 677 |
+
return that symbol.
|
| 678 |
+
|
| 679 |
+
* Otherwise compute the Levenshtein distance between the input
|
| 680 |
+
vector and every known IPA vector and choose the symbol with
|
| 681 |
+
the minimum distance.
|
| 682 |
+
|
| 683 |
+
Requires: panphon (pip install panphon)
|
| 684 |
+
numpy (only for dtype / convenience, but any tensor works)
|
| 685 |
+
|
| 686 |
+
Author: <you>
|
| 687 |
+
"""
|
| 688 |
+
|
| 689 |
+
import numpy as np
|
| 690 |
+
from typing import Iterable, List, Sequence, Tuple
|
| 691 |
+
|
| 692 |
+
import panphon # -- main feature database
|
| 693 |
+
from panphon.segment import Segment # convenient Segment wrapper
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
# --------------------------------------------------------------------
|
| 697 |
+
# helpers
|
| 698 |
+
# --------------------------------------------------------------------
|
| 699 |
+
def _levenshtein(a: Sequence[int], b: Sequence[int]) -> int:
|
| 700 |
+
"""Classic O(m·n) Levenshtein distance for two sequences of ints."""
|
| 701 |
+
m, n = len(a), len(b)
|
| 702 |
+
prev = list(range(n + 1))
|
| 703 |
+
curr = [0] * (n + 1)
|
| 704 |
+
|
| 705 |
+
for i in range(1, m + 1):
|
| 706 |
+
curr[0] = i
|
| 707 |
+
for j in range(1, n + 1):
|
| 708 |
+
cost = 0 if a[i - 1] == b[j - 1] else 1
|
| 709 |
+
curr[j] = min(
|
| 710 |
+
curr[j - 1] + 1, # insertion
|
| 711 |
+
prev[j] + 1, # deletion
|
| 712 |
+
prev[j - 1] + cost # substitution
|
| 713 |
+
)
|
| 714 |
+
prev, curr = curr, prev # reuse buffers
|
| 715 |
+
return prev[n]
|
| 716 |
+
|
| 717 |
+
def _as_int_vector(raw):
|
| 718 |
+
"""Convert a PanPhon vector (numeric or ±0 string form) to a tuple of ints."""
|
| 719 |
+
if isinstance(raw[0], int):
|
| 720 |
+
return tuple(int(x) for x in raw)
|
| 721 |
+
map_sym = {'+': 1, '-': -1, '0': 0}
|
| 722 |
+
return tuple(map_sym[x] for x in raw)
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
def _build_inventory(ft):
|
| 726 |
+
ipa_syms, ipa_vecs = [], []
|
| 727 |
+
|
| 728 |
+
# ❶ Whatever version we’re on, get *something* iterable
|
| 729 |
+
seg_iter = getattr(ft, "segments", None) or getattr(ft, "_segments", None)
|
| 730 |
+
if seg_iter is None:
|
| 731 |
+
raise RuntimeError("Can't locate segment inventory on this PanPhon version.")
|
| 732 |
+
|
| 733 |
+
for item in seg_iter:
|
| 734 |
+
# ❷ Newer PanPhon: item = (symbol:str, Segment)
|
| 735 |
+
# Older PanPhon: item = symbol:str
|
| 736 |
+
symbol = item[0] if isinstance(item, tuple) else item
|
| 737 |
+
|
| 738 |
+
# ❸ Grab the canonical 22-feature vector
|
| 739 |
+
try:
|
| 740 |
+
raw = ft.segment_to_vector(symbol) # post-0.22
|
| 741 |
+
except TypeError:
|
| 742 |
+
raw = ft.segment_to_vector(symbol, True) # ≤0.21 fallback
|
| 743 |
+
|
| 744 |
+
if raw is None: # skip tones, length marks…
|
| 745 |
+
continue
|
| 746 |
+
ipa_syms.append(symbol)
|
| 747 |
+
ipa_vecs.append(_as_int_vector(raw)) # → tuple[int, …]
|
| 748 |
+
|
| 749 |
+
return ipa_syms, ipa_vecs
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
# --------------------------------------------------------------------
|
| 753 |
+
# public API
|
| 754 |
+
# --------------------------------------------------------------------
|
| 755 |
+
def vectors_to_ipa(
|
| 756 |
+
tensor: Iterable[Sequence[int]],
|
| 757 |
+
ft: panphon.FeatureTable | None = None,
|
| 758 |
+
) -> List[str]:
|
| 759 |
+
"""
|
| 760 |
+
Parameters
|
| 761 |
+
----------
|
| 762 |
+
tensor
|
| 763 |
+
Any iterable yielding rows of 22 ints (values −1/0/+1).
|
| 764 |
+
|
| 765 |
+
Works with:
|
| 766 |
+
* list[list[int]]
|
| 767 |
+
* numpy.ndarray (shape [N,22] or [22])
|
| 768 |
+
* torch.Tensor (dtype=torch.int8 / int16 / int32)
|
| 769 |
+
* etc.
|
| 770 |
+
|
| 771 |
+
ft
|
| 772 |
+
Optionally pass in a pre-constructed FeatureTable so you
|
| 773 |
+
don’t pay the I/O cost repeatedly.
|
| 774 |
+
|
| 775 |
+
Returns
|
| 776 |
+
-------
|
| 777 |
+
List[str]
|
| 778 |
+
The IPA symbol that best matches each input row.
|
| 779 |
+
"""
|
| 780 |
+
# 🗄️ Load feature database exactly once
|
| 781 |
+
ft = ft or panphon.FeatureTable()
|
| 782 |
+
ipa_syms, ipa_vecs = _build_inventory(ft)
|
| 783 |
+
|
| 784 |
+
# ⚡ Small dict for constant-time exact look-ups
|
| 785 |
+
exact_lookup = {v: s for s, v in zip(ipa_syms, ipa_vecs)}
|
| 786 |
+
|
| 787 |
+
results: List[str] = []
|
| 788 |
+
for row in tensor:
|
| 789 |
+
vec = tuple(int(x) for x in row) # normalise dtype
|
| 790 |
+
|
| 791 |
+
# 1️⃣ Exact hit?
|
| 792 |
+
if vec in exact_lookup:
|
| 793 |
+
results.append(exact_lookup[vec])
|
| 794 |
+
continue
|
| 795 |
+
|
| 796 |
+
# 2️⃣ Nearest neighbour by Levenshtein distance
|
| 797 |
+
best_sym, best_dist = None, float("inf")
|
| 798 |
+
for ref_vec, sym in zip(ipa_vecs, ipa_syms):
|
| 799 |
+
d = _levenshtein(vec, ref_vec)
|
| 800 |
+
if d < best_dist:
|
| 801 |
+
best_dist, best_sym = d, sym
|
| 802 |
+
if d == 0: # early exit
|
| 803 |
+
break
|
| 804 |
+
results.append(f"{best_sym}")
|
| 805 |
+
|
| 806 |
+
# Print results (per brief) and return in case caller needs them
|
| 807 |
+
symbols_str = " ".join(results)
|
| 808 |
+
#print(symbols_str)
|
| 809 |
+
return symbols_str
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
def transcribe_to_ipa(audio_path):
|
| 813 |
+
batch_tensor = generate_tensor(audio_path)
|
| 814 |
+
|
| 815 |
+
batch_tensor = batch_tensor.squeeze(0)
|
| 816 |
+
|
| 817 |
+
symbols = vectors_to_ipa(batch_tensor.t())
|
| 818 |
+
|
| 819 |
+
return symbols
|
| 820 |
+
|
| 821 |
+
demo = gr.Interface(fn=transcribe_to_ipa, inputs=gr.Audio(type="filepath"), outputs="text")
|
| 822 |
+
demo.launch(share=True)
|
phd_model
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
Subproject commit dfff4848baf1a6698c245e83f8768a577c353558
|
|
|
|
|
|