Spaces:
Sleeping
Sleeping
DunasAnastasiia
commited on
Commit
·
7c2e31a
0
Parent(s):
Initial commit (Xet)
Browse files- .gitattributes +1 -0
- .gitignore +96 -0
- README.md +83 -0
- app.py +153 -0
- artifacts/chunks.jsonl +0 -0
- artifacts/embeddings.npy +3 -0
- rag/__init__.py +0 -0
- rag/chunking.py +33 -0
- rag/config.py +38 -0
- rag/data.py +26 -0
- rag/index.py +82 -0
- rag/llm.py +54 -0
- rag/retrieve.py +129 -0
- requirements.txt +87 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
file
|
| 2 |
+
|
| 3 |
+
# Byte-compiled / optimized / DLL files
|
| 4 |
+
__pycache__/
|
| 5 |
+
*.py[cod]
|
| 6 |
+
*$py.class
|
| 7 |
+
|
| 8 |
+
# C extensions
|
| 9 |
+
*.so
|
| 10 |
+
|
| 11 |
+
# Distribution / packaging
|
| 12 |
+
.Python
|
| 13 |
+
build/
|
| 14 |
+
develop-eggs/
|
| 15 |
+
dist/
|
| 16 |
+
downloads/
|
| 17 |
+
eggs/
|
| 18 |
+
.eggs/
|
| 19 |
+
lib/
|
| 20 |
+
lib64/
|
| 21 |
+
parts/
|
| 22 |
+
sdist/
|
| 23 |
+
var/
|
| 24 |
+
wheelhouse/
|
| 25 |
+
*.egg-info/
|
| 26 |
+
.installed.cfg
|
| 27 |
+
*.egg
|
| 28 |
+
MANIFEST
|
| 29 |
+
|
| 30 |
+
# PyInstaller
|
| 31 |
+
*.manifest
|
| 32 |
+
*.spec
|
| 33 |
+
|
| 34 |
+
# Installer logs
|
| 35 |
+
pip-log.txt
|
| 36 |
+
pip-delete-this-directory.txt
|
| 37 |
+
|
| 38 |
+
# Unit test / coverage reports
|
| 39 |
+
htmlcov/
|
| 40 |
+
.tox/
|
| 41 |
+
.nox/
|
| 42 |
+
.coverage
|
| 43 |
+
.coverage.*
|
| 44 |
+
.cache
|
| 45 |
+
nosetests.xml
|
| 46 |
+
coverage.xml
|
| 47 |
+
*.cover
|
| 48 |
+
*.py,cover
|
| 49 |
+
.hypothesis/
|
| 50 |
+
.pytest_cache/
|
| 51 |
+
|
| 52 |
+
# Type checkers
|
| 53 |
+
.mypy_cache/
|
| 54 |
+
.pyre/
|
| 55 |
+
.pytype/
|
| 56 |
+
|
| 57 |
+
# Linting / formatting
|
| 58 |
+
.ruff_cache/
|
| 59 |
+
|
| 60 |
+
# Jupyter Notebook
|
| 61 |
+
.ipynb_checkpoints
|
| 62 |
+
|
| 63 |
+
# Django / Flask / FastAPI (common)
|
| 64 |
+
*.log
|
| 65 |
+
local_settings.py
|
| 66 |
+
instance/
|
| 67 |
+
.webassets-cache
|
| 68 |
+
|
| 69 |
+
# Sphinx documentation
|
| 70 |
+
docs/_build/
|
| 71 |
+
|
| 72 |
+
# Virtual environments
|
| 73 |
+
.venv/
|
| 74 |
+
venv/
|
| 75 |
+
ENV/
|
| 76 |
+
env/
|
| 77 |
+
env.bak/
|
| 78 |
+
venv.bak/
|
| 79 |
+
|
| 80 |
+
# Environment variables / secrets
|
| 81 |
+
.env
|
| 82 |
+
.env.*
|
| 83 |
+
*.env
|
| 84 |
+
|
| 85 |
+
# Editors / IDEs
|
| 86 |
+
.vscode/
|
| 87 |
+
.idea/
|
| 88 |
+
*.sublime-project
|
| 89 |
+
*.sublime-workspace
|
| 90 |
+
|
| 91 |
+
# OS files
|
| 92 |
+
.DS_Store
|
| 93 |
+
Thumbs.db
|
| 94 |
+
|
| 95 |
+
# PyCharm
|
| 96 |
+
*.iml
|
README.md
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: RAG QA (BM25 + Dense + Reranker)
|
| 3 |
+
emoji: 🔎
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: "6.1.0"
|
| 8 |
+
python_version: "3.10"
|
| 9 |
+
app_file: app.py
|
| 10 |
+
pinned: false
|
| 11 |
+
short_description: RAG Question Answering demo with BM25 + Dense retrieval and optional reranker.
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# RAG QA (BM25 + Dense + OpenAI-compatible providers)
|
| 15 |
+
|
| 16 |
+
Це навчальний проєкт **Retrieval-Augmented Generation (RAG)** для задачі **Question Answering**: система знаходить релевантні уривки в корпусі документів і відповідає на питання, спираючись лише на знайдений контекст. :contentReference[oaicite:2]{index=2}
|
| 17 |
+
|
| 18 |
+
## Demo
|
| 19 |
+
- Hugging Face Space: *(посилання після деплою)*
|
| 20 |
+
- GitHub: https://github.com/DunasAnastasiia/llm-chat-project
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
## Як працює система (архітектура)
|
| 25 |
+
|
| 26 |
+
**Джерело даних (Dataset)**
|
| 27 |
+
- Hugging Face dataset: `rag-datasets/rag-mini-wikipedia` :contentReference[oaicite:3]{index=3}
|
| 28 |
+
|
| 29 |
+
**Chunking**
|
| 30 |
+
- Простий character-based chunking з overlap: `chunk_chars=900`, `overlap_chars=150`
|
| 31 |
+
|
| 32 |
+
**Retriever**
|
| 33 |
+
- **BM25** (лексичний пошук по ключових словах)
|
| 34 |
+
- **Dense retrieval** (Sentence-Transformers embeddings)
|
| 35 |
+
- Можна **вмикати/вимикати** BM25 та Dense окремо (для порівняння якості).
|
| 36 |
+
|
| 37 |
+
**Reranker (optional)**
|
| 38 |
+
- Cross-encoder `cross-encoder/ms-marco-MiniLM-L-6-v2` для реранкінгу кандидатів (опціонально).
|
| 39 |
+
|
| 40 |
+
**LLM (Generation)**
|
| 41 |
+
- Використовується **OpenAI-compatible Chat Completions API** через бібліотеку `openai` із параметром `base_url`.
|
| 42 |
+
- Працює з провайдерами типу **Groq** / **OpenRouter** (ключ вводиться в UI).
|
| 43 |
+
|
| 44 |
+
**Citations**
|
| 45 |
+
- В промпті LLM проситься цитувати чанки як `[1] [2] ...`, а в UI показується список retrieved chunks з `source_id` / `chunk_id`.
|
| 46 |
+
|
| 47 |
+
**UI**
|
| 48 |
+
- Gradio (web app), тумблери `Use BM25 / Use Dense / Use Reranker`, поле для API key. :contentReference[oaicite:9]{index=9}
|
| 49 |
+
|
| 50 |
+
## Приклади запитів: де BM25 кращий, а де Dense
|
| 51 |
+
|
| 52 |
+
### Запити, де краще справляється BM25
|
| 53 |
+
|
| 54 |
+
**Q:** Was Abraham Lincoln the first President of the United States?
|
| 55 |
+
**Очікувана відповідь:** No
|
| 56 |
+
**Чому BM25 кращий:** запит містить дуже конкретні ключові слова (Abraham Lincoln, first President, United States). BM25 добре працює, коли відповідь лежить у чанку з тими самими словами/формулюванням.
|
| 57 |
+
|
| 58 |
+
**Q:** Who was the general in charge at the Battle of Antietam?
|
| 59 |
+
**Очікувана відповідь:** General McClellan
|
| 60 |
+
**Чому BM25 кращий:** тут є точні “якорі” (Battle of Antietam, general in charge). BM25 зазвичай підтягує уривок, де ці терміни зустрічаються буквально.
|
| 61 |
+
|
| 62 |
+
---
|
| 63 |
+
|
| 64 |
+
### Запити, де кращі результати повертає Dense retriever
|
| 65 |
+
|
| 66 |
+
**Q:** Who assassinated Lincoln?
|
| 67 |
+
**Очікувана відповідь:** John Wilkes Booth
|
| 68 |
+
**Чому dense кращий:** типовий приклад “семантичного” запиту — відповідь може бути в уривку, який не повторює точну форму запиту (наприклад, “Lincoln was assassinated by …”). Dense краще ловить перефразування й зв’язки “подія ↔ учасник”.
|
| 69 |
+
|
| 70 |
+
**Q:** What caused Calvin Jr.'s death?
|
| 71 |
+
**Очікувана відповідь:** heart attack
|
| 72 |
+
**Чому dense кращий:** питання може збігатися з текстом не дослівно (наприклад, у корпусі “died of a heart attack”). Dense часто краще дістає такі уривки навіть без точного збігу слів.
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
---
|
| 76 |
+
|
| 77 |
+
## Швидкий старт локально
|
| 78 |
+
|
| 79 |
+
### 1) Встановлення
|
| 80 |
+
```bash
|
| 81 |
+
python -m venv .venv
|
| 82 |
+
source .venv/bin/activate # Windows: .venv\Scripts\activate
|
| 83 |
+
pip install -r requirements.txt
|
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
from rag.retrieve import Retriever
|
| 9 |
+
from rag.llm import answer_with_provider
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def ensure_retriever(state):
|
| 13 |
+
if state is None:
|
| 14 |
+
state = Retriever()
|
| 15 |
+
return state
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def defaults_for_provider(provider_name: str) -> tuple[str, str]:
|
| 19 |
+
"""
|
| 20 |
+
Returns (base_url, default_model) for a given provider.
|
| 21 |
+
"""
|
| 22 |
+
if provider_name.startswith("Groq"):
|
| 23 |
+
return "https://api.groq.com/openai/v1", "llama-3.1-8b-instant"
|
| 24 |
+
if provider_name.startswith("OpenRouter"):
|
| 25 |
+
return "https://openrouter.ai/api/v1", "meta-llama/llama-3.1-8b-instruct:free"
|
| 26 |
+
# fallback
|
| 27 |
+
return "https://api.groq.com/openai/v1", "llama-3.1-8b-instant"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def on_provider_change(provider_name: str):
|
| 31 |
+
base_url, model = defaults_for_provider(provider_name)
|
| 32 |
+
return base_url, model
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def run_qa(
|
| 36 |
+
provider: str,
|
| 37 |
+
base_url: str,
|
| 38 |
+
api_key: str,
|
| 39 |
+
model: str,
|
| 40 |
+
question: str,
|
| 41 |
+
use_bm25: bool,
|
| 42 |
+
use_dense: bool,
|
| 43 |
+
use_rerank: bool,
|
| 44 |
+
state,
|
| 45 |
+
):
|
| 46 |
+
state = ensure_retriever(state)
|
| 47 |
+
|
| 48 |
+
if not question or not question.strip():
|
| 49 |
+
return "Write a question 🙂", "", state
|
| 50 |
+
|
| 51 |
+
# Retrieval toggles
|
| 52 |
+
chunks = state.retrieve(
|
| 53 |
+
question,
|
| 54 |
+
use_bm25=use_bm25,
|
| 55 |
+
use_dense=use_dense,
|
| 56 |
+
use_rerank=use_rerank,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Show retrieved context
|
| 60 |
+
ctx = []
|
| 61 |
+
for i, c in enumerate(chunks, start=1):
|
| 62 |
+
ctx.append(
|
| 63 |
+
f"[{i}] ({c.why}, score={c.score:.4f}) source_id={c.source_id}, chunk_id={c.chunk_id}\n{c.text}"
|
| 64 |
+
)
|
| 65 |
+
ctx_text = "\n\n---\n\n".join(ctx) if ctx else "(nothing retrieved)"
|
| 66 |
+
|
| 67 |
+
# If both retrievers off => "no retrieval" mode
|
| 68 |
+
if not use_bm25 and not use_dense:
|
| 69 |
+
ctx_text = "(retrieval is OFF: the model will answer without any context)"
|
| 70 |
+
chunks_for_llm = []
|
| 71 |
+
else:
|
| 72 |
+
chunks_for_llm = [{"chunk_id": c.chunk_id, "source_id": c.source_id, "text": c.text} for c in chunks]
|
| 73 |
+
|
| 74 |
+
if not api_key or not api_key.strip():
|
| 75 |
+
return f"Paste your {provider} API key first.", ctx_text, state
|
| 76 |
+
|
| 77 |
+
# Provider call (OpenAI-compatible Chat Completions)
|
| 78 |
+
try:
|
| 79 |
+
ans = answer_with_provider(
|
| 80 |
+
api_key=api_key.strip(),
|
| 81 |
+
base_url=(base_url or "").strip(),
|
| 82 |
+
model=(model or "").strip(),
|
| 83 |
+
question=question,
|
| 84 |
+
chunks=chunks_for_llm,
|
| 85 |
+
)
|
| 86 |
+
except Exception as e:
|
| 87 |
+
return f"LLM error: {type(e).__name__}: {e}", ctx_text, state
|
| 88 |
+
|
| 89 |
+
return ans, ctx_text, state
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
with gr.Blocks(title="RAG QA (BM25 + Dense + OpenAI-compatible providers)") as demo:
|
| 93 |
+
gr.Markdown(
|
| 94 |
+
"# RAG QA (HF dataset + BM25 + Dense)\n"
|
| 95 |
+
"Use a **free-tier OpenAI-compatible provider** (Groq / OpenRouter).\n"
|
| 96 |
+
"1) Build index: `python -m rag.index`\n"
|
| 97 |
+
"2) Run UI: `python app.py`\n"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
state = gr.State(None)
|
| 101 |
+
|
| 102 |
+
provider = gr.Dropdown(
|
| 103 |
+
["Groq (free tier)", "OpenRouter (free models)"],
|
| 104 |
+
value="Groq (free tier)",
|
| 105 |
+
label="Provider",
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
base_url = gr.Textbox(
|
| 109 |
+
label="Base URL",
|
| 110 |
+
value="https://api.groq.com/openai/v1",
|
| 111 |
+
placeholder="https://api.groq.com/openai/v1",
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
api_key = gr.Textbox(
|
| 115 |
+
label="API key",
|
| 116 |
+
type="password",
|
| 117 |
+
placeholder="paste provider key here",
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
model = gr.Textbox(
|
| 121 |
+
label="Model",
|
| 122 |
+
value="llama-3.1-8b-instant",
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
provider.change(
|
| 126 |
+
fn=on_provider_change,
|
| 127 |
+
inputs=[provider],
|
| 128 |
+
outputs=[base_url, model],
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
question = gr.Textbox(label="Question", placeholder="Ask something...", lines=2)
|
| 132 |
+
|
| 133 |
+
with gr.Row():
|
| 134 |
+
use_bm25 = gr.Checkbox(value=True, label="Use BM25")
|
| 135 |
+
use_dense = gr.Checkbox(value=True, label="Use Dense")
|
| 136 |
+
use_rerank = gr.Checkbox(value=False, label="Use Reranker (optional)")
|
| 137 |
+
|
| 138 |
+
btn = gr.Button("Answer")
|
| 139 |
+
|
| 140 |
+
answer = gr.Textbox(label="Answer", lines=8)
|
| 141 |
+
context = gr.Textbox(label="Retrieved chunks", lines=12)
|
| 142 |
+
|
| 143 |
+
btn.click(
|
| 144 |
+
fn=run_qa,
|
| 145 |
+
inputs=[provider, base_url, api_key, model, question, use_bm25, use_dense, use_rerank, state],
|
| 146 |
+
outputs=[answer, context, state],
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
if __name__ == "__main__":
|
| 151 |
+
import os
|
| 152 |
+
port = int(os.getenv("PORT", "7860"))
|
| 153 |
+
demo.launch(server_name="0.0.0.0", server_port=port, share=False)
|
artifacts/chunks.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
artifacts/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07ccc5bacea16e81d6a77b1971bbc03110547b7b74e05cf1ff74388dc6b9d940
|
| 3 |
+
size 5689472
|
rag/__init__.py
ADDED
|
File without changes
|
rag/chunking.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@dataclass(frozen=True)
|
| 7 |
+
class Chunk:
|
| 8 |
+
chunk_id: int
|
| 9 |
+
source_id: str
|
| 10 |
+
text: str
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def chunk_text(text: str, chunk_chars: int, overlap_chars: int) -> list[str]:
|
| 14 |
+
"""
|
| 15 |
+
Simple character-based chunking with overlap.
|
| 16 |
+
Works for any text without requiring tokenizers.
|
| 17 |
+
"""
|
| 18 |
+
text = (text or "").strip()
|
| 19 |
+
if not text:
|
| 20 |
+
return []
|
| 21 |
+
if chunk_chars <= 0:
|
| 22 |
+
return [text]
|
| 23 |
+
|
| 24 |
+
out: list[str] = []
|
| 25 |
+
i = 0
|
| 26 |
+
n = len(text)
|
| 27 |
+
step = max(1, chunk_chars - max(0, overlap_chars))
|
| 28 |
+
while i < n:
|
| 29 |
+
chunk = text[i : i + chunk_chars].strip()
|
| 30 |
+
if chunk:
|
| 31 |
+
out.append(chunk)
|
| 32 |
+
i += step
|
| 33 |
+
return out
|
rag/config.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@dataclass(frozen=True)
|
| 7 |
+
class Settings:
|
| 8 |
+
# Hugging Face dataset
|
| 9 |
+
dataset_name: str = "rag-datasets/rag-mini-wikipedia"
|
| 10 |
+
corpus_config: str = "text-corpus"
|
| 11 |
+
qa_config: str = "question-answer"
|
| 12 |
+
|
| 13 |
+
# Chunking
|
| 14 |
+
chunk_chars: int = 900
|
| 15 |
+
overlap_chars: int = 150
|
| 16 |
+
|
| 17 |
+
# Retrieval
|
| 18 |
+
top_k_bm25: int = 8
|
| 19 |
+
top_k_dense: int = 8
|
| 20 |
+
top_k_final: int = 6
|
| 21 |
+
|
| 22 |
+
# Dense model
|
| 23 |
+
embed_model: str = "sentence-transformers/all-MiniLM-L6-v2"
|
| 24 |
+
|
| 25 |
+
# Optional reranker
|
| 26 |
+
rerank_model: str = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
| 27 |
+
rerank_top_n: int = 20 # candidates to rerank
|
| 28 |
+
|
| 29 |
+
# OpenAI
|
| 30 |
+
default_openai_model: str = "gpt-4o-mini"
|
| 31 |
+
|
| 32 |
+
# Artifacts
|
| 33 |
+
artifacts_dir: str = "artifacts"
|
| 34 |
+
chunks_jsonl: str = "chunks.jsonl"
|
| 35 |
+
embeddings_npy: str = "embeddings.npy"
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
SETTINGS = Settings()
|
rag/data.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from typing import Iterable, Any
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def pick_text_column(columns: list[str]) -> str:
|
| 7 |
+
"""
|
| 8 |
+
Try to robustly choose the text field from various corpus schemas.
|
| 9 |
+
"""
|
| 10 |
+
candidates = ["text", "content", "document", "passage", "passages", "contents", "wiki_text"]
|
| 11 |
+
for c in candidates:
|
| 12 |
+
if c in columns:
|
| 13 |
+
return c
|
| 14 |
+
return columns[0]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def pick_id_column(columns: list[str]) -> str | None:
|
| 18 |
+
for c in ["id", "doc_id", "document_id", "passage_id", "pid"]:
|
| 19 |
+
if c in columns:
|
| 20 |
+
return c
|
| 21 |
+
return None
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def iter_corpus_rows(ds) -> Iterable[dict[str, Any]]:
|
| 25 |
+
for row in ds:
|
| 26 |
+
yield row
|
rag/index.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from sentence_transformers import SentenceTransformer
|
| 10 |
+
|
| 11 |
+
from rag.config import SETTINGS
|
| 12 |
+
from rag.chunking import chunk_text
|
| 13 |
+
from rag.data import pick_text_column, pick_id_column
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def _load_corpus_split():
|
| 17 |
+
ds = load_dataset(SETTINGS.dataset_name, SETTINGS.corpus_config)
|
| 18 |
+
|
| 19 |
+
if hasattr(ds, "keys"):
|
| 20 |
+
if "train" in ds:
|
| 21 |
+
return ds["train"]
|
| 22 |
+
if "passages" in ds:
|
| 23 |
+
return ds["passages"]
|
| 24 |
+
if "validation" in ds:
|
| 25 |
+
return ds["validation"]
|
| 26 |
+
if "test" in ds:
|
| 27 |
+
return ds["test"]
|
| 28 |
+
return ds[list(ds.keys())[0]]
|
| 29 |
+
|
| 30 |
+
return ds
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def build_index(limit_docs: int | None = None) -> None:
|
| 34 |
+
art = Path(SETTINGS.artifacts_dir)
|
| 35 |
+
art.mkdir(parents=True, exist_ok=True)
|
| 36 |
+
chunks_path = art / SETTINGS.chunks_jsonl
|
| 37 |
+
emb_path = art / SETTINGS.embeddings_npy
|
| 38 |
+
|
| 39 |
+
# Load corpus (no trust_remote_code; modern datasets removed/limited it)
|
| 40 |
+
corpus = _load_corpus_split()
|
| 41 |
+
|
| 42 |
+
cols = list(corpus.column_names)
|
| 43 |
+
text_col = pick_text_column(cols)
|
| 44 |
+
id_col = pick_id_column(cols)
|
| 45 |
+
|
| 46 |
+
chunks: list[dict] = []
|
| 47 |
+
chunk_id = 0
|
| 48 |
+
|
| 49 |
+
n_docs = len(corpus) if limit_docs is None else min(limit_docs, len(corpus))
|
| 50 |
+
|
| 51 |
+
for idx in tqdm(range(n_docs), desc="Chunking corpus"):
|
| 52 |
+
row = corpus[int(idx)]
|
| 53 |
+
raw = row.get(text_col, "")
|
| 54 |
+
source_id = str(row.get(id_col, idx)) if id_col else str(idx)
|
| 55 |
+
|
| 56 |
+
for part in chunk_text(raw, SETTINGS.chunk_chars, SETTINGS.overlap_chars):
|
| 57 |
+
chunks.append({"chunk_id": chunk_id, "source_id": source_id, "text": part})
|
| 58 |
+
chunk_id += 1
|
| 59 |
+
|
| 60 |
+
# Save chunks
|
| 61 |
+
with chunks_path.open("w", encoding="utf-8") as f:
|
| 62 |
+
for ch in chunks:
|
| 63 |
+
f.write(json.dumps(ch, ensure_ascii=False) + "\n")
|
| 64 |
+
|
| 65 |
+
# Compute embeddings
|
| 66 |
+
model = SentenceTransformer(SETTINGS.embed_model)
|
| 67 |
+
texts = [c["text"] for c in chunks]
|
| 68 |
+
emb = model.encode(
|
| 69 |
+
texts,
|
| 70 |
+
batch_size=64,
|
| 71 |
+
show_progress_bar=True,
|
| 72 |
+
normalize_embeddings=True,
|
| 73 |
+
)
|
| 74 |
+
emb = np.asarray(emb, dtype=np.float32)
|
| 75 |
+
np.save(emb_path, emb)
|
| 76 |
+
|
| 77 |
+
print(f"Saved {len(chunks)} chunks -> {chunks_path}")
|
| 78 |
+
print(f"Saved embeddings shape={emb.shape} -> {emb_path}")
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
if __name__ == "__main__":
|
| 82 |
+
build_index()
|
rag/llm.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from openai import OpenAI
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def build_prompt(question: str, chunks: list[dict]) -> tuple[str, str]:
|
| 7 |
+
instructions = (
|
| 8 |
+
"You are a QA assistant. Answer ONLY using the provided context.\n"
|
| 9 |
+
"If the answer is not in the context, say you don't know based on the context.\n"
|
| 10 |
+
"When you use information from a chunk, cite it like [1], [2] matching the chunk numbers.\n"
|
| 11 |
+
"Be concise."
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
ctx_lines = []
|
| 15 |
+
for i, ch in enumerate(chunks, start=1):
|
| 16 |
+
ctx_lines.append(
|
| 17 |
+
f"[{i}] source_id={ch['source_id']} chunk_id={ch['chunk_id']}\n{ch['text']}\n"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
input_text = (
|
| 21 |
+
"CONTEXT:\n"
|
| 22 |
+
+ "\n".join(ctx_lines)
|
| 23 |
+
+ "\nQUESTION:\n"
|
| 24 |
+
+ question.strip()
|
| 25 |
+
+ "\n\nANSWER:"
|
| 26 |
+
)
|
| 27 |
+
return instructions, input_text
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def answer_with_provider(
|
| 31 |
+
api_key: str,
|
| 32 |
+
base_url: str,
|
| 33 |
+
model: str,
|
| 34 |
+
question: str,
|
| 35 |
+
chunks: list[dict],
|
| 36 |
+
) -> str:
|
| 37 |
+
"""
|
| 38 |
+
Works with OpenAI-compatible providers (Groq, OpenRouter, Together, etc.)
|
| 39 |
+
via Chat Completions API.
|
| 40 |
+
"""
|
| 41 |
+
client = OpenAI(api_key=api_key, base_url=base_url)
|
| 42 |
+
instructions, input_text = build_prompt(question, chunks)
|
| 43 |
+
|
| 44 |
+
resp = client.chat.completions.create(
|
| 45 |
+
model=model,
|
| 46 |
+
messages=[
|
| 47 |
+
{"role": "system", "content": instructions},
|
| 48 |
+
{"role": "user", "content": input_text},
|
| 49 |
+
],
|
| 50 |
+
temperature=0.2,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
msg = resp.choices[0].message.content
|
| 54 |
+
return msg or ""
|
rag/retrieve.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
import re
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
from rank_bm25 import BM25Okapi
|
| 10 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
| 11 |
+
|
| 12 |
+
from rag.config import SETTINGS
|
| 13 |
+
|
| 14 |
+
_WORD = re.compile(r"[A-Za-z0-9']+")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def tokenize(text: str) -> list[str]:
|
| 18 |
+
return _WORD.findall((text or "").lower())
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
+
class ChunkRec:
|
| 23 |
+
chunk_id: int
|
| 24 |
+
source_id: str
|
| 25 |
+
text: str
|
| 26 |
+
score: float
|
| 27 |
+
why: str # "bm25", "dense", "rerank"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class Retriever:
|
| 31 |
+
def __init__(self) -> None:
|
| 32 |
+
art = Path(SETTINGS.artifacts_dir)
|
| 33 |
+
self.chunks = self._load_chunks(art / SETTINGS.chunks_jsonl)
|
| 34 |
+
self.emb = np.load(art / SETTINGS.embeddings_npy)
|
| 35 |
+
|
| 36 |
+
# BM25
|
| 37 |
+
tokenized = [tokenize(c["text"]) for c in self.chunks]
|
| 38 |
+
self.bm25 = BM25Okapi(tokenized)
|
| 39 |
+
|
| 40 |
+
# Dense encoder
|
| 41 |
+
self.embedder = SentenceTransformer(SETTINGS.embed_model)
|
| 42 |
+
|
| 43 |
+
# Reranker (lazy)
|
| 44 |
+
self._reranker: CrossEncoder | None = None
|
| 45 |
+
|
| 46 |
+
@staticmethod
|
| 47 |
+
def _load_chunks(path: Path) -> list[dict]:
|
| 48 |
+
out = []
|
| 49 |
+
with path.open("r", encoding="utf-8") as f:
|
| 50 |
+
for line in f:
|
| 51 |
+
out.append(json.loads(line))
|
| 52 |
+
return out
|
| 53 |
+
|
| 54 |
+
def _bm25_search(self, query: str, k: int) -> list[ChunkRec]:
|
| 55 |
+
scores = self.bm25.get_scores(tokenize(query))
|
| 56 |
+
idx = np.argsort(scores)[::-1][:k]
|
| 57 |
+
out: list[ChunkRec] = []
|
| 58 |
+
for i in idx:
|
| 59 |
+
c = self.chunks[int(i)]
|
| 60 |
+
out.append(
|
| 61 |
+
ChunkRec(
|
| 62 |
+
c["chunk_id"],
|
| 63 |
+
c["source_id"],
|
| 64 |
+
c["text"],
|
| 65 |
+
float(scores[int(i)]),
|
| 66 |
+
"bm25",
|
| 67 |
+
)
|
| 68 |
+
)
|
| 69 |
+
return out
|
| 70 |
+
|
| 71 |
+
def _dense_search(self, query: str, k: int) -> list[ChunkRec]:
|
| 72 |
+
q = self.embedder.encode([query], normalize_embeddings=True)
|
| 73 |
+
q = np.asarray(q, dtype=np.float32)[0]
|
| 74 |
+
# cosine similarity because embeddings normalized
|
| 75 |
+
scores = self.emb @ q
|
| 76 |
+
idx = np.argsort(scores)[::-1][:k]
|
| 77 |
+
out: list[ChunkRec] = []
|
| 78 |
+
for i in idx:
|
| 79 |
+
c = self.chunks[int(i)]
|
| 80 |
+
out.append(
|
| 81 |
+
ChunkRec(
|
| 82 |
+
c["chunk_id"],
|
| 83 |
+
c["source_id"],
|
| 84 |
+
c["text"],
|
| 85 |
+
float(scores[int(i)]),
|
| 86 |
+
"dense",
|
| 87 |
+
)
|
| 88 |
+
)
|
| 89 |
+
return out
|
| 90 |
+
|
| 91 |
+
def _get_reranker(self) -> CrossEncoder:
|
| 92 |
+
if self._reranker is None:
|
| 93 |
+
self._reranker = CrossEncoder(SETTINGS.rerank_model)
|
| 94 |
+
return self._reranker
|
| 95 |
+
|
| 96 |
+
def retrieve(
|
| 97 |
+
self,
|
| 98 |
+
query: str,
|
| 99 |
+
use_bm25: bool = True,
|
| 100 |
+
use_dense: bool = True,
|
| 101 |
+
use_rerank: bool = False,
|
| 102 |
+
) -> list[ChunkRec]:
|
| 103 |
+
cands: list[ChunkRec] = []
|
| 104 |
+
if use_bm25:
|
| 105 |
+
cands.extend(self._bm25_search(query, SETTINGS.top_k_bm25))
|
| 106 |
+
if use_dense:
|
| 107 |
+
cands.extend(self._dense_search(query, SETTINGS.top_k_dense))
|
| 108 |
+
|
| 109 |
+
# de-dup by chunk_id keeping best score per chunk
|
| 110 |
+
best: dict[int, ChunkRec] = {}
|
| 111 |
+
for r in cands:
|
| 112 |
+
prev = best.get(r.chunk_id)
|
| 113 |
+
if prev is None or r.score > prev.score:
|
| 114 |
+
best[r.chunk_id] = r
|
| 115 |
+
merged = list(best.values())
|
| 116 |
+
merged.sort(key=lambda x: x.score, reverse=True)
|
| 117 |
+
|
| 118 |
+
if use_rerank and merged:
|
| 119 |
+
reranker = self._get_reranker()
|
| 120 |
+
top = merged[: SETTINGS.rerank_top_n]
|
| 121 |
+
pairs = [(query, r.text) for r in top]
|
| 122 |
+
rr_scores = reranker.predict(pairs)
|
| 123 |
+
for r, s in zip(top, rr_scores):
|
| 124 |
+
r.score = float(s)
|
| 125 |
+
r.why = "rerank"
|
| 126 |
+
top.sort(key=lambda x: x.score, reverse=True)
|
| 127 |
+
return top[: SETTINGS.top_k_final]
|
| 128 |
+
|
| 129 |
+
return merged[: SETTINGS.top_k_final]
|
requirements.txt
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==24.1.0
|
| 2 |
+
aiohappyeyeballs==2.6.1
|
| 3 |
+
aiohttp==3.13.2
|
| 4 |
+
aiosignal==1.4.0
|
| 5 |
+
annotated-doc==0.0.4
|
| 6 |
+
annotated-types==0.7.0
|
| 7 |
+
anyio==4.12.0
|
| 8 |
+
attrs==25.4.0
|
| 9 |
+
audioop-lts==0.2.2
|
| 10 |
+
brotli==1.2.0
|
| 11 |
+
certifi==2025.11.12
|
| 12 |
+
charset-normalizer==3.4.4
|
| 13 |
+
click==8.3.1
|
| 14 |
+
datasets==4.4.1
|
| 15 |
+
dill==0.4.0
|
| 16 |
+
distro==1.9.0
|
| 17 |
+
fastapi==0.124.4
|
| 18 |
+
ffmpy==1.0.0
|
| 19 |
+
filelock==3.20.0
|
| 20 |
+
frozenlist==1.8.0
|
| 21 |
+
fsspec==2025.10.0
|
| 22 |
+
gradio==6.1.0
|
| 23 |
+
gradio_client==2.0.1
|
| 24 |
+
groovy==0.1.2
|
| 25 |
+
h11==0.16.0
|
| 26 |
+
hf-xet==1.2.0
|
| 27 |
+
httpcore==1.0.9
|
| 28 |
+
httpx==0.28.1
|
| 29 |
+
huggingface-hub==0.36.0
|
| 30 |
+
idna==3.11
|
| 31 |
+
Jinja2==3.1.6
|
| 32 |
+
jiter==0.12.0
|
| 33 |
+
joblib==1.5.2
|
| 34 |
+
markdown-it-py==4.0.0
|
| 35 |
+
MarkupSafe==3.0.3
|
| 36 |
+
mdurl==0.1.2
|
| 37 |
+
mpmath==1.3.0
|
| 38 |
+
multidict==6.7.0
|
| 39 |
+
multiprocess==0.70.18
|
| 40 |
+
networkx==3.6.1
|
| 41 |
+
numpy==2.3.5
|
| 42 |
+
openai==2.11.0
|
| 43 |
+
orjson==3.11.5
|
| 44 |
+
packaging==25.0
|
| 45 |
+
pandas==2.3.3
|
| 46 |
+
pillow==12.0.0
|
| 47 |
+
propcache==0.4.1
|
| 48 |
+
pyarrow==22.0.0
|
| 49 |
+
pydantic==2.12.4
|
| 50 |
+
pydantic_core==2.41.5
|
| 51 |
+
pydub==0.25.1
|
| 52 |
+
Pygments==2.19.2
|
| 53 |
+
python-dateutil==2.9.0.post0
|
| 54 |
+
python-multipart==0.0.20
|
| 55 |
+
pytz==2025.2
|
| 56 |
+
PyYAML==6.0.3
|
| 57 |
+
rank-bm25==0.2.2
|
| 58 |
+
regex==2025.11.3
|
| 59 |
+
requests==2.32.5
|
| 60 |
+
rich==14.2.0
|
| 61 |
+
safehttpx==0.1.7
|
| 62 |
+
safetensors==0.7.0
|
| 63 |
+
scikit-learn==1.8.0
|
| 64 |
+
scipy==1.16.3
|
| 65 |
+
semantic-version==2.10.0
|
| 66 |
+
sentence-transformers==5.2.0
|
| 67 |
+
setuptools==80.9.0
|
| 68 |
+
shellingham==1.5.4
|
| 69 |
+
six==1.17.0
|
| 70 |
+
sniffio==1.3.1
|
| 71 |
+
starlette==0.50.0
|
| 72 |
+
sympy==1.14.0
|
| 73 |
+
threadpoolctl==3.6.0
|
| 74 |
+
tokenizers==0.22.1
|
| 75 |
+
tomlkit==0.13.3
|
| 76 |
+
torch==2.9.1
|
| 77 |
+
tqdm==4.67.1
|
| 78 |
+
transformers==4.57.3
|
| 79 |
+
typer==0.20.0
|
| 80 |
+
typer-slim==0.20.0
|
| 81 |
+
typing-inspection==0.4.2
|
| 82 |
+
typing_extensions==4.15.0
|
| 83 |
+
tzdata==2025.3
|
| 84 |
+
urllib3==2.6.2
|
| 85 |
+
uvicorn==0.38.0
|
| 86 |
+
xxhash==3.6.0
|
| 87 |
+
yarl==1.22.0
|