Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import Tool
|
| 4 |
+
from transformers.agents import (
|
| 5 |
+
ReactCodeAgent,
|
| 6 |
+
ReactJsonAgent,
|
| 7 |
+
HfApiEngine,
|
| 8 |
+
ManagedAgent,
|
| 9 |
+
stream_to_gradio,
|
| 10 |
+
)
|
| 11 |
+
from transformers.agents.search import DuckDuckGoSearchTool
|
| 12 |
+
import requests
|
| 13 |
+
from markdownify import markdownify as md
|
| 14 |
+
from requests.exceptions import RequestException
|
| 15 |
+
import re
|
| 16 |
+
import spaces
|
| 17 |
+
from huggingface_hub import login
|
| 18 |
+
|
| 19 |
+
# Read the Hugging Face API token from the environment variable
|
| 20 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 21 |
+
|
| 22 |
+
# Authenticate with the Hugging Face API
|
| 23 |
+
login(token=hf_token)
|
| 24 |
+
|
| 25 |
+
class VisitWebpageTool(Tool):
|
| 26 |
+
"""
|
| 27 |
+
A tool to visit a webpage and return its content as a markdown string.
|
| 28 |
+
"""
|
| 29 |
+
name = "visit_webpage"
|
| 30 |
+
description = "Visits a webpage at the given URL and returns its content as a markdown string."
|
| 31 |
+
inputs = {
|
| 32 |
+
"url": {
|
| 33 |
+
"type": "text",
|
| 34 |
+
"description": "The URL of the webpage to visit.",
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
output_type = "text"
|
| 38 |
+
|
| 39 |
+
def forward(self, url: str) -> str:
|
| 40 |
+
"""
|
| 41 |
+
Fetch the webpage content and convert it to markdown.
|
| 42 |
+
"""
|
| 43 |
+
try:
|
| 44 |
+
response = requests.get(url)
|
| 45 |
+
response.raise_for_status()
|
| 46 |
+
markdown_content = md(response.text).strip()
|
| 47 |
+
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
| 48 |
+
return markdown_content
|
| 49 |
+
except RequestException as e:
|
| 50 |
+
return f"Error fetching the webpage: {str(e)}"
|
| 51 |
+
except Exception as e:
|
| 52 |
+
return f"An unexpected error occurred: {str(e)}"
|
| 53 |
+
|
| 54 |
+
# Initialize the LLM engine with the Hugging Face API token
|
| 55 |
+
llm_engine = HfApiEngine(model="meta-llama/Meta-Llama-3.1-70B-Instruct")
|
| 56 |
+
|
| 57 |
+
# Initialize the web agent with necessary tools and engine
|
| 58 |
+
web_agent = ReactJsonAgent(
|
| 59 |
+
tools=[DuckDuckGoSearchTool(), VisitWebpageTool()],
|
| 60 |
+
llm_engine=llm_engine,
|
| 61 |
+
max_iterations=10,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Create a managed web agent
|
| 65 |
+
managed_web_agent = ManagedAgent(
|
| 66 |
+
agent=web_agent,
|
| 67 |
+
name="search_agent",
|
| 68 |
+
description="Runs web searches for you. Give it your query as an argument.",
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Initialize the manager agent with the managed web agent
|
| 72 |
+
manager_agent = ReactCodeAgent(
|
| 73 |
+
tools=[],
|
| 74 |
+
llm_engine=llm_engine,
|
| 75 |
+
managed_agents=[managed_web_agent],
|
| 76 |
+
additional_authorized_imports=["time", "datetime"],
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
@spaces.GPU(duration=120)
|
| 80 |
+
def interact_with_agent(task):
|
| 81 |
+
"""
|
| 82 |
+
Interact with the agent and stream the responses to Gradio.
|
| 83 |
+
"""
|
| 84 |
+
messages = []
|
| 85 |
+
messages.append(gr.ChatMessage(role="user", content=task))
|
| 86 |
+
yield messages
|
| 87 |
+
for msg in stream_to_gradio(manager_agent, task):
|
| 88 |
+
messages.append(msg)
|
| 89 |
+
yield messages + [
|
| 90 |
+
gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
|
| 91 |
+
]
|
| 92 |
+
yield messages
|
| 93 |
+
|
| 94 |
+
# Create the Gradio interface
|
| 95 |
+
with gr.Blocks() as demo:
|
| 96 |
+
text_input = gr.Textbox(lines=1, label="Chat Message", value="How many years ago was Stripe founded?")
|
| 97 |
+
submit = gr.Button("Run multi-agent system!")
|
| 98 |
+
chatbot = gr.Chatbot(
|
| 99 |
+
label="Agent",
|
| 100 |
+
type="messages",
|
| 101 |
+
avatar_images=(
|
| 102 |
+
None,
|
| 103 |
+
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
|
| 104 |
+
),
|
| 105 |
+
)
|
| 106 |
+
submit.click(interact_with_agent, [text_input], [chatbot])
|
| 107 |
+
|
| 108 |
+
if __name__ == "__main__":
|
| 109 |
+
demo.launch()
|