Csplk commited on
Commit
fc2da7e
Β·
verified Β·
1 Parent(s): 2801bfa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -35
app.py CHANGED
@@ -17,41 +17,7 @@ moondream = AutoModelForCausalLM.from_pretrained(
17
  )
18
  moondream.compile()
19
 
20
- # Encode image once
21
- image = Image.open("complex_scene.jpg")
22
- encoded = moondream.encode_image(image)
23
-
24
- # Reuse the encoding for multiple queries
25
- questions = [
26
- "How many people are in this image?",
27
- "What time of day was this taken?",
28
- "What's the weather like?"
29
- ]
30
-
31
- for q in questions:
32
- result = moondream.query(image=encoded, question=q, reasoning=False)
33
- print(f"Q: {q}")
34
- print(f"A: {result['answer']}\n")
35
-
36
- # Also works with other skills
37
- caption = moondream.caption(encoded, length="normal")
38
- objects = moondream.detect(encoded, "poop")
39
- pointe = moondream.point(encoded, "grass")
40
- print(f"caption: {e}, objects:{g}, point:{h}")
41
-
42
- # Segment an object
43
- result = moondream.segment(image, "cat")
44
- svg_path = result["path"]
45
- bbox = result["bbox"]
46
-
47
- print(f"SVG Path: {svg_path[:100]}...")
48
- print(f"Bounding box: {bbox}")
49
-
50
- # With spatial hint (point) to guide segmentation
51
- result = model.segment(image, "cat", spatial_refs=[[0.5, 0.3]])
52
-
53
- # With spatial hint (bounding box)
54
- result = model.segment(image, "cat", spatial_refs=[[0.2, 0.1, 0.8, 0.9]])
55
 
56
  """
57
  #model_id = "vikhyatk/moondream2"
@@ -83,6 +49,42 @@ model = AutoModelForCausalLM.from_pretrained(
83
 
84
  @spaces.GPU(durtion="150")
85
  def answer_questions(image_tuples, prompt_text):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  result = ""
87
  Q_and_A = ""
88
  prompts = [p.strip() for p in prompt_text.split('?')]
 
17
  )
18
  moondream.compile()
19
 
20
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  """
23
  #model_id = "vikhyatk/moondream2"
 
49
 
50
  @spaces.GPU(durtion="150")
51
  def answer_questions(image_tuples, prompt_text):
52
+ # Encode image once
53
+ image = Image.open("complex_scene.jpg")
54
+ encoded = moondream.encode_image(image)
55
+
56
+ # Reuse the encoding for multiple queries
57
+ questions = [
58
+ "How many people are in this image?",
59
+ "What time of day was this taken?",
60
+ "What's the weather like?"
61
+ ]
62
+
63
+ for q in questions:
64
+ result = moondream.query(image=encoded, question=q, reasoning=False)
65
+ print(f"Q: {q}")
66
+ print(f"A: {result['answer']}\n")
67
+
68
+ # Also works with other skills
69
+ caption = moondream.caption(encoded, length="normal")
70
+ objects = moondream.detect(encoded, "poop")
71
+ pointe = moondream.point(encoded, "grass")
72
+ print(f"caption: {e}, objects:{g}, point:{h}")
73
+
74
+ # Segment an object
75
+ result = moondream.segment(image, "cat")
76
+ svg_path = result["path"]
77
+ bbox = result["bbox"]
78
+
79
+ print(f"SVG Path: {svg_path[:100]}...")
80
+ print(f"Bounding box: {bbox}")
81
+
82
+ # With spatial hint (point) to guide segmentation
83
+ result = model.segment(image, "cat", spatial_refs=[[0.5, 0.3]])
84
+
85
+ # With spatial hint (bounding box)
86
+ result = model.segment(image, "cat", spatial_refs=[[0.2, 0.1, 0.8, 0.9]])
87
+
88
  result = ""
89
  Q_and_A = ""
90
  prompts = [p.strip() for p in prompt_text.split('?')]