Update app.py
Browse files
app.py
CHANGED
|
@@ -436,6 +436,63 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
| 436 |
|
| 437 |
# app.py
|
| 438 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
# app.py
|
| 440 |
|
| 441 |
import os
|
|
@@ -449,7 +506,7 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
| 449 |
|
| 450 |
# Initialize Hugging Face Inference Client
|
| 451 |
client = InferenceClient(
|
| 452 |
-
model="mistralai/
|
| 453 |
token=HF_TOKEN
|
| 454 |
)
|
| 455 |
|
|
@@ -461,7 +518,7 @@ system_message = (
|
|
| 461 |
"based on their requirements."
|
| 462 |
)
|
| 463 |
|
| 464 |
-
# Streaming chatbot logic
|
| 465 |
def respond(message, history):
|
| 466 |
# Prepare messages with system prompt
|
| 467 |
messages = [{"role": "system", "content": system_message}]
|
|
@@ -472,7 +529,7 @@ def respond(message, history):
|
|
| 472 |
# Stream response from the model
|
| 473 |
response = ""
|
| 474 |
for chunk in client.chat.completions.create(
|
| 475 |
-
model="mistralai/
|
| 476 |
messages=messages,
|
| 477 |
max_tokens=1024,
|
| 478 |
temperature=0.7,
|
|
@@ -498,4 +555,3 @@ if __name__ == "__main__":
|
|
| 498 |
|
| 499 |
|
| 500 |
|
| 501 |
-
|
|
|
|
| 436 |
|
| 437 |
# app.py
|
| 438 |
|
| 439 |
+
# app.py
|
| 440 |
+
|
| 441 |
+
# import os
|
| 442 |
+
# import gradio as gr
|
| 443 |
+
# from huggingface_hub import InferenceClient
|
| 444 |
+
# from dotenv import load_dotenv
|
| 445 |
+
|
| 446 |
+
# # Load environment variables
|
| 447 |
+
# load_dotenv()
|
| 448 |
+
# HF_TOKEN = os.getenv("HF_TOKEN")
|
| 449 |
+
|
| 450 |
+
# # Initialize Hugging Face Inference Client
|
| 451 |
+
# client = InferenceClient(
|
| 452 |
+
# model="mistralai/Codestral-22B-v0.1",
|
| 453 |
+
# token=HF_TOKEN
|
| 454 |
+
# )
|
| 455 |
+
|
| 456 |
+
# # System prompt for coding assistant
|
| 457 |
+
# system_message = (
|
| 458 |
+
# "You are a helpful and experienced coding assistant specialized in web development. "
|
| 459 |
+
# "Help the user by generating complete and functional code for building websites. "
|
| 460 |
+
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
| 461 |
+
# "based on their requirements."
|
| 462 |
+
# )
|
| 463 |
+
|
| 464 |
+
# # Streaming chatbot logic using chat.completions
|
| 465 |
+
# def respond(message, history):
|
| 466 |
+
# # Prepare messages with system prompt
|
| 467 |
+
# messages = [{"role": "system", "content": system_message}]
|
| 468 |
+
# for msg in history:
|
| 469 |
+
# messages.append(msg)
|
| 470 |
+
# messages.append({"role": "user", "content": message})
|
| 471 |
+
|
| 472 |
+
# # Stream response from the model
|
| 473 |
+
# response = ""
|
| 474 |
+
# for chunk in client.chat.completions.create(
|
| 475 |
+
# model="mistralai/Codestral-22B-v0.1",
|
| 476 |
+
# messages=messages,
|
| 477 |
+
# max_tokens=1024,
|
| 478 |
+
# temperature=0.7,
|
| 479 |
+
# top_p=0.95,
|
| 480 |
+
# stream=True,
|
| 481 |
+
# ):
|
| 482 |
+
# token = chunk.choices[0].delta.get("content", "") or ""
|
| 483 |
+
# response += token
|
| 484 |
+
# yield response
|
| 485 |
+
|
| 486 |
+
# # Create Gradio interface
|
| 487 |
+
# with gr.Blocks() as demo:
|
| 488 |
+
# chatbot = gr.Chatbot(type='messages') # Use modern message format
|
| 489 |
+
# gr.ChatInterface(fn=respond, chatbot=chatbot, type="messages") # Match format
|
| 490 |
+
|
| 491 |
+
# # Launch app
|
| 492 |
+
# if __name__ == "__main__":
|
| 493 |
+
# demo.launch()
|
| 494 |
+
|
| 495 |
+
|
| 496 |
# app.py
|
| 497 |
|
| 498 |
import os
|
|
|
|
| 506 |
|
| 507 |
# Initialize Hugging Face Inference Client
|
| 508 |
client = InferenceClient(
|
| 509 |
+
model="mistralai/Mistral-7B-Instruct-v0.3",
|
| 510 |
token=HF_TOKEN
|
| 511 |
)
|
| 512 |
|
|
|
|
| 518 |
"based on their requirements."
|
| 519 |
)
|
| 520 |
|
| 521 |
+
# Streaming chatbot logic
|
| 522 |
def respond(message, history):
|
| 523 |
# Prepare messages with system prompt
|
| 524 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
| 529 |
# Stream response from the model
|
| 530 |
response = ""
|
| 531 |
for chunk in client.chat.completions.create(
|
| 532 |
+
model="mistralai/Mistral-7B-Instruct-v0.3",
|
| 533 |
messages=messages,
|
| 534 |
max_tokens=1024,
|
| 535 |
temperature=0.7,
|
|
|
|
| 555 |
|
| 556 |
|
| 557 |
|
|
|