Spaces:
Sleeping
Sleeping
Arif
commited on
Commit
Β·
09c07f9
1
Parent(s):
697bc47
Updated config file so llm use docker model runner ollama style for better reproducable
Browse files- backend/app/config.py +76 -16
- backend/app/services/llm_service.py +80 -21
backend/app/config.py
CHANGED
|
@@ -2,55 +2,114 @@
|
|
| 2 |
Configuration for LLM Data Analyzer
|
| 3 |
Supports both MLX (local) and Docker Model Runner modes
|
| 4 |
All values from .env.local - NO hardcoded defaults
|
|
|
|
| 5 |
"""
|
| 6 |
import logging
|
|
|
|
| 7 |
from functools import lru_cache
|
| 8 |
from pydantic_settings import BaseSettings
|
|
|
|
|
|
|
| 9 |
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
|
|
|
| 12 |
# Conditional MLX import
|
| 13 |
HAS_MLX = False
|
| 14 |
|
|
|
|
| 15 |
class Settings(BaseSettings):
|
| 16 |
-
"""Main settings - all from .env.local"""
|
| 17 |
|
| 18 |
# ===== CORE SETTINGS =====
|
| 19 |
-
fastapi_env: str
|
| 20 |
-
fastapi_debug: bool
|
| 21 |
-
log_level: str
|
| 22 |
|
| 23 |
# ===== LLM MODE SELECTION =====
|
| 24 |
# True = Use MLX locally (macOS Apple Silicon)
|
| 25 |
# False = Use Docker Model Runner
|
| 26 |
-
debug: bool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# ===== MLX MODE (DEBUG=true) =====
|
| 29 |
-
llm_model_name_mlx: str
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# ===== DOCKER MODEL RUNNER MODE (DEBUG=false) =====
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# ===== DATA PROCESSING =====
|
| 40 |
-
max_file_size_mb: int
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
# Hardcoded (lists can't be parsed from env vars)
|
| 43 |
supported_file_types: list = ["csv", "xlsx", "xls"]
|
| 44 |
|
| 45 |
class Config:
|
| 46 |
env_file = ".env.local"
|
| 47 |
case_sensitive = False
|
|
|
|
|
|
|
| 48 |
|
| 49 |
@lru_cache
|
| 50 |
def get_settings():
|
| 51 |
"""Get cached settings from .env.local"""
|
| 52 |
return Settings()
|
| 53 |
|
|
|
|
| 54 |
# Check if MLX is available (only needed for DEBUG=true)
|
| 55 |
try:
|
| 56 |
import mlx.core
|
|
@@ -62,8 +121,9 @@ except ImportError:
|
|
| 62 |
HAS_MLX = False
|
| 63 |
logger.warning("β οΈ MLX not available (will use Docker Model Runner or mock)")
|
| 64 |
|
|
|
|
| 65 |
settings = get_settings()
|
| 66 |
|
| 67 |
-
# Export both settings and MLX availability
|
| 68 |
-
__all__ = ["settings", "get_settings", "HAS_MLX"]
|
| 69 |
|
|
|
|
|
|
|
|
|
| 2 |
Configuration for LLM Data Analyzer
|
| 3 |
Supports both MLX (local) and Docker Model Runner modes
|
| 4 |
All values from .env.local - NO hardcoded defaults
|
| 5 |
+
Follows Metis pattern for portability
|
| 6 |
"""
|
| 7 |
import logging
|
| 8 |
+
import os
|
| 9 |
from functools import lru_cache
|
| 10 |
from pydantic_settings import BaseSettings
|
| 11 |
+
from pydantic import Field
|
| 12 |
+
|
| 13 |
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
+
|
| 17 |
# Conditional MLX import
|
| 18 |
HAS_MLX = False
|
| 19 |
|
| 20 |
+
|
| 21 |
class Settings(BaseSettings):
|
| 22 |
+
"""Main settings - all from .env.local with sensible defaults"""
|
| 23 |
|
| 24 |
# ===== CORE SETTINGS =====
|
| 25 |
+
fastapi_env: str = Field(default="development", env="FASTAPI_ENV")
|
| 26 |
+
fastapi_debug: bool = Field(default=False, env="FASTAPI_DEBUG")
|
| 27 |
+
log_level: str = Field(default="INFO", env="LOG_LEVEL")
|
| 28 |
|
| 29 |
# ===== LLM MODE SELECTION =====
|
| 30 |
# True = Use MLX locally (macOS Apple Silicon)
|
| 31 |
# False = Use Docker Model Runner
|
| 32 |
+
debug: bool = Field(default=False, env="DEBUG")
|
| 33 |
+
llm_mode: str = Field(
|
| 34 |
+
default="docker_model_runner",
|
| 35 |
+
env="LLM_MODE",
|
| 36 |
+
description="'mlx', 'docker_model_runner', or 'mock'"
|
| 37 |
+
)
|
| 38 |
|
| 39 |
# ===== MLX MODE (DEBUG=true) =====
|
| 40 |
+
llm_model_name_mlx: str = Field(
|
| 41 |
+
default="mlx-community/Llama-3.2-3B-Instruct-4bit",
|
| 42 |
+
env="LLM_MODEL_NAME_MLX",
|
| 43 |
+
description="MLX model from HuggingFace"
|
| 44 |
+
)
|
| 45 |
+
llm_max_tokens: int = Field(
|
| 46 |
+
default=512,
|
| 47 |
+
env="LLM_MAX_TOKENS",
|
| 48 |
+
description="Max tokens for generation"
|
| 49 |
+
)
|
| 50 |
+
llm_temperature: float = Field(
|
| 51 |
+
default=0.7,
|
| 52 |
+
env="LLM_TEMPERATURE",
|
| 53 |
+
description="Temperature for sampling (0.0-1.0)"
|
| 54 |
+
)
|
| 55 |
+
llm_device: str = Field(
|
| 56 |
+
default="auto",
|
| 57 |
+
env="LLM_DEVICE",
|
| 58 |
+
description="MLX device: 'auto', 'cpu', 'gpu'"
|
| 59 |
+
)
|
| 60 |
|
| 61 |
# ===== DOCKER MODEL RUNNER MODE (DEBUG=false) =====
|
| 62 |
+
# Metis pattern: stateless HTTP API to DMR on host
|
| 63 |
+
model_runner_url: str = Field(
|
| 64 |
+
default="http://host.docker.internal:11434/v1",
|
| 65 |
+
env="MODEL_RUNNER_URL",
|
| 66 |
+
description="Docker Model Runner API endpoint (from containers use host.docker.internal)"
|
| 67 |
+
)
|
| 68 |
+
model_name: str = Field(
|
| 69 |
+
default="llama3.2:1B-Q4_0",
|
| 70 |
+
env="MODEL_NAME",
|
| 71 |
+
description="Model name as shown in 'docker model ls'"
|
| 72 |
+
)
|
| 73 |
+
docker_timeout: int = Field(
|
| 74 |
+
default=300,
|
| 75 |
+
env="DOCKER_TIMEOUT",
|
| 76 |
+
description="Timeout for Docker Model Runner requests (seconds)"
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# ===== BACKWARDS COMPATIBILITY (deprecated) =====
|
| 80 |
+
# These are kept for backwards compatibility but use new names above
|
| 81 |
+
@property
|
| 82 |
+
def docker_model_runner_url(self) -> str:
|
| 83 |
+
"""Backwards compatible alias for model_runner_url"""
|
| 84 |
+
return self.model_runner_url
|
| 85 |
+
|
| 86 |
+
@property
|
| 87 |
+
def llm_model_name_docker(self) -> str:
|
| 88 |
+
"""Backwards compatible alias for model_name"""
|
| 89 |
+
return self.model_name
|
| 90 |
|
| 91 |
# ===== DATA PROCESSING =====
|
| 92 |
+
max_file_size_mb: int = Field(
|
| 93 |
+
default=50,
|
| 94 |
+
env="MAX_FILE_SIZE_MB",
|
| 95 |
+
description="Maximum file upload size in MB"
|
| 96 |
+
)
|
| 97 |
|
| 98 |
+
# Hardcoded (lists can't be parsed from env vars easily)
|
| 99 |
supported_file_types: list = ["csv", "xlsx", "xls"]
|
| 100 |
|
| 101 |
class Config:
|
| 102 |
env_file = ".env.local"
|
| 103 |
case_sensitive = False
|
| 104 |
+
extra = "allow"
|
| 105 |
+
|
| 106 |
|
| 107 |
@lru_cache
|
| 108 |
def get_settings():
|
| 109 |
"""Get cached settings from .env.local"""
|
| 110 |
return Settings()
|
| 111 |
|
| 112 |
+
|
| 113 |
# Check if MLX is available (only needed for DEBUG=true)
|
| 114 |
try:
|
| 115 |
import mlx.core
|
|
|
|
| 121 |
HAS_MLX = False
|
| 122 |
logger.warning("β οΈ MLX not available (will use Docker Model Runner or mock)")
|
| 123 |
|
| 124 |
+
|
| 125 |
settings = get_settings()
|
| 126 |
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
# Export both settings and MLX availability
|
| 129 |
+
__all__ = ["settings", "get_settings", "HAS_MLX"]
|
backend/app/services/llm_service.py
CHANGED
|
@@ -6,12 +6,15 @@ Dual-mode LLM Service
|
|
| 6 |
"""
|
| 7 |
import asyncio
|
| 8 |
import logging
|
|
|
|
| 9 |
from abc import ABC, abstractmethod
|
| 10 |
from typing import List, Optional
|
| 11 |
import httpx
|
| 12 |
|
|
|
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
|
|
|
| 15 |
# Import MLX conditionally
|
| 16 |
try:
|
| 17 |
from mlx_lm import load
|
|
@@ -21,6 +24,7 @@ except ImportError:
|
|
| 21 |
HAS_MLX = False
|
| 22 |
|
| 23 |
|
|
|
|
| 24 |
class BaseLLMService(ABC):
|
| 25 |
"""Abstract base class for LLM services"""
|
| 26 |
|
|
@@ -43,7 +47,7 @@ class BaseLLMService(ABC):
|
|
| 43 |
pass
|
| 44 |
|
| 45 |
async def chat(self, messages: List[dict], system_prompt: str = None) -> str:
|
| 46 |
-
"""Chat interface"""
|
| 47 |
prompt = self._build_prompt(messages, system_prompt)
|
| 48 |
return await self.generate(prompt)
|
| 49 |
|
|
@@ -63,6 +67,7 @@ class BaseLLMService(ABC):
|
|
| 63 |
return "".join(prompt_parts)
|
| 64 |
|
| 65 |
|
|
|
|
| 66 |
class LLMServiceMLX(BaseLLMService):
|
| 67 |
"""MLX implementation for Apple Silicon (DEBUG=true)"""
|
| 68 |
|
|
@@ -134,17 +139,33 @@ class LLMServiceMLX(BaseLLMService):
|
|
| 134 |
|
| 135 |
|
| 136 |
|
|
|
|
| 137 |
class LLMServiceDockerModelRunner(BaseLLMService):
|
| 138 |
-
"""Docker Model Runner implementation - OpenAI-compatible API
|
| 139 |
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
super().__init__(model_name, max_tokens, temperature)
|
| 142 |
self.docker_url = docker_url.rstrip("/") # Remove trailing slash
|
| 143 |
self.timeout = timeout
|
| 144 |
self.client = None
|
| 145 |
|
| 146 |
async def load_model(self) -> bool:
|
| 147 |
-
"""Initialize Docker Model Runner connection
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
if self.is_loaded:
|
| 149 |
return True
|
| 150 |
|
|
@@ -156,8 +177,10 @@ class LLMServiceDockerModelRunner(BaseLLMService):
|
|
| 156 |
response = await self.client.get(f"{self.docker_url}/models")
|
| 157 |
|
| 158 |
if response.status_code == 200:
|
| 159 |
-
|
| 160 |
self.logger.info(f"β
Docker Model Runner connected")
|
|
|
|
|
|
|
| 161 |
return True
|
| 162 |
else:
|
| 163 |
self.logger.error(f"β Docker Model Runner returned {response.status_code}")
|
|
@@ -167,13 +190,17 @@ class LLMServiceDockerModelRunner(BaseLLMService):
|
|
| 167 |
return False
|
| 168 |
|
| 169 |
async def generate(self, prompt: str) -> str:
|
| 170 |
-
"""Generate with Docker Model Runner (OpenAI-compatible API)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
if not self.is_loaded:
|
| 172 |
raise RuntimeError("Docker Model Runner not connected")
|
| 173 |
|
| 174 |
try:
|
| 175 |
payload = {
|
| 176 |
-
"model": self.model_name,
|
| 177 |
"messages": [{"role": "user", "content": prompt}],
|
| 178 |
"temperature": self.temperature,
|
| 179 |
"max_tokens": self.max_tokens,
|
|
@@ -238,13 +265,30 @@ class LLMServiceMock(BaseLLMService):
|
|
| 238 |
return f"Mock response: I processed your prompt about '{prompt[:40]}...' - please note I'm in mock mode with no real LLM."
|
| 239 |
|
| 240 |
|
| 241 |
-
|
|
|
|
| 242 |
"""
|
| 243 |
Factory function to get appropriate LLM service
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
"""
|
| 246 |
|
| 247 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
if debug and HAS_MLX:
|
| 249 |
try:
|
| 250 |
config = mlx_config or {
|
|
@@ -253,31 +297,46 @@ def get_llm_service(debug: bool, mlx_config: dict = None, docker_config: dict =
|
|
| 253 |
"temperature": 0.7,
|
| 254 |
"device": "auto"
|
| 255 |
}
|
| 256 |
-
logger.info("π Mode: MLX (DEBUG=true)")
|
| 257 |
return LLMServiceMLX(**config)
|
| 258 |
except Exception as e:
|
| 259 |
-
logger.warning(f"β οΈ MLX failed: {e}")
|
| 260 |
|
| 261 |
-
# Try Docker Model Runner
|
| 262 |
docker_url = None
|
| 263 |
if docker_config:
|
| 264 |
docker_url = docker_config.get("docker_url")
|
| 265 |
elif settings:
|
| 266 |
-
docker_url = settings
|
|
|
|
|
|
|
| 267 |
|
| 268 |
if docker_url:
|
| 269 |
try:
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
"
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
"docker_url": docker_url,
|
| 275 |
-
"timeout":
|
|
|
|
| 276 |
}
|
| 277 |
logger.info(f"π Mode: Docker Model Runner at {docker_url}")
|
|
|
|
|
|
|
| 278 |
return LLMServiceDockerModelRunner(**config)
|
| 279 |
except Exception as e:
|
| 280 |
-
logger.warning(f"β οΈ Docker Model Runner failed: {e}")
|
| 281 |
|
| 282 |
# Fallback to mock
|
| 283 |
logger.warning("β οΈ Using MOCK mode (no LLM available)")
|
|
@@ -285,4 +344,4 @@ def get_llm_service(debug: bool, mlx_config: dict = None, docker_config: dict =
|
|
| 285 |
model_name="mock",
|
| 286 |
max_tokens=512,
|
| 287 |
temperature=0.7
|
| 288 |
-
)
|
|
|
|
| 6 |
"""
|
| 7 |
import asyncio
|
| 8 |
import logging
|
| 9 |
+
import os
|
| 10 |
from abc import ABC, abstractmethod
|
| 11 |
from typing import List, Optional
|
| 12 |
import httpx
|
| 13 |
|
| 14 |
+
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
+
|
| 18 |
# Import MLX conditionally
|
| 19 |
try:
|
| 20 |
from mlx_lm import load
|
|
|
|
| 24 |
HAS_MLX = False
|
| 25 |
|
| 26 |
|
| 27 |
+
|
| 28 |
class BaseLLMService(ABC):
|
| 29 |
"""Abstract base class for LLM services"""
|
| 30 |
|
|
|
|
| 47 |
pass
|
| 48 |
|
| 49 |
async def chat(self, messages: List[dict], system_prompt: str = None) -> str:
|
| 50 |
+
"""Chat interface - converts chat format to prompt format"""
|
| 51 |
prompt = self._build_prompt(messages, system_prompt)
|
| 52 |
return await self.generate(prompt)
|
| 53 |
|
|
|
|
| 67 |
return "".join(prompt_parts)
|
| 68 |
|
| 69 |
|
| 70 |
+
|
| 71 |
class LLMServiceMLX(BaseLLMService):
|
| 72 |
"""MLX implementation for Apple Silicon (DEBUG=true)"""
|
| 73 |
|
|
|
|
| 139 |
|
| 140 |
|
| 141 |
|
| 142 |
+
|
| 143 |
class LLMServiceDockerModelRunner(BaseLLMService):
|
| 144 |
+
"""Docker Model Runner implementation - OpenAI-compatible API
|
| 145 |
|
| 146 |
+
Uses stateless HTTP calls to DMR running on host machine.
|
| 147 |
+
Optimal for Apple Silicon GPU acceleration via llama.cpp Metal backend.
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
def __init__(
|
| 151 |
+
self,
|
| 152 |
+
model_name: str,
|
| 153 |
+
max_tokens: int,
|
| 154 |
+
temperature: float,
|
| 155 |
+
docker_url: str,
|
| 156 |
+
timeout: int = 300
|
| 157 |
+
):
|
| 158 |
super().__init__(model_name, max_tokens, temperature)
|
| 159 |
self.docker_url = docker_url.rstrip("/") # Remove trailing slash
|
| 160 |
self.timeout = timeout
|
| 161 |
self.client = None
|
| 162 |
|
| 163 |
async def load_model(self) -> bool:
|
| 164 |
+
"""Initialize Docker Model Runner connection
|
| 165 |
+
|
| 166 |
+
Tests connectivity to the DMR HTTP API endpoint.
|
| 167 |
+
DMR itself handles model loading on the host.
|
| 168 |
+
"""
|
| 169 |
if self.is_loaded:
|
| 170 |
return True
|
| 171 |
|
|
|
|
| 177 |
response = await self.client.get(f"{self.docker_url}/models")
|
| 178 |
|
| 179 |
if response.status_code == 200:
|
| 180 |
+
models = response.json()
|
| 181 |
self.logger.info(f"β
Docker Model Runner connected")
|
| 182 |
+
self.logger.info(f"π Available models: {models}")
|
| 183 |
+
self.is_loaded = True
|
| 184 |
return True
|
| 185 |
else:
|
| 186 |
self.logger.error(f"β Docker Model Runner returned {response.status_code}")
|
|
|
|
| 190 |
return False
|
| 191 |
|
| 192 |
async def generate(self, prompt: str) -> str:
|
| 193 |
+
"""Generate with Docker Model Runner (OpenAI-compatible API)
|
| 194 |
+
|
| 195 |
+
Makes HTTP request to DMR at host.docker.internal:11434
|
| 196 |
+
Model inference happens on host GPU (Apple Metal backend)
|
| 197 |
+
"""
|
| 198 |
if not self.is_loaded:
|
| 199 |
raise RuntimeError("Docker Model Runner not connected")
|
| 200 |
|
| 201 |
try:
|
| 202 |
payload = {
|
| 203 |
+
"model": self.model_name,
|
| 204 |
"messages": [{"role": "user", "content": prompt}],
|
| 205 |
"temperature": self.temperature,
|
| 206 |
"max_tokens": self.max_tokens,
|
|
|
|
| 265 |
return f"Mock response: I processed your prompt about '{prompt[:40]}...' - please note I'm in mock mode with no real LLM."
|
| 266 |
|
| 267 |
|
| 268 |
+
|
| 269 |
+
def get_llm_service(debug: bool = None, mlx_config: dict = None, docker_config: dict = None, settings=None) -> BaseLLMService:
|
| 270 |
"""
|
| 271 |
Factory function to get appropriate LLM service
|
| 272 |
+
|
| 273 |
+
Fallback chain: MLX (DEBUG=true) β Docker Model Runner β Mock
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
debug: Force DEBUG mode (True=MLX, False=Docker). If None, reads from env/settings
|
| 277 |
+
mlx_config: Manual MLX config dict
|
| 278 |
+
docker_config: Manual Docker config dict
|
| 279 |
+
settings: Pydantic Settings object with llm config
|
| 280 |
+
|
| 281 |
+
Returns:
|
| 282 |
+
BaseLLMService: One of MLX, DockerModelRunner, or Mock implementation
|
| 283 |
"""
|
| 284 |
|
| 285 |
+
# Determine debug mode
|
| 286 |
+
if debug is None:
|
| 287 |
+
debug = os.getenv("DEBUG", "false").lower() == "true"
|
| 288 |
+
if hasattr(settings, "debug"):
|
| 289 |
+
debug = settings.debug
|
| 290 |
+
|
| 291 |
+
# Try MLX first (if DEBUG=true)
|
| 292 |
if debug and HAS_MLX:
|
| 293 |
try:
|
| 294 |
config = mlx_config or {
|
|
|
|
| 297 |
"temperature": 0.7,
|
| 298 |
"device": "auto"
|
| 299 |
}
|
| 300 |
+
logger.info("π Mode: MLX (DEBUG=true) with Apple Silicon GPU")
|
| 301 |
return LLMServiceMLX(**config)
|
| 302 |
except Exception as e:
|
| 303 |
+
logger.warning(f"β οΈ MLX failed: {e}, falling back to Docker Model Runner")
|
| 304 |
|
| 305 |
+
# Try Docker Model Runner (Metis pattern)
|
| 306 |
docker_url = None
|
| 307 |
if docker_config:
|
| 308 |
docker_url = docker_config.get("docker_url")
|
| 309 |
elif settings:
|
| 310 |
+
docker_url = getattr(settings, "model_runner_url", None)
|
| 311 |
+
else:
|
| 312 |
+
docker_url = os.getenv("MODEL_RUNNER_URL")
|
| 313 |
|
| 314 |
if docker_url:
|
| 315 |
try:
|
| 316 |
+
model_name = None
|
| 317 |
+
if docker_config:
|
| 318 |
+
model_name = docker_config.get("model_name")
|
| 319 |
+
elif settings:
|
| 320 |
+
model_name = getattr(settings, "model_name", None)
|
| 321 |
+
else:
|
| 322 |
+
model_name = os.getenv("MODEL_NAME", "llama3.2:1B-Q4_0")
|
| 323 |
+
|
| 324 |
+
config = {
|
| 325 |
+
"model_name": model_name,
|
| 326 |
+
"max_tokens": (docker_config or {}).get("max_tokens",
|
| 327 |
+
getattr(settings, "llm_max_tokens", 512) if settings else 512),
|
| 328 |
+
"temperature": (docker_config or {}).get("temperature",
|
| 329 |
+
getattr(settings, "llm_temperature", 0.7) if settings else 0.7),
|
| 330 |
"docker_url": docker_url,
|
| 331 |
+
"timeout": (docker_config or {}).get("timeout",
|
| 332 |
+
getattr(settings, "docker_timeout", 300) if settings else 300)
|
| 333 |
}
|
| 334 |
logger.info(f"π Mode: Docker Model Runner at {docker_url}")
|
| 335 |
+
logger.info(f"π Model: {config['model_name']}")
|
| 336 |
+
logger.info(f"β
Using host GPU acceleration (llama.cpp Metal backend)")
|
| 337 |
return LLMServiceDockerModelRunner(**config)
|
| 338 |
except Exception as e:
|
| 339 |
+
logger.warning(f"β οΈ Docker Model Runner failed: {e}, falling back to Mock")
|
| 340 |
|
| 341 |
# Fallback to mock
|
| 342 |
logger.warning("β οΈ Using MOCK mode (no LLM available)")
|
|
|
|
| 344 |
model_name="mock",
|
| 345 |
max_tokens=512,
|
| 346 |
temperature=0.7
|
| 347 |
+
)
|