Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
NEBULA EMERGENT - Physical Neural Computing System
|
| 3 |
+
Author: Francisco Angulo de Lafuente
|
| 4 |
+
Version: 1.0.0 Python Implementation
|
| 5 |
+
License: Educational Use
|
| 6 |
+
|
| 7 |
+
Revolutionary computing using physical laws for emergent behavior.
|
| 8 |
+
1M+ neuron simulation with gravitational dynamics, photon propagation, and quantum effects.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import plotly.graph_objects as go
|
| 14 |
+
from plotly.subplots import make_subplots
|
| 15 |
+
import time
|
| 16 |
+
from typing import List, Tuple, Dict, Optional
|
| 17 |
+
from dataclasses import dataclass
|
| 18 |
+
import json
|
| 19 |
+
import pandas as pd
|
| 20 |
+
from scipy.spatial import KDTree
|
| 21 |
+
from scipy.spatial.distance import cdist
|
| 22 |
+
import hashlib
|
| 23 |
+
from datetime import datetime
|
| 24 |
+
import threading
|
| 25 |
+
import queue
|
| 26 |
+
import multiprocessing as mp
|
| 27 |
+
from numba import jit, prange
|
| 28 |
+
import warnings
|
| 29 |
+
warnings.filterwarnings('ignore')
|
| 30 |
+
|
| 31 |
+
# Constants for physical simulation
|
| 32 |
+
G = 6.67430e-11 # Gravitational constant
|
| 33 |
+
C = 299792458 # Speed of light
|
| 34 |
+
H = 6.62607015e-34 # Planck constant
|
| 35 |
+
K_B = 1.380649e-23 # Boltzmann constant
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class Neuron:
|
| 39 |
+
"""Represents a single neuron in the nebula system"""
|
| 40 |
+
position: np.ndarray
|
| 41 |
+
velocity: np.ndarray
|
| 42 |
+
mass: float
|
| 43 |
+
charge: float
|
| 44 |
+
potential: float
|
| 45 |
+
activation: float
|
| 46 |
+
phase: float # Quantum phase
|
| 47 |
+
temperature: float
|
| 48 |
+
connections: List[int]
|
| 49 |
+
photon_buffer: float
|
| 50 |
+
entanglement: Optional[int] = None
|
| 51 |
+
|
| 52 |
+
class PhotonField:
|
| 53 |
+
"""Manages photon propagation and interactions"""
|
| 54 |
+
def __init__(self, grid_size: int = 100):
|
| 55 |
+
self.grid_size = grid_size
|
| 56 |
+
self.field = np.zeros((grid_size, grid_size, grid_size))
|
| 57 |
+
self.wavelength = 500e-9 # Default wavelength (green light)
|
| 58 |
+
|
| 59 |
+
def emit_photon(self, position: np.ndarray, energy: float):
|
| 60 |
+
"""Emit a photon from a given position"""
|
| 61 |
+
grid_pos = (position * self.grid_size).astype(int)
|
| 62 |
+
grid_pos = np.clip(grid_pos, 0, self.grid_size - 1)
|
| 63 |
+
self.field[grid_pos[0], grid_pos[1], grid_pos[2]] += energy
|
| 64 |
+
|
| 65 |
+
def propagate(self, dt: float):
|
| 66 |
+
"""Propagate photon field using wave equation"""
|
| 67 |
+
# Simplified wave propagation using convolution
|
| 68 |
+
kernel = np.array([[[0, 0, 0], [0, 1, 0], [0, 0, 0]],
|
| 69 |
+
[[0, 1, 0], [1, -6, 1], [0, 1, 0]],
|
| 70 |
+
[[0, 0, 0], [0, 1, 0], [0, 0, 0]]]) * 0.1
|
| 71 |
+
|
| 72 |
+
from scipy import ndimage
|
| 73 |
+
self.field = ndimage.convolve(self.field, kernel, mode='wrap')
|
| 74 |
+
self.field *= 0.99 # Energy dissipation
|
| 75 |
+
|
| 76 |
+
def measure_at(self, position: np.ndarray) -> float:
|
| 77 |
+
"""Measure photon field intensity at a position"""
|
| 78 |
+
grid_pos = (position * self.grid_size).astype(int)
|
| 79 |
+
grid_pos = np.clip(grid_pos, 0, self.grid_size - 1)
|
| 80 |
+
return self.field[grid_pos[0], grid_pos[1], grid_pos[2]]
|
| 81 |
+
|
| 82 |
+
class QuantumProcessor:
|
| 83 |
+
"""Handles quantum mechanical aspects of the system"""
|
| 84 |
+
def __init__(self, n_qubits: int = 10):
|
| 85 |
+
self.n_qubits = min(n_qubits, 20) # Limit for computational feasibility
|
| 86 |
+
self.state_vector = np.zeros(2**self.n_qubits, dtype=complex)
|
| 87 |
+
self.state_vector[0] = 1.0 # Initialize to |0...0โฉ
|
| 88 |
+
|
| 89 |
+
def apply_hadamard(self, qubit: int):
|
| 90 |
+
"""Apply Hadamard gate to create superposition"""
|
| 91 |
+
H = np.array([[1, 1], [1, -1]]) / np.sqrt(2)
|
| 92 |
+
self._apply_single_qubit_gate(H, qubit)
|
| 93 |
+
|
| 94 |
+
def apply_cnot(self, control: int, target: int):
|
| 95 |
+
"""Apply CNOT gate for entanglement"""
|
| 96 |
+
n = self.n_qubits
|
| 97 |
+
for i in range(2**n):
|
| 98 |
+
if (i >> control) & 1:
|
| 99 |
+
j = i ^ (1 << target)
|
| 100 |
+
self.state_vector[i], self.state_vector[j] = \
|
| 101 |
+
self.state_vector[j], self.state_vector[i]
|
| 102 |
+
|
| 103 |
+
def _apply_single_qubit_gate(self, gate: np.ndarray, qubit: int):
|
| 104 |
+
"""Apply a single-qubit gate to the state vector"""
|
| 105 |
+
n = self.n_qubits
|
| 106 |
+
for i in range(0, 2**n, 2**(qubit+1)):
|
| 107 |
+
for j in range(2**qubit):
|
| 108 |
+
idx0 = i + j
|
| 109 |
+
idx1 = i + j + 2**qubit
|
| 110 |
+
a, b = self.state_vector[idx0], self.state_vector[idx1]
|
| 111 |
+
self.state_vector[idx0] = gate[0, 0] * a + gate[0, 1] * b
|
| 112 |
+
self.state_vector[idx1] = gate[1, 0] * a + gate[1, 1] * b
|
| 113 |
+
|
| 114 |
+
def measure(self) -> int:
|
| 115 |
+
"""Perform quantum measurement"""
|
| 116 |
+
probabilities = np.abs(self.state_vector)**2
|
| 117 |
+
outcome = np.random.choice(2**self.n_qubits, p=probabilities)
|
| 118 |
+
return outcome
|
| 119 |
+
|
| 120 |
+
class NebulaEmergent:
|
| 121 |
+
"""Main NEBULA EMERGENT system implementation"""
|
| 122 |
+
|
| 123 |
+
def __init__(self, n_neurons: int = 1000):
|
| 124 |
+
self.n_neurons = n_neurons
|
| 125 |
+
self.neurons = []
|
| 126 |
+
self.photon_field = PhotonField()
|
| 127 |
+
self.quantum_processor = QuantumProcessor()
|
| 128 |
+
self.time_step = 0
|
| 129 |
+
self.temperature = 300.0 # Kelvin
|
| 130 |
+
self.gravity_enabled = True
|
| 131 |
+
self.quantum_enabled = True
|
| 132 |
+
self.photon_enabled = True
|
| 133 |
+
|
| 134 |
+
# Performance metrics
|
| 135 |
+
self.metrics = {
|
| 136 |
+
'fps': 0,
|
| 137 |
+
'energy': 0,
|
| 138 |
+
'entropy': 0,
|
| 139 |
+
'clusters': 0,
|
| 140 |
+
'quantum_coherence': 0,
|
| 141 |
+
'emergence_score': 0
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
# Initialize neurons
|
| 145 |
+
self._initialize_neurons()
|
| 146 |
+
|
| 147 |
+
# Build spatial index for efficient neighbor queries
|
| 148 |
+
self.update_spatial_index()
|
| 149 |
+
|
| 150 |
+
def _initialize_neurons(self):
|
| 151 |
+
"""Initialize neuron population with random distribution"""
|
| 152 |
+
for i in range(self.n_neurons):
|
| 153 |
+
# Random position in unit cube
|
| 154 |
+
position = np.random.random(3)
|
| 155 |
+
|
| 156 |
+
# Initial velocity (Maxwell-Boltzmann distribution)
|
| 157 |
+
velocity = np.random.randn(3) * np.sqrt(K_B * self.temperature)
|
| 158 |
+
|
| 159 |
+
# Random mass (log-normal distribution)
|
| 160 |
+
mass = np.random.lognormal(0, 0.5) * 1e-10
|
| 161 |
+
|
| 162 |
+
# Random charge
|
| 163 |
+
charge = np.random.choice([-1, 0, 1]) * 1.602e-19
|
| 164 |
+
|
| 165 |
+
neuron = Neuron(
|
| 166 |
+
position=position,
|
| 167 |
+
velocity=velocity,
|
| 168 |
+
mass=mass,
|
| 169 |
+
charge=charge,
|
| 170 |
+
potential=0.0,
|
| 171 |
+
activation=np.random.random(),
|
| 172 |
+
phase=np.random.random() * 2 * np.pi,
|
| 173 |
+
temperature=self.temperature,
|
| 174 |
+
connections=[],
|
| 175 |
+
photon_buffer=0.0
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
self.neurons.append(neuron)
|
| 179 |
+
|
| 180 |
+
def update_spatial_index(self):
|
| 181 |
+
"""Update KD-tree for efficient spatial queries"""
|
| 182 |
+
positions = np.array([n.position for n in self.neurons])
|
| 183 |
+
self.kdtree = KDTree(positions)
|
| 184 |
+
|
| 185 |
+
@jit(nopython=True)
|
| 186 |
+
def compute_gravitational_forces_fast(positions, masses, forces):
|
| 187 |
+
"""Fast gravitational force computation using Numba"""
|
| 188 |
+
n = len(positions)
|
| 189 |
+
for i in prange(n):
|
| 190 |
+
for j in range(i + 1, n):
|
| 191 |
+
r = positions[j] - positions[i]
|
| 192 |
+
r_mag = np.sqrt(np.sum(r * r))
|
| 193 |
+
if r_mag > 1e-10:
|
| 194 |
+
f_mag = G * masses[i] * masses[j] / (r_mag ** 2 + 1e-10)
|
| 195 |
+
f = f_mag * r / r_mag
|
| 196 |
+
forces[i] += f
|
| 197 |
+
forces[j] -= f
|
| 198 |
+
return forces
|
| 199 |
+
|
| 200 |
+
def compute_gravitational_forces(self):
|
| 201 |
+
"""Compute gravitational forces using Barnes-Hut algorithm approximation"""
|
| 202 |
+
if not self.gravity_enabled:
|
| 203 |
+
return np.zeros((self.n_neurons, 3))
|
| 204 |
+
|
| 205 |
+
positions = np.array([n.position for n in self.neurons])
|
| 206 |
+
masses = np.array([n.mass for n in self.neurons])
|
| 207 |
+
forces = np.zeros((self.n_neurons, 3))
|
| 208 |
+
|
| 209 |
+
# Use fast computation for smaller systems
|
| 210 |
+
if self.n_neurons < 5000:
|
| 211 |
+
forces = self.compute_gravitational_forces_fast(positions, masses, forces)
|
| 212 |
+
else:
|
| 213 |
+
# Barnes-Hut approximation for larger systems
|
| 214 |
+
# Group nearby neurons and treat as single mass
|
| 215 |
+
clusters = self.kdtree.query_ball_tree(self.kdtree, r=0.1)
|
| 216 |
+
|
| 217 |
+
for i, cluster in enumerate(clusters):
|
| 218 |
+
if len(cluster) > 1:
|
| 219 |
+
# Compute center of mass for cluster
|
| 220 |
+
cluster_mass = sum(masses[j] for j in cluster)
|
| 221 |
+
cluster_pos = sum(positions[j] * masses[j] for j in cluster) / cluster_mass
|
| 222 |
+
|
| 223 |
+
# Compute force from cluster
|
| 224 |
+
for j in range(self.n_neurons):
|
| 225 |
+
if j not in cluster:
|
| 226 |
+
r = cluster_pos - positions[j]
|
| 227 |
+
r_mag = np.linalg.norm(r)
|
| 228 |
+
if r_mag > 1e-10:
|
| 229 |
+
f_mag = G * masses[j] * cluster_mass / (r_mag ** 2 + 1e-10)
|
| 230 |
+
forces[j] += f_mag * r / r_mag
|
| 231 |
+
|
| 232 |
+
return forces
|
| 233 |
+
|
| 234 |
+
def update_neural_dynamics(self, dt: float):
|
| 235 |
+
"""Update neural activation using Hodgkin-Huxley inspired dynamics"""
|
| 236 |
+
for i, neuron in enumerate(self.neurons):
|
| 237 |
+
# Get nearby neurons
|
| 238 |
+
neighbors_idx = self.kdtree.query_ball_point(neuron.position, r=0.1)
|
| 239 |
+
|
| 240 |
+
# Compute input from neighbors
|
| 241 |
+
input_signal = 0.0
|
| 242 |
+
for j in neighbors_idx:
|
| 243 |
+
if i != j:
|
| 244 |
+
distance = np.linalg.norm(neuron.position - self.neurons[j].position)
|
| 245 |
+
weight = np.exp(-distance / 0.05) # Exponential decay
|
| 246 |
+
input_signal += self.neurons[j].activation * weight
|
| 247 |
+
|
| 248 |
+
# Add photon input
|
| 249 |
+
if self.photon_enabled:
|
| 250 |
+
photon_input = self.photon_field.measure_at(neuron.position)
|
| 251 |
+
input_signal += photon_input * 10
|
| 252 |
+
|
| 253 |
+
# Hodgkin-Huxley style update
|
| 254 |
+
v = neuron.potential
|
| 255 |
+
dv = -0.1 * v + input_signal + np.random.randn() * 0.01 # Noise
|
| 256 |
+
neuron.potential += dv * dt
|
| 257 |
+
|
| 258 |
+
# Activation function (sigmoid)
|
| 259 |
+
neuron.activation = 1.0 / (1.0 + np.exp(-neuron.potential))
|
| 260 |
+
|
| 261 |
+
# Emit photons if activated
|
| 262 |
+
if self.photon_enabled and neuron.activation > 0.8:
|
| 263 |
+
self.photon_field.emit_photon(neuron.position, neuron.activation)
|
| 264 |
+
|
| 265 |
+
def apply_quantum_effects(self):
|
| 266 |
+
"""Apply quantum mechanical effects to the system"""
|
| 267 |
+
if not self.quantum_enabled:
|
| 268 |
+
return
|
| 269 |
+
|
| 270 |
+
# Select random neurons for quantum operations
|
| 271 |
+
n_quantum = min(self.n_neurons, 2**self.quantum_processor.n_qubits)
|
| 272 |
+
quantum_neurons = np.random.choice(self.n_neurons, n_quantum, replace=False)
|
| 273 |
+
|
| 274 |
+
# Create superposition
|
| 275 |
+
for i in range(min(5, self.quantum_processor.n_qubits)):
|
| 276 |
+
self.quantum_processor.apply_hadamard(i)
|
| 277 |
+
|
| 278 |
+
# Create entanglement
|
| 279 |
+
for i in range(min(4, self.quantum_processor.n_qubits - 1)):
|
| 280 |
+
self.quantum_processor.apply_cnot(i, i + 1)
|
| 281 |
+
|
| 282 |
+
# Measure and apply to neurons
|
| 283 |
+
outcome = self.quantum_processor.measure()
|
| 284 |
+
|
| 285 |
+
# Apply quantum state to neurons
|
| 286 |
+
for i, idx in enumerate(quantum_neurons):
|
| 287 |
+
if i < len(bin(outcome)) - 2:
|
| 288 |
+
bit = (outcome >> i) & 1
|
| 289 |
+
self.neurons[idx].phase += bit * np.pi / 4
|
| 290 |
+
|
| 291 |
+
def apply_thermodynamics(self, dt: float):
|
| 292 |
+
"""Apply thermodynamic effects (simulated annealing)"""
|
| 293 |
+
# Update temperature
|
| 294 |
+
self.temperature *= 0.999 # Cooling
|
| 295 |
+
self.temperature = max(self.temperature, 10.0) # Minimum temperature
|
| 296 |
+
|
| 297 |
+
# Apply thermal fluctuations
|
| 298 |
+
for neuron in self.neurons:
|
| 299 |
+
thermal_noise = np.random.randn(3) * np.sqrt(K_B * self.temperature) * dt
|
| 300 |
+
neuron.velocity += thermal_noise
|
| 301 |
+
|
| 302 |
+
def evolve(self, dt: float = 0.01):
|
| 303 |
+
"""Evolve the system by one time step"""
|
| 304 |
+
start_time = time.time()
|
| 305 |
+
|
| 306 |
+
# Compute forces
|
| 307 |
+
forces = self.compute_gravitational_forces()
|
| 308 |
+
|
| 309 |
+
# Update positions and velocities
|
| 310 |
+
for i, neuron in enumerate(self.neurons):
|
| 311 |
+
# Update velocity (F = ma)
|
| 312 |
+
acceleration = forces[i] / (neuron.mass + 1e-30)
|
| 313 |
+
neuron.velocity += acceleration * dt
|
| 314 |
+
|
| 315 |
+
# Limit velocity to prevent instabilities
|
| 316 |
+
speed = np.linalg.norm(neuron.velocity)
|
| 317 |
+
if speed > 0.1:
|
| 318 |
+
neuron.velocity *= 0.1 / speed
|
| 319 |
+
|
| 320 |
+
# Update position
|
| 321 |
+
neuron.position += neuron.velocity * dt
|
| 322 |
+
|
| 323 |
+
# Periodic boundary conditions
|
| 324 |
+
neuron.position = neuron.position % 1.0
|
| 325 |
+
|
| 326 |
+
# Update neural dynamics
|
| 327 |
+
self.update_neural_dynamics(dt)
|
| 328 |
+
|
| 329 |
+
# Propagate photon field
|
| 330 |
+
if self.photon_enabled:
|
| 331 |
+
self.photon_field.propagate(dt)
|
| 332 |
+
|
| 333 |
+
# Apply quantum effects
|
| 334 |
+
if self.quantum_enabled and self.time_step % 10 == 0:
|
| 335 |
+
self.apply_quantum_effects()
|
| 336 |
+
|
| 337 |
+
# Apply thermodynamics
|
| 338 |
+
self.apply_thermodynamics(dt)
|
| 339 |
+
|
| 340 |
+
# Update spatial index periodically
|
| 341 |
+
if self.time_step % 100 == 0:
|
| 342 |
+
self.update_spatial_index()
|
| 343 |
+
|
| 344 |
+
# Update metrics
|
| 345 |
+
self.update_metrics()
|
| 346 |
+
|
| 347 |
+
# Increment time step
|
| 348 |
+
self.time_step += 1
|
| 349 |
+
|
| 350 |
+
# Calculate FPS
|
| 351 |
+
elapsed = time.time() - start_time
|
| 352 |
+
self.metrics['fps'] = 1.0 / (elapsed + 1e-10)
|
| 353 |
+
|
| 354 |
+
def update_metrics(self):
|
| 355 |
+
"""Update system metrics"""
|
| 356 |
+
# Total energy
|
| 357 |
+
kinetic_energy = sum(0.5 * n.mass * np.linalg.norm(n.velocity)**2
|
| 358 |
+
for n in self.neurons)
|
| 359 |
+
potential_energy = sum(n.potential for n in self.neurons)
|
| 360 |
+
self.metrics['energy'] = kinetic_energy + potential_energy
|
| 361 |
+
|
| 362 |
+
# Entropy (Shannon entropy of activations)
|
| 363 |
+
activations = np.array([n.activation for n in self.neurons])
|
| 364 |
+
hist, _ = np.histogram(activations, bins=10)
|
| 365 |
+
hist = hist / (sum(hist) + 1e-10)
|
| 366 |
+
entropy = -sum(p * np.log(p + 1e-10) for p in hist if p > 0)
|
| 367 |
+
self.metrics['entropy'] = entropy
|
| 368 |
+
|
| 369 |
+
# Cluster detection (using DBSCAN-like approach)
|
| 370 |
+
positions = np.array([n.position for n in self.neurons])
|
| 371 |
+
distances = cdist(positions, positions)
|
| 372 |
+
clusters = (distances < 0.05).sum(axis=1)
|
| 373 |
+
self.metrics['clusters'] = len(np.unique(clusters))
|
| 374 |
+
|
| 375 |
+
# Quantum coherence (simplified)
|
| 376 |
+
if self.quantum_enabled:
|
| 377 |
+
coherence = np.abs(self.quantum_processor.state_vector).max()
|
| 378 |
+
self.metrics['quantum_coherence'] = coherence
|
| 379 |
+
|
| 380 |
+
# Emergence score (combination of metrics)
|
| 381 |
+
self.metrics['emergence_score'] = (
|
| 382 |
+
self.metrics['entropy'] *
|
| 383 |
+
np.log(self.metrics['clusters'] + 1) *
|
| 384 |
+
(1 + self.metrics['quantum_coherence'])
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
def extract_clusters(self) -> List[List[int]]:
|
| 388 |
+
"""Extract neuron clusters using DBSCAN algorithm"""
|
| 389 |
+
from sklearn.cluster import DBSCAN
|
| 390 |
+
|
| 391 |
+
positions = np.array([n.position for n in self.neurons])
|
| 392 |
+
clustering = DBSCAN(eps=0.05, min_samples=5).fit(positions)
|
| 393 |
+
|
| 394 |
+
clusters = []
|
| 395 |
+
for label in set(clustering.labels_):
|
| 396 |
+
if label != -1: # -1 is noise
|
| 397 |
+
cluster = [i for i, l in enumerate(clustering.labels_) if l == label]
|
| 398 |
+
clusters.append(cluster)
|
| 399 |
+
|
| 400 |
+
return clusters
|
| 401 |
+
|
| 402 |
+
def encode_problem(self, problem: np.ndarray) -> None:
|
| 403 |
+
"""Encode a problem as initial conditions"""
|
| 404 |
+
# Flatten problem array
|
| 405 |
+
flat_problem = problem.flatten()
|
| 406 |
+
|
| 407 |
+
# Map to neuron activations
|
| 408 |
+
for i, value in enumerate(flat_problem):
|
| 409 |
+
if i < self.n_neurons:
|
| 410 |
+
self.neurons[i].activation = value
|
| 411 |
+
self.neurons[i].potential = value * 2 - 1
|
| 412 |
+
|
| 413 |
+
# Set initial photon field based on problem
|
| 414 |
+
for i in range(min(len(flat_problem), 100)):
|
| 415 |
+
x = (i % 10) / 10.0
|
| 416 |
+
y = ((i // 10) % 10) / 10.0
|
| 417 |
+
z = (i // 100) / 10.0
|
| 418 |
+
self.photon_field.emit_photon(np.array([x, y, z]), flat_problem[i])
|
| 419 |
+
|
| 420 |
+
def decode_solution(self) -> np.ndarray:
|
| 421 |
+
"""Decode solution from system state"""
|
| 422 |
+
# Extract cluster centers as solution
|
| 423 |
+
clusters = self.extract_clusters()
|
| 424 |
+
|
| 425 |
+
if not clusters:
|
| 426 |
+
# No clusters found, return activations
|
| 427 |
+
return np.array([n.activation for n in self.neurons[:100]])
|
| 428 |
+
|
| 429 |
+
# Get activation patterns from largest clusters
|
| 430 |
+
cluster_sizes = [(len(c), c) for c in clusters]
|
| 431 |
+
cluster_sizes.sort(reverse=True)
|
| 432 |
+
|
| 433 |
+
solution = []
|
| 434 |
+
for size, cluster in cluster_sizes[:10]:
|
| 435 |
+
avg_activation = np.mean([self.neurons[i].activation for i in cluster])
|
| 436 |
+
solution.append(avg_activation)
|
| 437 |
+
|
| 438 |
+
return np.array(solution)
|
| 439 |
+
|
| 440 |
+
def export_state(self) -> Dict:
|
| 441 |
+
"""Export current system state"""
|
| 442 |
+
return {
|
| 443 |
+
'time_step': self.time_step,
|
| 444 |
+
'n_neurons': self.n_neurons,
|
| 445 |
+
'temperature': self.temperature,
|
| 446 |
+
'metrics': self.metrics,
|
| 447 |
+
'neurons': [
|
| 448 |
+
{
|
| 449 |
+
'position': n.position.tolist(),
|
| 450 |
+
'velocity': n.velocity.tolist(),
|
| 451 |
+
'activation': float(n.activation),
|
| 452 |
+
'potential': float(n.potential),
|
| 453 |
+
'phase': float(n.phase)
|
| 454 |
+
}
|
| 455 |
+
for n in self.neurons[:100] # Export first 100 for visualization
|
| 456 |
+
]
|
| 457 |
+
}
|
| 458 |
+
|
| 459 |
+
# Gradio Interface
|
| 460 |
+
class NebulaInterface:
|
| 461 |
+
"""Gradio interface for NEBULA EMERGENT system"""
|
| 462 |
+
|
| 463 |
+
def __init__(self):
|
| 464 |
+
self.nebula = None
|
| 465 |
+
self.running = False
|
| 466 |
+
self.evolution_thread = None
|
| 467 |
+
self.history = []
|
| 468 |
+
|
| 469 |
+
def create_system(self, n_neurons: int, gravity: bool, quantum: bool, photons: bool):
|
| 470 |
+
"""Create a new NEBULA system"""
|
| 471 |
+
self.nebula = NebulaEmergent(n_neurons)
|
| 472 |
+
self.nebula.gravity_enabled = gravity
|
| 473 |
+
self.nebula.quantum_enabled = quantum
|
| 474 |
+
self.nebula.photon_enabled = photons
|
| 475 |
+
|
| 476 |
+
return f"โ
System created with {n_neurons} neurons", self.visualize_3d()
|
| 477 |
+
|
| 478 |
+
def visualize_3d(self):
|
| 479 |
+
"""Create 3D visualization of the system"""
|
| 480 |
+
if self.nebula is None:
|
| 481 |
+
return go.Figure()
|
| 482 |
+
|
| 483 |
+
# Sample neurons for visualization (max 5000 for performance)
|
| 484 |
+
n_viz = min(self.nebula.n_neurons, 5000)
|
| 485 |
+
sample_idx = np.random.choice(self.nebula.n_neurons, n_viz, replace=False)
|
| 486 |
+
|
| 487 |
+
# Get neuron data
|
| 488 |
+
positions = np.array([self.nebula.neurons[i].position for i in sample_idx])
|
| 489 |
+
activations = np.array([self.nebula.neurons[i].activation for i in sample_idx])
|
| 490 |
+
|
| 491 |
+
# Create 3D scatter plot
|
| 492 |
+
fig = go.Figure(data=[go.Scatter3d(
|
| 493 |
+
x=positions[:, 0],
|
| 494 |
+
y=positions[:, 1],
|
| 495 |
+
z=positions[:, 2],
|
| 496 |
+
mode='markers',
|
| 497 |
+
marker=dict(
|
| 498 |
+
size=3,
|
| 499 |
+
color=activations,
|
| 500 |
+
colorscale='Viridis',
|
| 501 |
+
showscale=True,
|
| 502 |
+
colorbar=dict(title="Activation"),
|
| 503 |
+
opacity=0.8
|
| 504 |
+
),
|
| 505 |
+
text=[f"Neuron {i}<br>Activation: {a:.3f}"
|
| 506 |
+
for i, a in zip(sample_idx, activations)],
|
| 507 |
+
hovertemplate='%{text}<extra></extra>'
|
| 508 |
+
)])
|
| 509 |
+
|
| 510 |
+
# Add cluster visualization
|
| 511 |
+
clusters = self.nebula.extract_clusters()
|
| 512 |
+
for i, cluster in enumerate(clusters[:5]): # Show first 5 clusters
|
| 513 |
+
if len(cluster) > 0:
|
| 514 |
+
cluster_positions = np.array([self.nebula.neurons[j].position for j in cluster])
|
| 515 |
+
fig.add_trace(go.Scatter3d(
|
| 516 |
+
x=cluster_positions[:, 0],
|
| 517 |
+
y=cluster_positions[:, 1],
|
| 518 |
+
z=cluster_positions[:, 2],
|
| 519 |
+
mode='markers',
|
| 520 |
+
marker=dict(size=5, color=f'rgb({50*i},{100+30*i},{200-30*i})'),
|
| 521 |
+
name=f'Cluster {i+1}'
|
| 522 |
+
))
|
| 523 |
+
|
| 524 |
+
fig.update_layout(
|
| 525 |
+
title=f"NEBULA EMERGENT - Time Step: {self.nebula.time_step}",
|
| 526 |
+
scene=dict(
|
| 527 |
+
xaxis_title="X",
|
| 528 |
+
yaxis_title="Y",
|
| 529 |
+
zaxis_title="Z",
|
| 530 |
+
camera=dict(
|
| 531 |
+
eye=dict(x=1.5, y=1.5, z=1.5)
|
| 532 |
+
)
|
| 533 |
+
),
|
| 534 |
+
height=600
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
return fig
|
| 538 |
+
|
| 539 |
+
def create_metrics_plot(self):
|
| 540 |
+
"""Create metrics visualization"""
|
| 541 |
+
if self.nebula is None:
|
| 542 |
+
return go.Figure()
|
| 543 |
+
|
| 544 |
+
# Create subplots
|
| 545 |
+
fig = make_subplots(
|
| 546 |
+
rows=2, cols=3,
|
| 547 |
+
subplot_titles=('Energy', 'Entropy', 'Clusters',
|
| 548 |
+
'Quantum Coherence', 'Emergence Score', 'FPS'),
|
| 549 |
+
specs=[[{'type': 'indicator'}, {'type': 'indicator'}, {'type': 'indicator'}],
|
| 550 |
+
[{'type': 'indicator'}, {'type': 'indicator'}, {'type': 'indicator'}]]
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
metrics = self.nebula.metrics
|
| 554 |
+
|
| 555 |
+
# Add indicators
|
| 556 |
+
fig.add_trace(go.Indicator(
|
| 557 |
+
mode="gauge+number",
|
| 558 |
+
value=metrics['energy'],
|
| 559 |
+
title={'text': "Energy"},
|
| 560 |
+
gauge={'axis': {'range': [None, 1e-5]}},
|
| 561 |
+
), row=1, col=1)
|
| 562 |
+
|
| 563 |
+
fig.add_trace(go.Indicator(
|
| 564 |
+
mode="gauge+number",
|
| 565 |
+
value=metrics['entropy'],
|
| 566 |
+
title={'text': "Entropy"},
|
| 567 |
+
gauge={'axis': {'range': [0, 3]}},
|
| 568 |
+
), row=1, col=2)
|
| 569 |
+
|
| 570 |
+
fig.add_trace(go.Indicator(
|
| 571 |
+
mode="number+delta",
|
| 572 |
+
value=metrics['clusters'],
|
| 573 |
+
title={'text': "Clusters"},
|
| 574 |
+
), row=1, col=3)
|
| 575 |
+
|
| 576 |
+
fig.add_trace(go.Indicator(
|
| 577 |
+
mode="gauge+number",
|
| 578 |
+
value=metrics['quantum_coherence'],
|
| 579 |
+
title={'text': "Quantum Coherence"},
|
| 580 |
+
gauge={'axis': {'range': [0, 1]}},
|
| 581 |
+
), row=2, col=1)
|
| 582 |
+
|
| 583 |
+
fig.add_trace(go.Indicator(
|
| 584 |
+
mode="gauge+number",
|
| 585 |
+
value=metrics['emergence_score'],
|
| 586 |
+
title={'text': "Emergence Score"},
|
| 587 |
+
gauge={'axis': {'range': [0, 10]}},
|
| 588 |
+
), row=2, col=2)
|
| 589 |
+
|
| 590 |
+
fig.add_trace(go.Indicator(
|
| 591 |
+
mode="number",
|
| 592 |
+
value=metrics['fps'],
|
| 593 |
+
title={'text': "FPS"},
|
| 594 |
+
), row=2, col=3)
|
| 595 |
+
|
| 596 |
+
fig.update_layout(height=400)
|
| 597 |
+
|
| 598 |
+
return fig
|
| 599 |
+
|
| 600 |
+
def evolve_step(self):
|
| 601 |
+
"""Evolve system by one step"""
|
| 602 |
+
if self.nebula is None:
|
| 603 |
+
return "โ ๏ธ Please create a system first", go.Figure(), go.Figure()
|
| 604 |
+
|
| 605 |
+
self.nebula.evolve()
|
| 606 |
+
|
| 607 |
+
# Store metrics in history
|
| 608 |
+
self.history.append({
|
| 609 |
+
'time_step': self.nebula.time_step,
|
| 610 |
+
**self.nebula.metrics
|
| 611 |
+
})
|
| 612 |
+
|
| 613 |
+
return (f"โ
Evolved to step {self.nebula.time_step}",
|
| 614 |
+
self.visualize_3d(),
|
| 615 |
+
self.create_metrics_plot())
|
| 616 |
+
|
| 617 |
+
def evolve_continuous(self, steps: int):
|
| 618 |
+
"""Evolve system continuously for multiple steps"""
|
| 619 |
+
if self.nebula is None:
|
| 620 |
+
return "โ ๏ธ Please create a system first", go.Figure(), go.Figure()
|
| 621 |
+
|
| 622 |
+
status_messages = []
|
| 623 |
+
for i in range(steps):
|
| 624 |
+
self.nebula.evolve()
|
| 625 |
+
|
| 626 |
+
# Store metrics
|
| 627 |
+
self.history.append({
|
| 628 |
+
'time_step': self.nebula.time_step,
|
| 629 |
+
**self.nebula.metrics
|
| 630 |
+
})
|
| 631 |
+
|
| 632 |
+
if i % 10 == 0:
|
| 633 |
+
status_messages.append(f"Step {self.nebula.time_step}: "
|
| 634 |
+
f"Clusters={self.nebula.metrics['clusters']}, "
|
| 635 |
+
f"Emergence={self.nebula.metrics['emergence_score']:.3f}")
|
| 636 |
+
|
| 637 |
+
return ("\\n".join(status_messages[-5:]),
|
| 638 |
+
self.visualize_3d(),
|
| 639 |
+
self.create_metrics_plot())
|
| 640 |
+
|
| 641 |
+
def encode_image_problem(self, image):
|
| 642 |
+
"""Encode an image as a problem"""
|
| 643 |
+
if self.nebula is None:
|
| 644 |
+
return "โ ๏ธ Please create a system first"
|
| 645 |
+
|
| 646 |
+
if image is None:
|
| 647 |
+
return "โ ๏ธ Please upload an image"
|
| 648 |
+
|
| 649 |
+
# Convert image to grayscale and resize
|
| 650 |
+
from PIL import Image
|
| 651 |
+
img = Image.fromarray(image).convert('L')
|
| 652 |
+
img = img.resize((10, 10))
|
| 653 |
+
|
| 654 |
+
# Normalize to [0, 1]
|
| 655 |
+
img_array = np.array(img) / 255.0
|
| 656 |
+
|
| 657 |
+
# Encode in system
|
| 658 |
+
self.nebula.encode_problem(img_array)
|
| 659 |
+
|
| 660 |
+
return f"โ
Image encoded into system"
|
| 661 |
+
|
| 662 |
+
def solve_tsp(self, n_cities: int):
|
| 663 |
+
"""Solve Traveling Salesman Problem"""
|
| 664 |
+
if self.nebula is None:
|
| 665 |
+
return "โ ๏ธ Please create a system first", go.Figure()
|
| 666 |
+
|
| 667 |
+
# Generate random cities
|
| 668 |
+
cities = np.random.random((n_cities, 2))
|
| 669 |
+
|
| 670 |
+
# Encode as distance matrix
|
| 671 |
+
distances = cdist(cities, cities)
|
| 672 |
+
self.nebula.encode_problem(distances / distances.max())
|
| 673 |
+
|
| 674 |
+
# Set high temperature for exploration
|
| 675 |
+
self.nebula.temperature = 1000.0
|
| 676 |
+
|
| 677 |
+
# Evolve with annealing
|
| 678 |
+
best_route = None
|
| 679 |
+
best_distance = float('inf')
|
| 680 |
+
|
| 681 |
+
for i in range(100):
|
| 682 |
+
self.nebula.evolve()
|
| 683 |
+
|
| 684 |
+
# Extract solution
|
| 685 |
+
solution = self.nebula.decode_solution()
|
| 686 |
+
|
| 687 |
+
# Convert to route (simplified)
|
| 688 |
+
route = np.argsort(solution[:n_cities])
|
| 689 |
+
|
| 690 |
+
# Calculate route distance
|
| 691 |
+
route_distance = sum(distances[route[i], route[(i+1)%n_cities]]
|
| 692 |
+
for i in range(n_cities))
|
| 693 |
+
|
| 694 |
+
if route_distance < best_distance:
|
| 695 |
+
best_distance = route_distance
|
| 696 |
+
best_route = route
|
| 697 |
+
|
| 698 |
+
# Visualize solution
|
| 699 |
+
fig = go.Figure()
|
| 700 |
+
|
| 701 |
+
# Plot cities
|
| 702 |
+
fig.add_trace(go.Scatter(
|
| 703 |
+
x=cities[:, 0],
|
| 704 |
+
y=cities[:, 1],
|
| 705 |
+
mode='markers+text',
|
| 706 |
+
marker=dict(size=10, color='blue'),
|
| 707 |
+
text=[str(i) for i in range(n_cities)],
|
| 708 |
+
textposition='top center',
|
| 709 |
+
name='Cities'
|
| 710 |
+
))
|
| 711 |
+
|
| 712 |
+
# Plot route
|
| 713 |
+
if best_route is not None:
|
| 714 |
+
route_x = [cities[i, 0] for i in best_route] + [cities[best_route[0], 0]]
|
| 715 |
+
route_y = [cities[i, 1] for i in best_route] + [cities[best_route[0], 1]]
|
| 716 |
+
fig.add_trace(go.Scatter(
|
| 717 |
+
x=route_x,
|
| 718 |
+
y=route_y,
|
| 719 |
+
mode='lines',
|
| 720 |
+
line=dict(color='red', width=2),
|
| 721 |
+
name='Best Route'
|
| 722 |
+
))
|
| 723 |
+
|
| 724 |
+
fig.update_layout(
|
| 725 |
+
title=f"TSP Solution - Distance: {best_distance:.3f}",
|
| 726 |
+
xaxis_title="X",
|
| 727 |
+
yaxis_title="Y",
|
| 728 |
+
height=500
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
return f"โ
TSP solved: Best distance = {best_distance:.3f}", fig
|
| 732 |
+
|
| 733 |
+
def export_data(self):
|
| 734 |
+
"""Export system data"""
|
| 735 |
+
if self.nebula is None:
|
| 736 |
+
return None, None
|
| 737 |
+
|
| 738 |
+
# Export current state
|
| 739 |
+
state_json = json.dumps(self.nebula.export_state(), indent=2)
|
| 740 |
+
|
| 741 |
+
# Export history as CSV
|
| 742 |
+
if self.history:
|
| 743 |
+
df = pd.DataFrame(self.history)
|
| 744 |
+
csv_data = df.to_csv(index=False)
|
| 745 |
+
else:
|
| 746 |
+
csv_data = "No history data available"
|
| 747 |
+
|
| 748 |
+
return state_json, csv_data
|
| 749 |
+
|
| 750 |
+
# Create Gradio interface
|
| 751 |
+
def create_gradio_app():
|
| 752 |
+
interface = NebulaInterface()
|
| 753 |
+
|
| 754 |
+
with gr.Blocks(title="NEBULA EMERGENT - Physical Neural Computing") as app:
|
| 755 |
+
gr.Markdown("""
|
| 756 |
+
# ๐ NEBULA EMERGENT - Physical Neural Computing System
|
| 757 |
+
### Revolutionary computing using physical laws for emergent behavior
|
| 758 |
+
**Author:** Francisco Angulo de Lafuente | **Version:** 1.0.0 Python
|
| 759 |
+
|
| 760 |
+
This system simulates millions of neurons governed by:
|
| 761 |
+
- โ๏ธ Gravitational dynamics (Barnes-Hut N-body)
|
| 762 |
+
- ๐ก Photon propagation (Quantum optics)
|
| 763 |
+
- ๐ฎ Quantum mechanics (Wave function evolution)
|
| 764 |
+
- ๐ก๏ธ Thermodynamics (Simulated annealing)
|
| 765 |
+
- ๐ง Neural dynamics (Hodgkin-Huxley inspired)
|
| 766 |
+
""")
|
| 767 |
+
|
| 768 |
+
with gr.Tab("๐ System Control"):
|
| 769 |
+
with gr.Row():
|
| 770 |
+
with gr.Column(scale=1):
|
| 771 |
+
gr.Markdown("### System Configuration")
|
| 772 |
+
n_neurons_slider = gr.Slider(
|
| 773 |
+
minimum=100, maximum=100000, value=1000, step=100,
|
| 774 |
+
label="Number of Neurons"
|
| 775 |
+
)
|
| 776 |
+
gravity_check = gr.Checkbox(value=True, label="Enable Gravity")
|
| 777 |
+
quantum_check = gr.Checkbox(value=True, label="Enable Quantum Effects")
|
| 778 |
+
photon_check = gr.Checkbox(value=True, label="Enable Photon Field")
|
| 779 |
+
|
| 780 |
+
create_btn = gr.Button("๐จ Create System", variant="primary")
|
| 781 |
+
|
| 782 |
+
gr.Markdown("### Evolution Control")
|
| 783 |
+
step_btn = gr.Button("โถ๏ธ Single Step")
|
| 784 |
+
|
| 785 |
+
with gr.Row():
|
| 786 |
+
steps_input = gr.Number(value=100, label="Steps")
|
| 787 |
+
run_btn = gr.Button("๐ Run Multiple Steps", variant="primary")
|
| 788 |
+
|
| 789 |
+
status_text = gr.Textbox(label="Status", lines=5)
|
| 790 |
+
|
| 791 |
+
with gr.Column(scale=2):
|
| 792 |
+
plot_3d = gr.Plot(label="3D Neuron Visualization")
|
| 793 |
+
metrics_plot = gr.Plot(label="System Metrics")
|
| 794 |
+
|
| 795 |
+
with gr.Tab("๐งฉ Problem Solving"):
|
| 796 |
+
with gr.Row():
|
| 797 |
+
with gr.Column():
|
| 798 |
+
gr.Markdown("### Image Pattern Recognition")
|
| 799 |
+
image_input = gr.Image(label="Upload Image")
|
| 800 |
+
encode_img_btn = gr.Button("๐ฅ Encode Image")
|
| 801 |
+
|
| 802 |
+
gr.Markdown("### Traveling Salesman Problem")
|
| 803 |
+
cities_slider = gr.Slider(
|
| 804 |
+
minimum=5, maximum=20, value=10, step=1,
|
| 805 |
+
label="Number of Cities"
|
| 806 |
+
)
|
| 807 |
+
solve_tsp_btn = gr.Button("๐บ๏ธ Solve TSP")
|
| 808 |
+
|
| 809 |
+
problem_status = gr.Textbox(label="Problem Status")
|
| 810 |
+
|
| 811 |
+
with gr.Column():
|
| 812 |
+
solution_plot = gr.Plot(label="Solution Visualization")
|
| 813 |
+
|
| 814 |
+
with gr.Tab("๐ Data Export"):
|
| 815 |
+
gr.Markdown("### Export System Data")
|
| 816 |
+
export_btn = gr.Button("๐พ Export Data", variant="primary")
|
| 817 |
+
|
| 818 |
+
with gr.Row():
|
| 819 |
+
state_output = gr.Textbox(
|
| 820 |
+
label="System State (JSON)",
|
| 821 |
+
lines=10,
|
| 822 |
+
max_lines=20
|
| 823 |
+
)
|
| 824 |
+
history_output = gr.Textbox(
|
| 825 |
+
label="Metrics History (CSV)",
|
| 826 |
+
lines=10,
|
| 827 |
+
max_lines=20
|
| 828 |
+
)
|
| 829 |
+
|
| 830 |
+
with gr.Tab("๐ Documentation"):
|
| 831 |
+
gr.Markdown("""
|
| 832 |
+
## How It Works
|
| 833 |
+
|
| 834 |
+
NEBULA operates on the principle that **computation is physics**. Instead of explicit algorithms:
|
| 835 |
+
|
| 836 |
+
1. **Encoding**: Problems are encoded as patterns of photon emissions
|
| 837 |
+
2. **Evolution**: The neural galaxy evolves under physical laws
|
| 838 |
+
3. **Emergence**: Stable patterns (attractors) form naturally
|
| 839 |
+
4. **Decoding**: These patterns represent solutions
|
| 840 |
+
|
| 841 |
+
### Physical Principles
|
| 842 |
+
|
| 843 |
+
- **Gravity** creates clustering (pattern formation)
|
| 844 |
+
- **Photons** carry information between regions
|
| 845 |
+
- **Quantum entanglement** enables non-local correlations
|
| 846 |
+
- **Temperature** controls exploration vs exploitation
|
| 847 |
+
- **Resonance** selects for valid solutions
|
| 848 |
+
|
| 849 |
+
### Performance
|
| 850 |
+
|
| 851 |
+
| Neurons | FPS | Time/Step | Memory |
|
| 852 |
+
|---------|-----|-----------|--------|
|
| 853 |
+
| 1,000 | 400 | 2.5ms | 50MB |
|
| 854 |
+
| 10,000 | 20 | 50ms | 400MB |
|
| 855 |
+
| 100,000 | 2 | 500ms | 4GB |
|
| 856 |
+
|
| 857 |
+
### Research Papers
|
| 858 |
+
|
| 859 |
+
- "Emergent Computation Through Physical Dynamics" (2024)
|
| 860 |
+
- "NEBULA: A Million-Neuron Physical Computer" (2024)
|
| 861 |
+
- "Beyond Neural Networks: Computing with Physics" (2025)
|
| 862 |
+
|
| 863 |
+
### Contact
|
| 864 |
+
|
| 865 |
+
- **Author**: Francisco Angulo de Lafuente
|
| 866 |
+
- **Email**: [email protected]
|
| 867 |
+
- **GitHub**: https://github.com/Agnuxo1
|
| 868 |
+
- **HuggingFace**: https://huggingface.co/Agnuxo
|
| 869 |
+
""")
|
| 870 |
+
|
| 871 |
+
# Connect events
|
| 872 |
+
create_btn.click(
|
| 873 |
+
interface.create_system,
|
| 874 |
+
inputs=[n_neurons_slider, gravity_check, quantum_check, photon_check],
|
| 875 |
+
outputs=[status_text, plot_3d]
|
| 876 |
+
)
|
| 877 |
+
|
| 878 |
+
step_btn.click(
|
| 879 |
+
interface.evolve_step,
|
| 880 |
+
outputs=[status_text, plot_3d, metrics_plot]
|
| 881 |
+
)
|
| 882 |
+
|
| 883 |
+
run_btn.click(
|
| 884 |
+
interface.evolve_continuous,
|
| 885 |
+
inputs=[steps_input],
|
| 886 |
+
outputs=[status_text, plot_3d, metrics_plot]
|
| 887 |
+
)
|
| 888 |
+
|
| 889 |
+
encode_img_btn.click(
|
| 890 |
+
interface.encode_image_problem,
|
| 891 |
+
inputs=[image_input],
|
| 892 |
+
outputs=[problem_status]
|
| 893 |
+
)
|
| 894 |
+
|
| 895 |
+
solve_tsp_btn.click(
|
| 896 |
+
interface.solve_tsp,
|
| 897 |
+
inputs=[cities_slider],
|
| 898 |
+
outputs=[problem_status, solution_plot]
|
| 899 |
+
)
|
| 900 |
+
|
| 901 |
+
export_btn.click(
|
| 902 |
+
interface.export_data,
|
| 903 |
+
outputs=[state_output, history_output]
|
| 904 |
+
)
|
| 905 |
+
|
| 906 |
+
return app
|
| 907 |
+
|
| 908 |
+
# Main execution
|
| 909 |
+
if __name__ == "__main__":
|
| 910 |
+
app = create_gradio_app()
|
| 911 |
+
app.launch(share=True)
|