File size: 13,378 Bytes
4a0fa9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
"""
NEBULA EMERGENT - Examples and Use Cases
Author: Francisco Angulo de Lafuente
This file contains examples of how to use the NEBULA EMERGENT system
"""

import numpy as np
import matplotlib.pyplot as plt
from typing import List, Tuple
import json

# Note: These examples assume you have the nebula_emergent module
# In the Space, this is integrated into app.py

def example_basic_usage():
    """Basic example of creating and evolving a NEBULA system"""
    print("=" * 50)
    print("Example 1: Basic System Creation and Evolution")
    print("=" * 50)
    
    # Import the system (in production, this would be from the main module)
    from app import NebulaEmergent
    
    # Create a system with 1000 neurons
    nebula = NebulaEmergent(n_neurons=1000)
    
    print(f"Created system with {nebula.n_neurons} neurons")
    
    # Enable all physics
    nebula.gravity_enabled = True
    nebula.quantum_enabled = True
    nebula.photon_enabled = True
    
    # Evolve for 100 steps
    for i in range(100):
        nebula.evolve()
        
        if i % 20 == 0:
            metrics = nebula.metrics
            print(f"Step {i}: Energy={metrics['energy']:.6f}, "
                  f"Entropy={metrics['entropy']:.3f}, "
                  f"Clusters={metrics['clusters']}")
    
    # Extract final state
    clusters = nebula.extract_clusters()
    print(f"\nFinal state: {len(clusters)} clusters formed")
    
    return nebula

def example_pattern_recognition():
    """Example of using NEBULA for pattern recognition"""
    print("=" * 50)
    print("Example 2: Pattern Recognition")
    print("=" * 50)
    
    from app import NebulaEmergent
    
    # Create system
    nebula = NebulaEmergent(n_neurons=5000)
    
    # Create a simple pattern (checkerboard)
    pattern = np.array([
        [1, 0, 1, 0, 1],
        [0, 1, 0, 1, 0],
        [1, 0, 1, 0, 1],
        [0, 1, 0, 1, 0],
        [1, 0, 1, 0, 1]
    ])
    
    print("Input pattern (5x5 checkerboard):")
    print(pattern)
    
    # Encode the pattern
    nebula.encode_problem(pattern)
    
    # Evolve until convergence
    previous_clusters = 0
    stable_count = 0
    
    for i in range(500):
        nebula.evolve()
        
        clusters = nebula.extract_clusters()
        current_clusters = len(clusters)
        
        # Check for stability
        if current_clusters == previous_clusters:
            stable_count += 1
        else:
            stable_count = 0
        
        previous_clusters = current_clusters
        
        # Stop if stable for 20 steps
        if stable_count >= 20:
            print(f"System stabilized at step {i} with {current_clusters} clusters")
            break
        
        if i % 50 == 0:
            print(f"Step {i}: {current_clusters} clusters, "
                  f"Emergence score: {nebula.metrics['emergence_score']:.3f}")
    
    # Decode the solution
    solution = nebula.decode_solution()
    print(f"\nDecoded solution shape: {solution.shape}")
    print(f"Solution values (first 10): {solution[:10]}")
    
    return nebula, solution

def example_optimization_problem():
    """Example of solving an optimization problem"""
    print("=" * 50)
    print("Example 3: Function Optimization")
    print("=" * 50)
    
    from app import NebulaEmergent
    
    # Create system
    nebula = NebulaEmergent(n_neurons=2000)
    
    # Define a function to optimize: f(x,y) = -(x^2 + y^2) + 4*sin(x*y)
    # We want to find the maximum
    
    # Create a grid of function values
    x = np.linspace(-2, 2, 20)
    y = np.linspace(-2, 2, 20)
    X, Y = np.meshgrid(x, y)
    Z = -(X**2 + Y**2) + 4*np.sin(X*Y)
    
    # Normalize to [0, 1]
    Z_norm = (Z - Z.min()) / (Z.max() - Z.min())
    
    print(f"Optimizing function: f(x,y) = -(xΒ² + yΒ²) + 4*sin(x*y)")
    print(f"Function value range: [{Z.min():.3f}, {Z.max():.3f}]")
    
    # Encode the function landscape
    nebula.encode_problem(Z_norm)
    
    # Use simulated annealing
    nebula.temperature = 1000.0  # Start with high temperature
    
    best_value = -np.inf
    best_position = None
    
    for i in range(200):
        nebula.evolve()
        
        # Cool down
        nebula.temperature *= 0.98
        
        # Find the neuron with highest activation
        activations = [n.activation for n in nebula.neurons]
        best_idx = np.argmax(activations)
        best_neuron = nebula.neurons[best_idx]
        
        if best_neuron.activation > best_value:
            best_value = best_neuron.activation
            best_position = best_neuron.position
        
        if i % 40 == 0:
            print(f"Step {i}: Temperature={nebula.temperature:.1f}, "
                  f"Best value={best_value:.3f}")
    
    print(f"\nOptimization complete!")
    print(f"Best position found: {best_position}")
    print(f"Best value: {best_value:.3f}")
    
    return nebula, best_position

def example_traveling_salesman():
    """Example of solving TSP with NEBULA"""
    print("=" * 50)
    print("Example 4: Traveling Salesman Problem")
    print("=" * 50)
    
    from app import NebulaEmergent
    from scipy.spatial.distance import cdist
    
    # Create system
    nebula = NebulaEmergent(n_neurons=3000)
    
    # Generate random cities
    n_cities = 8
    cities = np.random.random((n_cities, 2))
    
    print(f"Solving TSP for {n_cities} cities")
    
    # Calculate distance matrix
    distances = cdist(cities, cities)
    
    # Encode distances (inverted so shorter = higher activation)
    encoded_distances = 1.0 / (distances + 0.1)
    np.fill_diagonal(encoded_distances, 0)
    
    # Flatten and encode
    nebula.encode_problem(encoded_distances)
    
    # High temperature for exploration
    nebula.temperature = 2000.0
    
    best_route = None
    best_distance = float('inf')
    
    for i in range(300):
        nebula.evolve()
        
        # Anneal
        nebula.temperature *= 0.97
        
        # Extract solution
        solution = nebula.decode_solution()
        
        # Convert to route (simplified)
        if len(solution) >= n_cities:
            route = np.argsort(solution[:n_cities])
            
            # Calculate route distance
            route_distance = sum(
                distances[route[j], route[(j+1) % n_cities]] 
                for j in range(n_cities)
            )
            
            if route_distance < best_distance:
                best_distance = route_distance
                best_route = route
        
        if i % 50 == 0:
            print(f"Step {i}: Best distance={best_distance:.3f}, "
                  f"Temperature={nebula.temperature:.1f}")
    
    print(f"\nTSP Solution found!")
    print(f"Best route: {best_route}")
    print(f"Total distance: {best_distance:.3f}")
    
    return nebula, best_route, cities

def example_quantum_computation():
    """Example of using quantum features"""
    print("=" * 50)
    print("Example 5: Quantum Computation Features")
    print("=" * 50)
    
    from app import NebulaEmergent
    
    # Create system with enhanced quantum features
    nebula = NebulaEmergent(n_neurons=1000)
    nebula.quantum_enabled = True
    nebula.gravity_enabled = False  # Disable gravity to focus on quantum
    nebula.photon_enabled = True
    
    print("Quantum processor initialized with {} qubits".format(
        nebula.quantum_processor.n_qubits))
    
    # Create entangled states
    print("\nCreating quantum superposition and entanglement...")
    
    for i in range(100):
        nebula.evolve()
        
        if i % 20 == 0:
            coherence = nebula.metrics['quantum_coherence']
            print(f"Step {i}: Quantum coherence={coherence:.3f}")
    
    # Measure quantum state
    outcome = nebula.quantum_processor.measure()
    print(f"\nQuantum measurement outcome: {bin(outcome)}")
    
    # Check for quantum correlations
    entangled_neurons = [
        i for i, n in enumerate(nebula.neurons) 
        if n.entanglement is not None
    ]
    print(f"Number of entangled neurons: {len(entangled_neurons)}")
    
    return nebula

def example_emergent_behavior():
    """Example demonstrating emergent behavior"""
    print("=" * 50)
    print("Example 6: Emergent Behavior and Self-Organization")
    print("=" * 50)
    
    from app import NebulaEmergent
    
    # Create a large system
    nebula = NebulaEmergent(n_neurons=5000)
    
    # Start with random initial conditions
    print("Starting with random initial conditions...")
    
    # Track emergence over time
    emergence_history = []
    cluster_history = []
    
    for i in range(500):
        nebula.evolve()
        
        if i % 10 == 0:
            emergence_history.append(nebula.metrics['emergence_score'])
            cluster_history.append(nebula.metrics['clusters'])
        
        if i % 100 == 0:
            print(f"Step {i}: "
                  f"Emergence={nebula.metrics['emergence_score']:.3f}, "
                  f"Clusters={nebula.metrics['clusters']}, "
                  f"Entropy={nebula.metrics['entropy']:.3f}")
    
    # Analyze emergent patterns
    print("\n" + "=" * 30)
    print("Emergent Behavior Analysis:")
    print("=" * 30)
    
    print(f"Initial emergence score: {emergence_history[0]:.3f}")
    print(f"Final emergence score: {emergence_history[-1]:.3f}")
    print(f"Maximum emergence: {max(emergence_history):.3f}")
    
    print(f"\nInitial clusters: {cluster_history[0]}")
    print(f"Final clusters: {cluster_history[-1]}")
    print(f"Maximum clusters: {max(cluster_history)}")
    
    # Check for phase transitions
    emergence_gradient = np.gradient(emergence_history)
    phase_transitions = np.where(np.abs(emergence_gradient) > 0.5)[0]
    
    if len(phase_transitions) > 0:
        print(f"\nPhase transitions detected at steps: "
              f"{phase_transitions * 10}")
    else:
        print("\nNo significant phase transitions detected")
    
    return nebula, emergence_history, cluster_history

def example_data_export():
    """Example of exporting and analyzing data"""
    print("=" * 50)
    print("Example 7: Data Export and Analysis")
    print("=" * 50)
    
    from app import NebulaEmergent
    import pandas as pd
    
    # Create and evolve system
    nebula = NebulaEmergent(n_neurons=500)
    
    # Collect data over time
    data_history = []
    
    for i in range(100):
        nebula.evolve()
        
        # Collect comprehensive data
        state = {
            'time_step': i,
            'energy': nebula.metrics['energy'],
            'entropy': nebula.metrics['entropy'],
            'clusters': nebula.metrics['clusters'],
            'quantum_coherence': nebula.metrics['quantum_coherence'],
            'emergence_score': nebula.metrics['emergence_score'],
            'fps': nebula.metrics['fps'],
            'temperature': nebula.temperature,
            'mean_activation': np.mean([n.activation for n in nebula.neurons]),
            'std_activation': np.std([n.activation for n in nebula.neurons])
        }
        data_history.append(state)
    
    # Convert to DataFrame
    df = pd.DataFrame(data_history)
    
    print("Data collection complete!")
    print("\nDataFrame shape:", df.shape)
    print("\nDataFrame columns:", df.columns.tolist())
    print("\nSummary statistics:")
    print(df.describe())
    
    # Export to different formats
    print("\nExporting data...")
    
    # CSV export
    csv_data = df.to_csv(index=False)
    print(f"CSV data size: {len(csv_data)} bytes")
    
    # JSON export
    json_data = df.to_json(orient='records', indent=2)
    print(f"JSON data size: {len(json_data)} bytes")
    
    # Save sample files
    with open('nebula_data.csv', 'w') as f:
        f.write(csv_data)
    print("Saved: nebula_data.csv")
    
    with open('nebula_data.json', 'w') as f:
        f.write(json_data)
    print("Saved: nebula_data.json")
    
    return df

def run_all_examples():
    """Run all examples in sequence"""
    print("\n" + "🌌" * 25)
    print("NEBULA EMERGENT - Complete Example Suite")
    print("🌌" * 25 + "\n")
    
    examples = [
        ("Basic Usage", example_basic_usage),
        ("Pattern Recognition", example_pattern_recognition),
        ("Optimization", example_optimization_problem),
        ("Traveling Salesman", example_traveling_salesman),
        ("Quantum Features", example_quantum_computation),
        ("Emergent Behavior", example_emergent_behavior),
        ("Data Export", example_data_export)
    ]
    
    results = {}
    
    for name, func in examples:
        try:
            print(f"\n{'='*60}")
            print(f"Running: {name}")
            print('='*60)
            result = func()
            results[name] = "βœ… Success"
            print(f"\n{name} completed successfully!")
        except Exception as e:
            results[name] = f"❌ Error: {str(e)}"
            print(f"\n{name} failed: {e}")
        
        print("\nPress Enter to continue to next example...")
        input()
    
    # Summary
    print("\n" + "=" * 60)
    print("EXAMPLE SUITE SUMMARY")
    print("=" * 60)
    
    for name, status in results.items():
        print(f"{name}: {status}")
    
    print("\nπŸŽ‰ Example suite completed!")

if __name__ == "__main__":
    # Run all examples
    run_all_examples()