Spaces:
Runtime error
Runtime error
Commit
·
4c3f05f
1
Parent(s):
5bc92c5
feat: add additional comments for function clarity. Fix pipeline error by using model.generate() directly
Browse files
app.py
CHANGED
|
@@ -4,53 +4,64 @@ import spaces
|
|
| 4 |
from lhotse import Recording
|
| 5 |
from nemo.collections.speechlm2 import SALM
|
| 6 |
|
|
|
|
| 7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
SAMPLE_RATE = 16000
|
| 9 |
|
|
|
|
| 10 |
model = SALM.from_pretrained("nvidia/canary-qwen-2.5b").bfloat16().eval().to(device)
|
| 11 |
|
|
|
|
| 12 |
@spaces.GPU
|
| 13 |
def transcribe_audio(audio_filepath):
|
| 14 |
if audio_filepath is None:
|
| 15 |
return "Please upload an audio file", ""
|
| 16 |
-
|
|
|
|
| 17 |
rec = Recording.from_file(audio_filepath, recording_id="temp")
|
|
|
|
|
|
|
| 18 |
cut = rec.resample(SAMPLE_RATE).to_cut()
|
| 19 |
if cut.num_channels > 1:
|
| 20 |
cut = cut.to_mono(mono_downmix=True)
|
| 21 |
-
|
|
|
|
| 22 |
audio, audio_lens = cut.load_audio()
|
| 23 |
-
|
|
|
|
| 24 |
with torch.inference_mode():
|
| 25 |
output_ids = model.generate(
|
| 26 |
-
prompts=[[{"role": "user", "content": f"Transcribe the following: {model.audio_locator_tag}"}]],
|
| 27 |
audios=torch.as_tensor(audio).unsqueeze(0).to(device),
|
| 28 |
-
audio_lens=torch.as_tensor([audio_lens]).to(device),
|
| 29 |
-
max_new_tokens=256,
|
| 30 |
)
|
| 31 |
-
|
|
|
|
| 32 |
transcript = model.tokenizer.ids_to_text(output_ids[0].cpu())
|
| 33 |
return transcript, transcript
|
| 34 |
|
| 35 |
-
|
|
|
|
| 36 |
def answer_question(transcript, question):
|
| 37 |
if not transcript:
|
| 38 |
return "Please transcribe audio first"
|
| 39 |
-
|
| 40 |
with torch.inference_mode(), model.llm.disable_adapter():
|
| 41 |
output_ids = model.generate(
|
| 42 |
-
prompts=[[{"role": "user", "content": f"{question}\n\n{transcript}"}]],
|
| 43 |
max_new_tokens=512,
|
| 44 |
)
|
| 45 |
-
|
|
|
|
| 46 |
answer = model.tokenizer.ids_to_text(output_ids[0].cpu())
|
| 47 |
answer = answer.split("<|im_start|>assistant")[-1]
|
| 48 |
return answer.strip()
|
| 49 |
|
|
|
|
| 50 |
with gr.Blocks(title="Canary-Qwen Transcriber & Q&A") as demo:
|
| 51 |
gr.Markdown("# Canary-Qwen Transcriber with Q&A")
|
| 52 |
-
gr.Markdown("Upload audio to transcribe, then ask questions about it
|
| 53 |
-
|
| 54 |
with gr.Row():
|
| 55 |
with gr.Column():
|
| 56 |
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Audio Input")
|
|
@@ -58,7 +69,8 @@ with gr.Blocks(title="Canary-Qwen Transcriber & Q&A") as demo:
|
|
| 58 |
|
| 59 |
with gr.Column():
|
| 60 |
transcript_output = gr.Textbox(label="Transcript", lines=8)
|
| 61 |
-
|
|
|
|
| 62 |
transcript_state = gr.State()
|
| 63 |
|
| 64 |
with gr.Row():
|
|
|
|
| 4 |
from lhotse import Recording
|
| 5 |
from nemo.collections.speechlm2 import SALM
|
| 6 |
|
| 7 |
+
# Set device to use cuda if available and sample rate to 16000 for Nvidia NeMo
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
SAMPLE_RATE = 16000
|
| 10 |
|
| 11 |
+
# Load the model from Hugging Face Hub using Nvidia SALM
|
| 12 |
model = SALM.from_pretrained("nvidia/canary-qwen-2.5b").bfloat16().eval().to(device)
|
| 13 |
|
| 14 |
+
# Define the audio transcription function and use ZeroGPU
|
| 15 |
@spaces.GPU
|
| 16 |
def transcribe_audio(audio_filepath):
|
| 17 |
if audio_filepath is None:
|
| 18 |
return "Please upload an audio file", ""
|
| 19 |
+
|
| 20 |
+
# Load and preprocess audio from the users file
|
| 21 |
rec = Recording.from_file(audio_filepath, recording_id="temp")
|
| 22 |
+
|
| 23 |
+
# Resample and convert to mono if needed
|
| 24 |
cut = rec.resample(SAMPLE_RATE).to_cut()
|
| 25 |
if cut.num_channels > 1:
|
| 26 |
cut = cut.to_mono(mono_downmix=True)
|
| 27 |
+
|
| 28 |
+
# Load audio data
|
| 29 |
audio, audio_lens = cut.load_audio()
|
| 30 |
+
|
| 31 |
+
# Generate transcription
|
| 32 |
with torch.inference_mode():
|
| 33 |
output_ids = model.generate(
|
| 34 |
+
prompts=[[{"role": "user", "content": f"Transcribe the following: {model.audio_locator_tag}"}]], # torch.as_tensor is used to convert the audio data to a tensor for model input
|
| 35 |
audios=torch.as_tensor(audio).unsqueeze(0).to(device),
|
| 36 |
+
audio_lens=torch.as_tensor([audio_lens]).to(device), # torch.as_tensor is used to convert the audio length to a tensor for model input
|
| 37 |
+
max_new_tokens=256, # Maximum number of tokens to generate
|
| 38 |
)
|
| 39 |
+
|
| 40 |
+
# Convert output IDs to text then return the transcript
|
| 41 |
transcript = model.tokenizer.ids_to_text(output_ids[0].cpu())
|
| 42 |
return transcript, transcript
|
| 43 |
|
| 44 |
+
# Define the question answering function for transcription queries
|
| 45 |
+
@spaces.GPU
|
| 46 |
def answer_question(transcript, question):
|
| 47 |
if not transcript:
|
| 48 |
return "Please transcribe audio first"
|
|
|
|
| 49 |
with torch.inference_mode(), model.llm.disable_adapter():
|
| 50 |
output_ids = model.generate(
|
| 51 |
+
prompts=[[{"role": "user", "content": f"{question}\n\n{transcript}"}]], # torch.as_tensor is used to convert the audio data to a tensor for model input
|
| 52 |
max_new_tokens=512,
|
| 53 |
)
|
| 54 |
+
|
| 55 |
+
# Convert output IDs to text then return the answer
|
| 56 |
answer = model.tokenizer.ids_to_text(output_ids[0].cpu())
|
| 57 |
answer = answer.split("<|im_start|>assistant")[-1]
|
| 58 |
return answer.strip()
|
| 59 |
|
| 60 |
+
# Build the Gradio interface
|
| 61 |
with gr.Blocks(title="Canary-Qwen Transcriber & Q&A") as demo:
|
| 62 |
gr.Markdown("# Canary-Qwen Transcriber with Q&A")
|
| 63 |
+
gr.Markdown("Upload or record audio to transcribe, then ask questions about it.")
|
| 64 |
+
|
| 65 |
with gr.Row():
|
| 66 |
with gr.Column():
|
| 67 |
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Audio Input")
|
|
|
|
| 69 |
|
| 70 |
with gr.Column():
|
| 71 |
transcript_output = gr.Textbox(label="Transcript", lines=8)
|
| 72 |
+
|
| 73 |
+
# Define a state variable to hold the transcript
|
| 74 |
transcript_state = gr.State()
|
| 75 |
|
| 76 |
with gr.Row():
|