File size: 4,723 Bytes
e0bd93e
 
 
 
 
 
 
 
 
 
7b80ac7
e0bd93e
 
731037b
 
 
 
 
 
 
 
 
 
e0bd93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731037b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: cc-by-nc-4.0
language:
- en
base_model:
- facebook/metaclip-2-worldwide-s16
pipeline_tag: image-classification
library_name: transformers
tags:
- text-generation-inference
- age-ange-estimator
---

![1](https://huggingface.co/proxy/cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/3lZzKyjG6fz-ArZwSh__B.png)

# **MetaCLIP-2-Age-Range-Estimator**

> **MetaCLIP-2-Age-Range-Estimator** is an image classification vision-language encoder model fine-tuned from **[facebook/metaclip-2-worldwide-s16](https://huggingface.co/facebook/metaclip-2-worldwide-s16)** for a single-label classification task.
> It is designed to predict the age range of a person from an image using the **MetaClip2ForImageClassification** architecture.

>[!note]
MetaCLIP 2: A Worldwide Scaling Recipe : https://huggingface.co/papers/2507.22062

```
Classification Report:
                  precision    recall  f1-score   support

      Child 0-12     0.9763    0.9758    0.9761      2193
  Teenager 13-20     0.9158    0.8437    0.8783      1779
     Adult 21-44     0.9593    0.9779    0.9685      9999
Middle Age 45-64     0.9458    0.9450    0.9454      3785
        Aged 65+     0.9769    0.9381    0.9571      1260

        accuracy                         0.9559     19016
       macro avg     0.9548    0.9361    0.9451     19016
    weighted avg     0.9557    0.9559    0.9556     19016
```

![download](https://huggingface.co/proxy/cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Qm87Eex4rqSFoTw2H_Nog.png)

---

The model categorizes images into five age ranges:

* **Class 0:** "Child 0-12"
* **Class 1:** "Teenager 13-20"
* **Class 2:** "Adult 21-44"
* **Class 3:** "Middle Age 45-64"
* **Class 4:** "Aged 65+"

---

# **Run with Transformers**

```python
!pip install -q transformers torch pillow gradio
```

```python
import gradio as gr
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image

# Model name from Hugging Face Hub
model_name = "prithivMLmods/MetaCLIP-2-Age-Range-Estimator"

# Load processor and model
processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
model.eval()

# Define labels
LABELS = {
    0: "Child (0–12)",
    1: "Teenager (13–20)",
    2: "Adult (21–44)",
    3: "Middle Age (45–64)",
    4: "Aged (65+)"
}

def age_classification(image):
    """Predict the age group of a person from an image."""
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()

    predictions = {LABELS[i]: round(probs[i], 3) for i in range(len(probs))}
    return predictions

# Build Gradio interface
iface = gr.Interface(
    fn=age_classification,
    inputs=gr.Image(type="numpy", label="Upload Image"),
    outputs=gr.Label(label="Predicted Age Group Probabilities"),
    title="MetaCLIP-2 Age Range Estimator",
    description="Upload a face image to estimate the person's age group using MetaCLIP-2."
)

# Launch app
if __name__ == "__main__":
    iface.launch()
```

# **Sample Inference:**

![Screenshot 2025-11-13 at 01-14-28 MetaCLIP-2 Age Range Estimator](https://huggingface.co/proxy/cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/5SUHT4ZeKlWEM2smB1dd0.png)
![Screenshot 2025-11-13 at 01-15-41 MetaCLIP-2 Age Range Estimator](https://huggingface.co/proxy/cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/cQT5GtchFCDnlu79AG0BR.png)
![Screenshot 2025-11-13 at 01-17-31 MetaCLIP-2 Age Range Estimator](https://huggingface.co/proxy/cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qxoEmFliB1KCDjXhhW25H.png)
![Screenshot 2025-11-13 at 01-18-15 MetaCLIP-2 Age Range Estimator](https://huggingface.co/proxy/cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Xnsa49OVCqm600S2ifFFy.png)
![Screenshot 2025-11-13 at 01-18-52 MetaCLIP-2 Age Range Estimator](https://huggingface.co/proxy/cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/JHUnt0UP1uYKJdUpjJAGE.png)

# **Intended Use:**

The **MetaCLIP-2-Age-Range-Estimator** model is designed to classify images into five age categories.
Potential use cases include:

* **Demographic Analysis:** Supporting research and business insights into age distribution.
* **Health and Fitness Applications:** Assisting in age-based health recommendations.
* **Security and Access Control:** Enabling age verification systems.
* **Retail and Marketing:** Enhancing personalization and customer profiling.
* **Forensics and Surveillance:** Supporting age estimation in investigative and security contexts.