Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFlashTex: Fast Relightable Mesh Texturing with LightControlNet
Manually creating textures for 3D meshes is time-consuming, even for expert visual content creators. We propose a fast approach for automatically texturing an input 3D mesh based on a user-provided text prompt. Importantly, our approach disentangles lighting from surface material/reflectance in the resulting texture so that the mesh can be properly relit and rendered in any lighting environment. We introduce LightControlNet, a new text-to-image model based on the ControlNet architecture, which allows the specification of the desired lighting as a conditioning image to the model. Our text-to-texture pipeline then constructs the texture in two stages. The first stage produces a sparse set of visually consistent reference views of the mesh using LightControlNet. The second stage applies a texture optimization based on Score Distillation Sampling (SDS) that works with LightControlNet to increase the texture quality while disentangling surface material from lighting. Our pipeline is significantly faster than previous text-to-texture methods, while producing high-quality and relightable textures.
Topo4D: Topology-Preserving Gaussian Splatting for High-Fidelity 4D Head Capture
4D head capture aims to generate dynamic topological meshes and corresponding texture maps from videos, which is widely utilized in movies and games for its ability to simulate facial muscle movements and recover dynamic textures in pore-squeezing. The industry often adopts the method involving multi-view stereo and non-rigid alignment. However, this approach is prone to errors and heavily reliant on time-consuming manual processing by artists. To simplify this process, we propose Topo4D, a novel framework for automatic geometry and texture generation, which optimizes densely aligned 4D heads and 8K texture maps directly from calibrated multi-view time-series images. Specifically, we first represent the time-series faces as a set of dynamic 3D Gaussians with fixed topology in which the Gaussian centers are bound to the mesh vertices. Afterward, we perform alternative geometry and texture optimization frame-by-frame for high-quality geometry and texture learning while maintaining temporal topology stability. Finally, we can extract dynamic facial meshes in regular wiring arrangement and high-fidelity textures with pore-level details from the learned Gaussians. Extensive experiments show that our method achieves superior results than the current SOTA face reconstruction methods both in the quality of meshes and textures. Project page: https://xuanchenli.github.io/Topo4D/.
Towards Physically Realizable Adversarial Attacks in Embodied Vision Navigation
The significant advancements in embodied vision navigation have raised concerns about its susceptibility to adversarial attacks exploiting deep neural networks. Investigating the adversarial robustness of embodied vision navigation is crucial, especially given the threat of 3D physical attacks that could pose risks to human safety. However, existing attack methods for embodied vision navigation often lack physical feasibility due to challenges in transferring digital perturbations into the physical world. Moreover, current physical attacks for object detection struggle to achieve both multi-view effectiveness and visual naturalness in navigation scenarios. To address this, we propose a practical attack method for embodied navigation by attaching adversarial patches to objects, where both opacity and textures are learnable. Specifically, to ensure effectiveness across varying viewpoints, we employ a multi-view optimization strategy based on object-aware sampling, which optimizes the patch's texture based on feedback from the vision-based perception model used in navigation. To make the patch inconspicuous to human observers, we introduce a two-stage opacity optimization mechanism, in which opacity is fine-tuned after texture optimization. Experimental results demonstrate that our adversarial patches decrease the navigation success rate by an average of 22.39%, outperforming previous methods in practicality, effectiveness, and naturalness. Code is available at: https://github.com/chen37058/Physical-Attacks-in-Embodied-Nav
V2M4: 4D Mesh Animation Reconstruction from a Single Monocular Video
We present V2M4, a novel 4D reconstruction method that directly generates a usable 4D mesh animation asset from a single monocular video. Unlike existing approaches that rely on priors from multi-view image and video generation models, our method is based on native 3D mesh generation models. Naively applying 3D mesh generation models to generate a mesh for each frame in a 4D task can lead to issues such as incorrect mesh poses, misalignment of mesh appearance, and inconsistencies in mesh geometry and texture maps. To address these problems, we propose a structured workflow that includes camera search and mesh reposing, condition embedding optimization for mesh appearance refinement, pairwise mesh registration for topology consistency, and global texture map optimization for texture consistency. Our method outputs high-quality 4D animated assets that are compatible with mainstream graphics and game software. Experimental results across a variety of animation types and motion amplitudes demonstrate the generalization and effectiveness of our method. Project page: https://windvchen.github.io/V2M4/.
Customize-It-3D: High-Quality 3D Creation from A Single Image Using Subject-Specific Knowledge Prior
In this paper, we present a novel two-stage approach that fully utilizes the information provided by the reference image to establish a customized knowledge prior for image-to-3D generation. While previous approaches primarily rely on a general diffusion prior, which struggles to yield consistent results with the reference image, we propose a subject-specific and multi-modal diffusion model. This model not only aids NeRF optimization by considering the shading mode for improved geometry but also enhances texture from the coarse results to achieve superior refinement. Both aspects contribute to faithfully aligning the 3D content with the subject. Extensive experiments showcase the superiority of our method, Customize-It-3D, outperforming previous works by a substantial margin. It produces faithful 360-degree reconstructions with impressive visual quality, making it well-suited for various applications, including text-to-3D creation.
Make-A-Texture: Fast Shape-Aware Texture Generation in 3 Seconds
We present Make-A-Texture, a new framework that efficiently synthesizes high-resolution texture maps from textual prompts for given 3D geometries. Our approach progressively generates textures that are consistent across multiple viewpoints with a depth-aware inpainting diffusion model, in an optimized sequence of viewpoints determined by an automatic view selection algorithm. A significant feature of our method is its remarkable efficiency, achieving a full texture generation within an end-to-end runtime of just 3.07 seconds on a single NVIDIA H100 GPU, significantly outperforming existing methods. Such an acceleration is achieved by optimizations in the diffusion model and a specialized backprojection method. Moreover, our method reduces the artifacts in the backprojection phase, by selectively masking out non-frontal faces, and internal faces of open-surfaced objects. Experimental results demonstrate that Make-A-Texture matches or exceeds the quality of other state-of-the-art methods. Our work significantly improves the applicability and practicality of texture generation models for real-world 3D content creation, including interactive creation and text-guided texture editing.
RoomDreamer: Text-Driven 3D Indoor Scene Synthesis with Coherent Geometry and Texture
The techniques for 3D indoor scene capturing are widely used, but the meshes produced leave much to be desired. In this paper, we propose "RoomDreamer", which leverages powerful natural language to synthesize a new room with a different style. Unlike existing image synthesis methods, our work addresses the challenge of synthesizing both geometry and texture aligned to the input scene structure and prompt simultaneously. The key insight is that a scene should be treated as a whole, taking into account both scene texture and geometry. The proposed framework consists of two significant components: Geometry Guided Diffusion and Mesh Optimization. Geometry Guided Diffusion for 3D Scene guarantees the consistency of the scene style by applying the 2D prior to the entire scene simultaneously. Mesh Optimization improves the geometry and texture jointly and eliminates the artifacts in the scanned scene. To validate the proposed method, real indoor scenes scanned with smartphones are used for extensive experiments, through which the effectiveness of our method is demonstrated.
GuideFlow3D: Optimization-Guided Rectified Flow For Appearance Transfer
Transferring appearance to 3D assets using different representations of the appearance object - such as images or text - has garnered interest due to its wide range of applications in industries like gaming, augmented reality, and digital content creation. However, state-of-the-art methods still fail when the geometry between the input and appearance objects is significantly different. A straightforward approach is to directly apply a 3D generative model, but we show that this ultimately fails to produce appealing results. Instead, we propose a principled approach inspired by universal guidance. Given a pretrained rectified flow model conditioned on image or text, our training-free method interacts with the sampling process by periodically adding guidance. This guidance can be modeled as a differentiable loss function, and we experiment with two different types of guidance including part-aware losses for appearance and self-similarity. Our experiments show that our approach successfully transfers texture and geometric details to the input 3D asset, outperforming baselines both qualitatively and quantitatively. We also show that traditional metrics are not suitable for evaluating the task due to their inability of focusing on local details and comparing dissimilar inputs, in absence of ground truth data. We thus evaluate appearance transfer quality with a GPT-based system objectively ranking outputs, ensuring robust and human-like assessment, as further confirmed by our user study. Beyond showcased scenarios, our method is general and could be extended to different types of diffusion models and guidance functions.
Comparative Study and Optimization of Feature-Extraction Techniques for Content based Image Retrieval
The aim of a Content-Based Image Retrieval (CBIR) system, also known as Query by Image Content (QBIC), is to help users to retrieve relevant images based on their contents. CBIR technologies provide a method to find images in large databases by using unique descriptors from a trained image. The image descriptors include texture, color, intensity and shape of the object inside an image. Several feature-extraction techniques viz., Average RGB, Color Moments, Co-occurrence, Local Color Histogram, Global Color Histogram and Geometric Moment have been critically compared in this paper. However, individually these techniques result in poor performance. So, combinations of these techniques have also been evaluated and results for the most efficient combination of techniques have been presented and optimized for each class of image query. We also propose an improvement in image retrieval performance by introducing the idea of Query modification through image cropping. It enables the user to identify a region of interest and modify the initial query to refine and personalize the image retrieval results.
MetaDreamer: Efficient Text-to-3D Creation With Disentangling Geometry and Texture
Generative models for 3D object synthesis have seen significant advancements with the incorporation of prior knowledge distilled from 2D diffusion models. Nevertheless, challenges persist in the form of multi-view geometric inconsistencies and slow generation speeds within the existing 3D synthesis frameworks. This can be attributed to two factors: firstly, the deficiency of abundant geometric a priori knowledge in optimization, and secondly, the entanglement issue between geometry and texture in conventional 3D generation methods.In response, we introduce MetaDreammer, a two-stage optimization approach that leverages rich 2D and 3D prior knowledge. In the first stage, our emphasis is on optimizing the geometric representation to ensure multi-view consistency and accuracy of 3D objects. In the second stage, we concentrate on fine-tuning the geometry and optimizing the texture, thereby achieving a more refined 3D object. Through leveraging 2D and 3D prior knowledge in two stages, respectively, we effectively mitigate the interdependence between geometry and texture. MetaDreamer establishes clear optimization objectives for each stage, resulting in significant time savings in the 3D generation process. Ultimately, MetaDreamer can generate high-quality 3D objects based on textual prompts within 20 minutes, and to the best of our knowledge, it is the most efficient text-to-3D generation method. Furthermore, we introduce image control into the process, enhancing the controllability of 3D generation. Extensive empirical evidence confirms that our method is not only highly efficient but also achieves a quality level that is at the forefront of current state-of-the-art 3D generation techniques.
TwinTex: Geometry-aware Texture Generation for Abstracted 3D Architectural Models
Coarse architectural models are often generated at scales ranging from individual buildings to scenes for downstream applications such as Digital Twin City, Metaverse, LODs, etc. Such piece-wise planar models can be abstracted as twins from 3D dense reconstructions. However, these models typically lack realistic texture relative to the real building or scene, making them unsuitable for vivid display or direct reference. In this paper, we present TwinTex, the first automatic texture mapping framework to generate a photo-realistic texture for a piece-wise planar proxy. Our method addresses most challenges occurring in such twin texture generation. Specifically, for each primitive plane, we first select a small set of photos with greedy heuristics considering photometric quality, perspective quality and facade texture completeness. Then, different levels of line features (LoLs) are extracted from the set of selected photos to generate guidance for later steps. With LoLs, we employ optimization algorithms to align texture with geometry from local to global. Finally, we fine-tune a diffusion model with a multi-mask initialization component and a new dataset to inpaint the missing region. Experimental results on many buildings, indoor scenes and man-made objects of varying complexity demonstrate the generalization ability of our algorithm. Our approach surpasses state-of-the-art texture mapping methods in terms of high-fidelity quality and reaches a human-expert production level with much less effort. Project page: https://vcc.tech/research/2023/TwinTex.
HybridMQA: Exploring Geometry-Texture Interactions for Colored Mesh Quality Assessment
Mesh quality assessment (MQA) models play a critical role in the design, optimization, and evaluation of mesh operation systems in a wide variety of applications. Current MQA models, whether model-based methods using topology-aware features or projection-based approaches working on rendered 2D projections, often fail to capture the intricate interactions between texture and 3D geometry. We introduce HybridMQA, a first-of-its-kind hybrid full-reference colored MQA framework that integrates model-based and projection-based approaches, capturing complex interactions between textural information and 3D structures for enriched quality representations. Our method employs graph learning to extract detailed 3D representations, which are then projected to 2D using a novel feature rendering process that precisely aligns them with colored projections. This enables the exploration of geometry-texture interactions via cross-attention, producing comprehensive mesh quality representations. Extensive experiments demonstrate HybridMQA's superior performance across diverse datasets, highlighting its ability to effectively leverage geometry-texture interactions for a thorough understanding of mesh quality. Our implementation will be made publicly available.
GenesisTex: Adapting Image Denoising Diffusion to Texture Space
We present GenesisTex, a novel method for synthesizing textures for 3D geometries from text descriptions. GenesisTex adapts the pretrained image diffusion model to texture space by texture space sampling. Specifically, we maintain a latent texture map for each viewpoint, which is updated with predicted noise on the rendering of the corresponding viewpoint. The sampled latent texture maps are then decoded into a final texture map. During the sampling process, we focus on both global and local consistency across multiple viewpoints: global consistency is achieved through the integration of style consistency mechanisms within the noise prediction network, and low-level consistency is achieved by dynamically aligning latent textures. Finally, we apply reference-based inpainting and img2img on denser views for texture refinement. Our approach overcomes the limitations of slow optimization in distillation-based methods and instability in inpainting-based methods. Experiments on meshes from various sources demonstrate that our method surpasses the baseline methods quantitatively and qualitatively.
Texture CNN for Thermoelectric Metal Pipe Image Classification
In this paper, the concept of representation learning based on deep neural networks is applied as an alternative to the use of handcrafted features in a method for automatic visual inspection of corroded thermoelectric metallic pipes. A texture convolutional neural network (TCNN) replaces handcrafted features based on Local Phase Quantization (LPQ) and Haralick descriptors (HD) with the advantage of learning an appropriate textural representation and the decision boundaries into a single optimization process. Experimental results have shown that it is possible to reach the accuracy of 99.20% in the task of identifying different levels of corrosion in the internal surface of thermoelectric pipe walls, while using a compact network that requires much less effort in tuning parameters when compared to the handcrafted approach since the TCNN architecture is compact regarding the number of layers and connections. The observed results open up the possibility of using deep neural networks in real-time applications such as the automatic inspection of thermoelectric metal pipes.
ConvMesh: Reimagining Mesh Quality Through Convex Optimization
Mesh generation has become a critical topic in recent years, forming the foundation of all 3D objects used across various applications, such as virtual reality, gaming, and 3D printing. With advancements in computational resources and machine learning, neural networks have emerged as powerful tools for generating high-quality 3D object representations, enabling accurate scene and object reconstructions. Despite these advancements, many methods produce meshes that lack realism or exhibit geometric and textural flaws, necessitating additional processing to improve their quality. This research introduces a convex optimization programming called disciplined convex programming to enhance existing meshes by refining their texture and geometry with a conic solver. By focusing on a sparse set of point clouds from both the original and target meshes, this method demonstrates significant improvements in mesh quality with minimal data requirements. To evaluate the approach, the classical dolphin mesh dataset from Facebook AI was used as a case study, with optimization performed using the CVXPY library. The results reveal promising potential for streamlined and effective mesh refinement.
ITEM3D: Illumination-Aware Directional Texture Editing for 3D Models
Texture editing is a crucial task in 3D modeling that allows users to automatically manipulate the surface materials of 3D models. However, the inherent complexity of 3D models and the ambiguous text description lead to the challenge in this task. To address this challenge, we propose ITEM3D, an illumination-aware model for automatic 3D object editing according to the text prompts. Leveraging the diffusion models and the differentiable rendering, ITEM3D takes the rendered images as the bridge of text and 3D representation, and further optimizes the disentangled texture and environment map. Previous methods adopt the absolute editing direction namely score distillation sampling (SDS) as the optimization objective, which unfortunately results in the noisy appearance and text inconsistency. To solve the problem caused by the ambiguous text, we introduce a relative editing direction, an optimization objective defined by the noise difference between the source and target texts, to release the semantic ambiguity between the texts and images. Additionally, we gradually adjust the direction during optimization to further address the unexpected deviation in the texture domain. Qualitative and quantitative experiments show that our ITEM3D outperforms the state-of-the-art methods on various 3D objects. We also perform text-guided relighting to show explicit control over lighting.
VCD-Texture: Variance Alignment based 3D-2D Co-Denoising for Text-Guided Texturing
Recent research on texture synthesis for 3D shapes benefits a lot from dramatically developed 2D text-to-image diffusion models, including inpainting-based and optimization-based approaches. However, these methods ignore the modal gap between the 2D diffusion model and 3D objects, which primarily render 3D objects into 2D images and texture each image separately. In this paper, we revisit the texture synthesis and propose a Variance alignment based 3D-2D Collaborative Denoising framework, dubbed VCD-Texture, to address these issues. Formally, we first unify both 2D and 3D latent feature learning in diffusion self-attention modules with re-projected 3D attention receptive fields. Subsequently, the denoised multi-view 2D latent features are aggregated into 3D space and then rasterized back to formulate more consistent 2D predictions. However, the rasterization process suffers from an intractable variance bias, which is theoretically addressed by the proposed variance alignment, achieving high-fidelity texture synthesis. Moreover, we present an inpainting refinement to further improve the details with conflicting regions. Notably, there is not a publicly available benchmark to evaluate texture synthesis, which hinders its development. Thus we construct a new evaluation set built upon three open-source 3D datasets and propose to use four metrics to thoroughly validate the texturing performance. Comprehensive experiments demonstrate that VCD-Texture achieves superior performance against other counterparts.
Text-Driven Diverse Facial Texture Generation via Progressive Latent-Space Refinement
Automatic 3D facial texture generation has gained significant interest recently. Existing approaches may not support the traditional physically based rendering pipeline or rely on 3D data captured by Light Stage. Our key contribution is a progressive latent space refinement approach that can bootstrap from 3D Morphable Models (3DMMs)-based texture maps generated from facial images to generate high-quality and diverse PBR textures, including albedo, normal, and roughness. It starts with enhancing Generative Adversarial Networks (GANs) for text-guided and diverse texture generation. To this end, we design a self-supervised paradigm to overcome the reliance on ground truth 3D textures and train the generative model with only entangled texture maps. Besides, we foster mutual enhancement between GANs and Score Distillation Sampling (SDS). SDS boosts GANs with more generative modes, while GANs promote more efficient optimization of SDS. Furthermore, we introduce an edge-aware SDS for multi-view consistent facial structure. Experiments demonstrate that our method outperforms existing 3D texture generation methods regarding photo-realistic quality, diversity, and efficiency.
Style Your Hair: Latent Optimization for Pose-Invariant Hairstyle Transfer via Local-Style-Aware Hair Alignment
Editing hairstyle is unique and challenging due to the complexity and delicacy of hairstyle. Although recent approaches significantly improved the hair details, these models often produce undesirable outputs when a pose of a source image is considerably different from that of a target hair image, limiting their real-world applications. HairFIT, a pose-invariant hairstyle transfer model, alleviates this limitation yet still shows unsatisfactory quality in preserving delicate hair textures. To solve these limitations, we propose a high-performing pose-invariant hairstyle transfer model equipped with latent optimization and a newly presented local-style-matching loss. In the StyleGAN2 latent space, we first explore a pose-aligned latent code of a target hair with the detailed textures preserved based on local style matching. Then, our model inpaints the occlusions of the source considering the aligned target hair and blends both images to produce a final output. The experimental results demonstrate that our model has strengths in transferring a hairstyle under larger pose differences and preserving local hairstyle textures.
SceneTex: High-Quality Texture Synthesis for Indoor Scenes via Diffusion Priors
We propose SceneTex, a novel method for effectively generating high-quality and style-consistent textures for indoor scenes using depth-to-image diffusion priors. Unlike previous methods that either iteratively warp 2D views onto a mesh surface or distillate diffusion latent features without accurate geometric and style cues, SceneTex formulates the texture synthesis task as an optimization problem in the RGB space where style and geometry consistency are properly reflected. At its core, SceneTex proposes a multiresolution texture field to implicitly encode the mesh appearance. We optimize the target texture via a score-distillation-based objective function in respective RGB renderings. To further secure the style consistency across views, we introduce a cross-attention decoder to predict the RGB values by cross-attending to the pre-sampled reference locations in each instance. SceneTex enables various and accurate texture synthesis for 3D-FRONT scenes, demonstrating significant improvements in visual quality and prompt fidelity over the prior texture generation methods.
AvatarTex: High-Fidelity Facial Texture Reconstruction from Single-Image Stylized Avatars
We present AvatarTex, a high-fidelity facial texture reconstruction framework capable of generating both stylized and photorealistic textures from a single image. Existing methods struggle with stylized avatars due to the lack of diverse multi-style datasets and challenges in maintaining geometric consistency in non-standard textures. To address these limitations, AvatarTex introduces a novel three-stage diffusion-to-GAN pipeline. Our key insight is that while diffusion models excel at generating diversified textures, they lack explicit UV constraints, whereas GANs provide a well-structured latent space that ensures style and topology consistency. By integrating these strengths, AvatarTex achieves high-quality topology-aligned texture synthesis with both artistic and geometric coherence. Specifically, our three-stage pipeline first completes missing texture regions via diffusion-based inpainting, refines style and structure consistency using GAN-based latent optimization, and enhances fine details through diffusion-based repainting. To address the need for a stylized texture dataset, we introduce TexHub, a high-resolution collection of 20,000 multi-style UV textures with precise UV-aligned layouts. By leveraging TexHub and our structured diffusion-to-GAN pipeline, AvatarTex establishes a new state-of-the-art in multi-style facial texture reconstruction. TexHub will be released upon publication to facilitate future research in this field.
FruitNinja: 3D Object Interior Texture Generation with Gaussian Splatting
In the real world, objects reveal internal textures when sliced or cut, yet this behavior is not well-studied in 3D generation tasks today. For example, slicing a virtual 3D watermelon should reveal flesh and seeds. Given that no available dataset captures an object's full internal structure and collecting data from all slices is impractical, generative methods become the obvious approach. However, current 3D generation and inpainting methods often focus on visible appearance and overlook internal textures. To bridge this gap, we introduce FruitNinja, the first method to generate internal textures for 3D objects undergoing geometric and topological changes. Our approach produces objects via 3D Gaussian Splatting (3DGS) with both surface and interior textures synthesized, enabling real-time slicing and rendering without additional optimization. FruitNinja leverages a pre-trained diffusion model to progressively inpaint cross-sectional views and applies voxel-grid-based smoothing to achieve cohesive textures throughout the object. Our OpaqueAtom GS strategy overcomes 3DGS limitations by employing densely distributed opaque Gaussians, avoiding biases toward larger particles that destabilize training and sharp color transitions for fine-grained textures. Experimental results show that FruitNinja substantially outperforms existing approaches, showcasing unmatched visual quality in real-time rendered internal views across arbitrary geometry manipulations.
Garment3DGen: 3D Garment Stylization and Texture Generation
We introduce Garment3DGen a new method to synthesize 3D garment assets from a base mesh given a single input image as guidance. Our proposed approach allows users to generate 3D textured clothes based on both real and synthetic images, such as those generated by text prompts. The generated assets can be directly draped and simulated on human bodies. First, we leverage the recent progress of image to 3D diffusion methods to generate 3D garment geometries. However, since these geometries cannot be utilized directly for downstream tasks, we propose to use them as pseudo ground-truth and set up a mesh deformation optimization procedure that deforms a base template mesh to match the generated 3D target. Second, we introduce carefully designed losses that allow the input base mesh to freely deform towards the desired target, yet preserve mesh quality and topology such that they can be simulated. Finally, a texture estimation module generates high-fidelity texture maps that are globally and locally consistent and faithfully capture the input guidance, allowing us to render the generated 3D assets. With Garment3DGen users can generate the textured 3D garment of their choice without the need of artist intervention. One can provide a textual prompt describing the garment they desire to generate a simulation-ready 3D asset. We present a plethora of quantitative and qualitative comparisons on various assets both real and generated and provide use-cases of how one can generate simulation-ready 3D garments.
GarmentDreamer: 3DGS Guided Garment Synthesis with Diverse Geometry and Texture Details
Traditional 3D garment creation is labor-intensive, involving sketching, modeling, UV mapping, and texturing, which are time-consuming and costly. Recent advances in diffusion-based generative models have enabled new possibilities for 3D garment generation from text prompts, images, and videos. However, existing methods either suffer from inconsistencies among multi-view images or require additional processes to separate cloth from the underlying human model. In this paper, we propose GarmentDreamer, a novel method that leverages 3D Gaussian Splatting (GS) as guidance to generate wearable, simulation-ready 3D garment meshes from text prompts. In contrast to using multi-view images directly predicted by generative models as guidance, our 3DGS guidance ensures consistent optimization in both garment deformation and texture synthesis. Our method introduces a novel garment augmentation module, guided by normal and RGBA information, and employs implicit Neural Texture Fields (NeTF) combined with Score Distillation Sampling (SDS) to generate diverse geometric and texture details. We validate the effectiveness of our approach through comprehensive qualitative and quantitative experiments, showcasing the superior performance of GarmentDreamer over state-of-the-art alternatives. Our project page is available at: https://xuan-li.github.io/GarmentDreamerDemo/.
CaliTex: Geometry-Calibrated Attention for View-Coherent 3D Texture Generation
Despite major advances brought by diffusion-based models, current 3D texture generation systems remain hindered by cross-view inconsistency -- textures that appear convincing from one viewpoint often fail to align across others. We find that this issue arises from attention ambiguity, where unstructured full attention is applied indiscriminately across tokens and modalities, causing geometric confusion and unstable appearance-structure coupling. To address this, we introduce CaliTex, a framework of geometry-calibrated attention that explicitly aligns attention with 3D structure. It introduces two modules: Part-Aligned Attention that enforces spatial alignment across semantically matched parts, and Condition-Routed Attention which routes appearance information through geometry-conditioned pathways to maintain spatial fidelity. Coupled with a two-stage diffusion transformer, CaliTex makes geometric coherence an inherent behavior of the network rather than a byproduct of optimization. Empirically, CaliTex produces seamless and view-consistent textures and outperforms both open-source and commercial baselines.
Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects
The recent availability and adaptability of text-to-image models has sparked a new era in many related domains that benefit from the learned text priors as well as high-quality and fast generation capabilities, one of which is texture generation for 3D objects. Although recent texture generation methods achieve impressive results by using text-to-image networks, the combination of global consistency, quality, and speed, which is crucial for advancing texture generation to real-world applications, remains elusive. To that end, we introduce Meta 3D TextureGen: a new feedforward method comprised of two sequential networks aimed at generating high-quality and globally consistent textures for arbitrary geometries of any complexity degree in less than 20 seconds. Our method achieves state-of-the-art results in quality and speed by conditioning a text-to-image model on 3D semantics in 2D space and fusing them into a complete and high-resolution UV texture map, as demonstrated by extensive qualitative and quantitative evaluations. In addition, we introduce a texture enhancement network that is capable of up-scaling any texture by an arbitrary ratio, producing 4k pixel resolution textures.
TEXGen: a Generative Diffusion Model for Mesh Textures
While high-quality texture maps are essential for realistic 3D asset rendering, few studies have explored learning directly in the texture space, especially on large-scale datasets. In this work, we depart from the conventional approach of relying on pre-trained 2D diffusion models for test-time optimization of 3D textures. Instead, we focus on the fundamental problem of learning in the UV texture space itself. For the first time, we train a large diffusion model capable of directly generating high-resolution texture maps in a feed-forward manner. To facilitate efficient learning in high-resolution UV spaces, we propose a scalable network architecture that interleaves convolutions on UV maps with attention layers on point clouds. Leveraging this architectural design, we train a 700 million parameter diffusion model that can generate UV texture maps guided by text prompts and single-view images. Once trained, our model naturally supports various extended applications, including text-guided texture inpainting, sparse-view texture completion, and text-driven texture synthesis. Project page is at http://cvmi-lab.github.io/TEXGen/.
High resolution neural texture synthesis with long range constraints
The field of texture synthesis has witnessed important progresses over the last years, most notably through the use of Convolutional Neural Networks. However, neural synthesis methods still struggle to reproduce large scale structures, especially with high resolution textures. To address this issue, we first introduce a simple multi-resolution framework that efficiently accounts for long-range dependency. Then, we show that additional statistical constraints further improve the reproduction of textures with strong regularity. This can be achieved by constraining both the Gram matrices of a neural network and the power spectrum of the image. Alternatively one may constrain only the autocorrelation of the features of the network and drop the Gram matrices constraints. In an experimental part, the proposed methods are then extensively tested and compared to alternative approaches, both in an unsupervised way and through a user study. Experiments show the interest of the multi-scale scheme for high resolution textures and the interest of combining it with additional constraints for regular textures.
MatAtlas: Text-driven Consistent Geometry Texturing and Material Assignment
We present MatAtlas, a method for consistent text-guided 3D model texturing. Following recent progress we leverage a large scale text-to-image generation model (e.g., Stable Diffusion) as a prior to texture a 3D model. We carefully design an RGB texturing pipeline that leverages a grid pattern diffusion, driven by depth and edges. By proposing a multi-step texture refinement process, we significantly improve the quality and 3D consistency of the texturing output. To further address the problem of baked-in lighting, we move beyond RGB colors and pursue assigning parametric materials to the assets. Given the high-quality initial RGB texture, we propose a novel material retrieval method capitalized on Large Language Models (LLM), enabling editabiliy and relightability. We evaluate our method on a wide variety of geometries and show that our method significantly outperform prior arts. We also analyze the role of each component through a detailed ablation study.
TEXTure: Text-Guided Texturing of 3D Shapes
In this paper, we present TEXTure, a novel method for text-guided generation, editing, and transfer of textures for 3D shapes. Leveraging a pretrained depth-to-image diffusion model, TEXTure applies an iterative scheme that paints a 3D model from different viewpoints. Yet, while depth-to-image models can create plausible textures from a single viewpoint, the stochastic nature of the generation process can cause many inconsistencies when texturing an entire 3D object. To tackle these problems, we dynamically define a trimap partitioning of the rendered image into three progression states, and present a novel elaborated diffusion sampling process that uses this trimap representation to generate seamless textures from different views. We then show that one can transfer the generated texture maps to new 3D geometries without requiring explicit surface-to-surface mapping, as well as extract semantic textures from a set of images without requiring any explicit reconstruction. Finally, we show that TEXTure can be used to not only generate new textures but also edit and refine existing textures using either a text prompt or user-provided scribbles. We demonstrate that our TEXTuring method excels at generating, transferring, and editing textures through extensive evaluation, and further close the gap between 2D image generation and 3D texturing.
TextureDiffusion: Target Prompt Disentangled Editing for Various Texture Transfer
Recently, text-guided image editing has achieved significant success. However, existing methods can only apply simple textures like wood or gold when changing the texture of an object. Complex textures such as cloud or fire pose a challenge. This limitation stems from that the target prompt needs to contain both the input image content and <texture>, restricting the texture representation. In this paper, we propose TextureDiffusion, a tuning-free image editing method applied to various texture transfer. Initially, the target prompt is directly set to "<texture>", making the texture disentangled from the input image content to enhance texture representation. Subsequently, query features in self-attention and features in residual blocks are utilized to preserve the structure of the input image. Finally, to maintain the background, we introduce an edit localization technique which blends the self-attention results and the intermediate latents. Comprehensive experiments demonstrate that TextureDiffusion can harmoniously transfer various textures with excellent structure and background preservation.
Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation
We show how to transform a non-differentiable rasterizer into a differentiable one with minimal engineering efforts and no external dependencies (no Pytorch/Tensorflow). We rely on Stochastic Gradient Estimation, a technique that consists of rasterizing after randomly perturbing the scene's parameters such that their gradient can be stochastically estimated and descended. This method is simple and robust but does not scale in dimensionality (number of scene parameters). Our insight is that the number of parameters contributing to a given rasterized pixel is bounded. Estimating and averaging gradients on a per-pixel basis hence bounds the dimensionality of the underlying optimization problem and makes the method scalable. Furthermore, it is simple to track per-pixel contributing parameters by rasterizing ID- and UV-buffers, which are trivial additions to a rasterization engine if not already available. With these minor modifications, we obtain an in-engine optimizer for 3D assets with millions of geometry and texture parameters.
DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior
We present DreamCraft3D, a hierarchical 3D content generation method that produces high-fidelity and coherent 3D objects. We tackle the problem by leveraging a 2D reference image to guide the stages of geometry sculpting and texture boosting. A central focus of this work is to address the consistency issue that existing works encounter. To sculpt geometries that render coherently, we perform score distillation sampling via a view-dependent diffusion model. This 3D prior, alongside several training strategies, prioritizes the geometry consistency but compromises the texture fidelity. We further propose Bootstrapped Score Distillation to specifically boost the texture. We train a personalized diffusion model, Dreambooth, on the augmented renderings of the scene, imbuing it with 3D knowledge of the scene being optimized. The score distillation from this 3D-aware diffusion prior provides view-consistent guidance for the scene. Notably, through an alternating optimization of the diffusion prior and 3D scene representation, we achieve mutually reinforcing improvements: the optimized 3D scene aids in training the scene-specific diffusion model, which offers increasingly view-consistent guidance for 3D optimization. The optimization is thus bootstrapped and leads to substantial texture boosting. With tailored 3D priors throughout the hierarchical generation, DreamCraft3D generates coherent 3D objects with photorealistic renderings, advancing the state-of-the-art in 3D content generation. Code available at https://github.com/deepseek-ai/DreamCraft3D.
BridgeIV: Bridging Customized Image and Video Generation through Test-Time Autoregressive Identity Propagation
Both zero-shot and tuning-based customized text-to-image (CT2I) generation have made significant progress for storytelling content creation. In contrast, research on customized text-to-video (CT2V) generation remains relatively limited. Existing zero-shot CT2V methods suffer from poor generalization, while another line of work directly combining tuning-based T2I models with temporal motion modules often leads to the loss of structural and texture information. To bridge this gap, we propose an autoregressive structure and texture propagation module (STPM), which extracts key structural and texture features from the reference subject and injects them autoregressively into each video frame to enhance consistency. Additionally, we introduce a test-time reward optimization (TTRO) method to further refine fine-grained details. Quantitative and qualitative experiments validate the effectiveness of STPM and TTRO, demonstrating improvements of 7.8 and 13.1 in CLIP-I and DINO consistency metrics over the baseline, respectively.
DeCo: Decoupled Human-Centered Diffusion Video Editing with Motion Consistency
Diffusion models usher a new era of video editing, flexibly manipulating the video contents with text prompts. Despite the widespread application demand in editing human-centered videos, these models face significant challenges in handling complex objects like humans. In this paper, we introduce DeCo, a novel video editing framework specifically designed to treat humans and the background as separate editable targets, ensuring global spatial-temporal consistency by maintaining the coherence of each individual component. Specifically, we propose a decoupled dynamic human representation that utilizes a parametric human body prior to generate tailored humans while preserving the consistent motions as the original video. In addition, we consider the background as a layered atlas to apply text-guided image editing approaches on it. To further enhance the geometry and texture of humans during the optimization, we extend the calculation of score distillation sampling into normal space and image space. Moreover, we tackle inconsistent lighting between the edited targets by leveraging a lighting-aware video harmonizer, a problem previously overlooked in decompose-edit-combine approaches. Extensive qualitative and numerical experiments demonstrate that DeCo outperforms prior video editing methods in human-centered videos, especially in longer videos.
HumanRef: Single Image to 3D Human Generation via Reference-Guided Diffusion
Generating a 3D human model from a single reference image is challenging because it requires inferring textures and geometries in invisible views while maintaining consistency with the reference image. Previous methods utilizing 3D generative models are limited by the availability of 3D training data. Optimization-based methods that lift text-to-image diffusion models to 3D generation often fail to preserve the texture details of the reference image, resulting in inconsistent appearances in different views. In this paper, we propose HumanRef, a 3D human generation framework from a single-view input. To ensure the generated 3D model is photorealistic and consistent with the input image, HumanRef introduces a novel method called reference-guided score distillation sampling (Ref-SDS), which effectively incorporates image guidance into the generation process. Furthermore, we introduce region-aware attention to Ref-SDS, ensuring accurate correspondence between different body regions. Experimental results demonstrate that HumanRef outperforms state-of-the-art methods in generating 3D clothed humans with fine geometry, photorealistic textures, and view-consistent appearances.
Tracking by 3D Model Estimation of Unknown Objects in Videos
Most model-free visual object tracking methods formulate the tracking task as object location estimation given by a 2D segmentation or a bounding box in each video frame. We argue that this representation is limited and instead propose to guide and improve 2D tracking with an explicit object representation, namely the textured 3D shape and 6DoF pose in each video frame. Our representation tackles a complex long-term dense correspondence problem between all 3D points on the object for all video frames, including frames where some points are invisible. To achieve that, the estimation is driven by re-rendering the input video frames as well as possible through differentiable rendering, which has not been used for tracking before. The proposed optimization minimizes a novel loss function to estimate the best 3D shape, texture, and 6DoF pose. We improve the state-of-the-art in 2D segmentation tracking on three different datasets with mostly rigid objects.
Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation
Large text-to-image diffusion models have exhibited impressive proficiency in generating high-quality images. However, when applying these models to video domain, ensuring temporal consistency across video frames remains a formidable challenge. This paper proposes a novel zero-shot text-guided video-to-video translation framework to adapt image models to videos. The framework includes two parts: key frame translation and full video translation. The first part uses an adapted diffusion model to generate key frames, with hierarchical cross-frame constraints applied to enforce coherence in shapes, textures and colors. The second part propagates the key frames to other frames with temporal-aware patch matching and frame blending. Our framework achieves global style and local texture temporal consistency at a low cost (without re-training or optimization). The adaptation is compatible with existing image diffusion techniques, allowing our framework to take advantage of them, such as customizing a specific subject with LoRA, and introducing extra spatial guidance with ControlNet. Extensive experimental results demonstrate the effectiveness of our proposed framework over existing methods in rendering high-quality and temporally-coherent videos.
DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation
Recent advancements in 2D/3D generative techniques have facilitated the generation of dynamic 3D objects from monocular videos. Previous methods mainly rely on the implicit neural radiance fields (NeRF) or explicit Gaussian Splatting as the underlying representation, and struggle to achieve satisfactory spatial-temporal consistency and surface appearance. Drawing inspiration from modern 3D animation pipelines, we introduce DreamMesh4D, a novel framework combining mesh representation with geometric skinning technique to generate high-quality 4D object from a monocular video. Instead of utilizing classical texture map for appearance, we bind Gaussian splats to triangle face of mesh for differentiable optimization of both the texture and mesh vertices. In particular, DreamMesh4D begins with a coarse mesh obtained through an image-to-3D generation procedure. Sparse points are then uniformly sampled across the mesh surface, and are used to build a deformation graph to drive the motion of the 3D object for the sake of computational efficiency and providing additional constraint. For each step, transformations of sparse control points are predicted using a deformation network, and the mesh vertices as well as the surface Gaussians are deformed via a novel geometric skinning algorithm, which is a hybrid approach combining LBS (linear blending skinning) and DQS (dual-quaternion skinning), mitigating drawbacks associated with both approaches. The static surface Gaussians and mesh vertices as well as the deformation network are learned via reference view photometric loss, score distillation loss as well as other regularizers in a two-stage manner. Extensive experiments demonstrate superior performance of our method. Furthermore, our method is compatible with modern graphic pipelines, showcasing its potential in the 3D gaming and film industry.
Localized Gaussian Splatting Editing with Contextual Awareness
Recent text-guided generation of individual 3D object has achieved great success using diffusion priors. However, these methods are not suitable for object insertion and replacement tasks as they do not consider the background, leading to illumination mismatches within the environment. To bridge the gap, we introduce an illumination-aware 3D scene editing pipeline for 3D Gaussian Splatting (3DGS) representation. Our key observation is that inpainting by the state-of-the-art conditional 2D diffusion model is consistent with background in lighting. To leverage the prior knowledge from the well-trained diffusion models for 3D object generation, our approach employs a coarse-to-fine objection optimization pipeline with inpainted views. In the first coarse step, we achieve image-to-3D lifting given an ideal inpainted view. The process employs 3D-aware diffusion prior from a view-conditioned diffusion model, which preserves illumination present in the conditioning image. To acquire an ideal inpainted image, we introduce an Anchor View Proposal (AVP) algorithm to find a single view that best represents the scene illumination in target region. In the second Texture Enhancement step, we introduce a novel Depth-guided Inpainting Score Distillation Sampling (DI-SDS), which enhances geometry and texture details with the inpainting diffusion prior, beyond the scope of the 3D-aware diffusion prior knowledge in the first coarse step. DI-SDS not only provides fine-grained texture enhancement, but also urges optimization to respect scene lighting. Our approach efficiently achieves local editing with global illumination consistency without explicitly modeling light transport. We demonstrate robustness of our method by evaluating editing in real scenes containing explicit highlight and shadows, and compare against the state-of-the-art text-to-3D editing methods.
3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Priors
We present a two-stage text-to-3D generation system, namely 3DTopia, which generates high-quality general 3D assets within 5 minutes using hybrid diffusion priors. The first stage samples from a 3D diffusion prior directly learned from 3D data. Specifically, it is powered by a text-conditioned tri-plane latent diffusion model, which quickly generates coarse 3D samples for fast prototyping. The second stage utilizes 2D diffusion priors to further refine the texture of coarse 3D models from the first stage. The refinement consists of both latent and pixel space optimization for high-quality texture generation. To facilitate the training of the proposed system, we clean and caption the largest open-source 3D dataset, Objaverse, by combining the power of vision language models and large language models. Experiment results are reported qualitatively and quantitatively to show the performance of the proposed system. Our codes and models are available at https://github.com/3DTopia/3DTopia
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks
Recent work suggests that representations learned by adversarially robust networks are more human perceptually-aligned than non-robust networks via image manipulations. Despite appearing closer to human visual perception, it is unclear if the constraints in robust DNN representations match biological constraints found in human vision. Human vision seems to rely on texture-based/summary statistic representations in the periphery, which have been shown to explain phenomena such as crowding and performance on visual search tasks. To understand how adversarially robust optimizations/representations compare to human vision, we performed a psychophysics experiment using a set of metameric discrimination tasks where we evaluated how well human observers could distinguish between images synthesized to match adversarially robust representations compared to non-robust representations and a texture synthesis model of peripheral vision (Texforms). We found that the discriminability of robust representation and texture model images decreased to near chance performance as stimuli were presented farther in the periphery. Moreover, performance on robust and texture-model images showed similar trends within participants, while performance on non-robust representations changed minimally across the visual field. These results together suggest that (1) adversarially robust representations capture peripheral computation better than non-robust representations and (2) robust representations capture peripheral computation similar to current state-of-the-art texture peripheral vision models. More broadly, our findings support the idea that localized texture summary statistic representations may drive human invariance to adversarial perturbations and that the incorporation of such representations in DNNs could give rise to useful properties like adversarial robustness.
GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting
We present GALA3D, generative 3D GAussians with LAyout-guided control, for effective compositional text-to-3D generation. We first utilize large language models (LLMs) to generate the initial layout and introduce a layout-guided 3D Gaussian representation for 3D content generation with adaptive geometric constraints. We then propose an object-scene compositional optimization mechanism with conditioned diffusion to collaboratively generate realistic 3D scenes with consistent geometry, texture, scale, and accurate interactions among multiple objects while simultaneously adjusting the coarse layout priors extracted from the LLMs to align with the generated scene. Experiments show that GALA3D is a user-friendly, end-to-end framework for state-of-the-art scene-level 3D content generation and controllable editing while ensuring the high fidelity of object-level entities within the scene. Source codes and models will be available at https://gala3d.github.io/.
DreamCar: Leveraging Car-specific Prior for in-the-wild 3D Car Reconstruction
Self-driving industries usually employ professional artists to build exquisite 3D cars. However, it is expensive to craft large-scale digital assets. Since there are already numerous datasets available that contain a vast number of images of cars, we focus on reconstructing high-quality 3D car models from these datasets. However, these datasets only contain one side of cars in the forward-moving scene. We try to use the existing generative models to provide more supervision information, but they struggle to generalize well in cars since they are trained on synthetic datasets not car-specific. In addition, The reconstructed 3D car texture misaligns due to a large error in camera pose estimation when dealing with in-the-wild images. These restrictions make it challenging for previous methods to reconstruct complete 3D cars. To address these problems, we propose a novel method, named DreamCar, which can reconstruct high-quality 3D cars given a few images even a single image. To generalize the generative model, we collect a car dataset, named Car360, with over 5,600 vehicles. With this dataset, we make the generative model more robust to cars. We use this generative prior specific to the car to guide its reconstruction via Score Distillation Sampling. To further complement the supervision information, we utilize the geometric and appearance symmetry of cars. Finally, we propose a pose optimization method that rectifies poses to tackle texture misalignment. Extensive experiments demonstrate that our method significantly outperforms existing methods in reconstructing high-quality 3D cars. https://xiaobiaodu.github.io/dreamcar-project/{Our code is available.}
GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction
3D Gaussian Splatting has achieved impressive performance in novel view synthesis with real-time rendering capabilities. However, reconstructing high-quality surfaces with fine details using 3D Gaussians remains a challenging task. In this work, we introduce GausSurf, a novel approach to high-quality surface reconstruction by employing geometry guidance from multi-view consistency in texture-rich areas and normal priors in texture-less areas of a scene. We observe that a scene can be mainly divided into two primary regions: 1) texture-rich and 2) texture-less areas. To enforce multi-view consistency at texture-rich areas, we enhance the reconstruction quality by incorporating a traditional patch-match based Multi-View Stereo (MVS) approach to guide the geometry optimization in an iterative scheme. This scheme allows for mutual reinforcement between the optimization of Gaussians and patch-match refinement, which significantly improves the reconstruction results and accelerates the training process. Meanwhile, for the texture-less areas, we leverage normal priors from a pre-trained normal estimation model to guide optimization. Extensive experiments on the DTU and Tanks and Temples datasets demonstrate that our method surpasses state-of-the-art methods in terms of reconstruction quality and computation time.
Birth of a Painting: Differentiable Brushstroke Reconstruction
Painting embodies a unique form of visual storytelling, where the creation process is as significant as the final artwork. Although recent advances in generative models have enabled visually compelling painting synthesis, most existing methods focus solely on final image generation or patch-based process simulation, lacking explicit stroke structure and failing to produce smooth, realistic shading. In this work, we present a differentiable stroke reconstruction framework that unifies painting, stylized texturing, and smudging to faithfully reproduce the human painting-smudging loop. Given an input image, our framework first optimizes single- and dual-color Bezier strokes through a parallel differentiable paint renderer, followed by a style generation module that synthesizes geometry-conditioned textures across diverse painting styles. We further introduce a differentiable smudge operator to enable natural color blending and shading. Coupled with a coarse-to-fine optimization strategy, our method jointly optimizes stroke geometry, color, and texture under geometric and semantic guidance. Extensive experiments on oil, watercolor, ink, and digital paintings demonstrate that our approach produces realistic and expressive stroke reconstructions, smooth tonal transitions, and richly stylized appearances, offering a unified model for expressive digital painting creation. See our project page for more demos: https://yingjiang96.github.io/DiffPaintWebsite/.
MagicMirror: Fast and High-Quality Avatar Generation with a Constrained Search Space
We introduce a novel framework for 3D human avatar generation and personalization, leveraging text prompts to enhance user engagement and customization. Central to our approach are key innovations aimed at overcoming the challenges in photo-realistic avatar synthesis. Firstly, we utilize a conditional Neural Radiance Fields (NeRF) model, trained on a large-scale unannotated multi-view dataset, to create a versatile initial solution space that accelerates and diversifies avatar generation. Secondly, we develop a geometric prior, leveraging the capabilities of Text-to-Image Diffusion Models, to ensure superior view invariance and enable direct optimization of avatar geometry. These foundational ideas are complemented by our optimization pipeline built on Variational Score Distillation (VSD), which mitigates texture loss and over-saturation issues. As supported by our extensive experiments, these strategies collectively enable the creation of custom avatars with unparalleled visual quality and better adherence to input text prompts. You can find more results and videos in our website: https://syntec-research.github.io/MagicMirror
High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis
Recent advances in deep learning have shown exciting promise in filling large holes in natural images with semantically plausible and context aware details, impacting fundamental image manipulation tasks such as object removal. While these learning-based methods are significantly more effective in capturing high-level features than prior techniques, they can only handle very low-resolution inputs due to memory limitations and difficulty in training. Even for slightly larger images, the inpainted regions would appear blurry and unpleasant boundaries become visible. We propose a multi-scale neural patch synthesis approach based on joint optimization of image content and texture constraints, which not only preserves contextual structures but also produces high-frequency details by matching and adapting patches with the most similar mid-layer feature correlations of a deep classification network. We evaluate our method on the ImageNet and Paris Streetview datasets and achieved state-of-the-art inpainting accuracy. We show our approach produces sharper and more coherent results than prior methods, especially for high-resolution images.
ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image Collections
Estimating 3D articulated shapes like animal bodies from monocular images is inherently challenging due to the ambiguities of camera viewpoint, pose, texture, lighting, etc. We propose ARTIC3D, a self-supervised framework to reconstruct per-instance 3D shapes from a sparse image collection in-the-wild. Specifically, ARTIC3D is built upon a skeleton-based surface representation and is further guided by 2D diffusion priors from Stable Diffusion. First, we enhance the input images with occlusions/truncation via 2D diffusion to obtain cleaner mask estimates and semantic features. Second, we perform diffusion-guided 3D optimization to estimate shape and texture that are of high-fidelity and faithful to input images. We also propose a novel technique to calculate more stable image-level gradients via diffusion models compared to existing alternatives. Finally, we produce realistic animations by fine-tuning the rendered shape and texture under rigid part transformations. Extensive evaluations on multiple existing datasets as well as newly introduced noisy web image collections with occlusions and truncation demonstrate that ARTIC3D outputs are more robust to noisy images, higher quality in terms of shape and texture details, and more realistic when animated. Project page: https://chhankyao.github.io/artic3d/
Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior
In this work, we investigate the problem of creating high-fidelity 3D content from only a single image. This is inherently challenging: it essentially involves estimating the underlying 3D geometry while simultaneously hallucinating unseen textures. To address this challenge, we leverage prior knowledge from a well-trained 2D diffusion model to act as 3D-aware supervision for 3D creation. Our approach, Make-It-3D, employs a two-stage optimization pipeline: the first stage optimizes a neural radiance field by incorporating constraints from the reference image at the frontal view and diffusion prior at novel views; the second stage transforms the coarse model into textured point clouds and further elevates the realism with diffusion prior while leveraging the high-quality textures from the reference image. Extensive experiments demonstrate that our method outperforms prior works by a large margin, resulting in faithful reconstructions and impressive visual quality. Our method presents the first attempt to achieve high-quality 3D creation from a single image for general objects and enables various applications such as text-to-3D creation and texture editing.
Deformable Style Transfer
Both geometry and texture are fundamental aspects of visual style. Existing style transfer methods, however, primarily focus on texture, almost entirely ignoring geometry. We propose deformable style transfer (DST), an optimization-based approach that jointly stylizes the texture and geometry of a content image to better match a style image. Unlike previous geometry-aware stylization methods, our approach is neither restricted to a particular domain (such as human faces), nor does it require training sets of matching style/content pairs. We demonstrate our method on a diverse set of content and style images including portraits, animals, objects, scenes, and paintings. Code has been made publicly available at https://github.com/sunniesuhyoung/DST.
WordArt Designer: User-Driven Artistic Typography Synthesis using Large Language Models
This paper introduces WordArt Designer, a user-driven framework for artistic typography synthesis, relying on the Large Language Model (LLM). The system incorporates four key modules: the LLM Engine, SemTypo, StyTypo, and TexTypo modules. 1) The LLM Engine, empowered by the LLM (e.g., GPT-3.5), interprets user inputs and generates actionable prompts for the other modules, thereby transforming abstract concepts into tangible designs. 2) The SemTypo module optimizes font designs using semantic concepts, striking a balance between artistic transformation and readability. 3) Building on the semantic layout provided by the SemTypo module, the StyTypo module creates smooth, refined images. 4) The TexTypo module further enhances the design's aesthetics through texture rendering, enabling the generation of inventive textured fonts. Notably, WordArt Designer highlights the fusion of generative AI with artistic typography. Experience its capabilities on ModelScope: https://www.modelscope.cn/studios/WordArt/WordArt.
TexFusion: Synthesizing 3D Textures with Text-Guided Image Diffusion Models
We present TexFusion (Texture Diffusion), a new method to synthesize textures for given 3D geometries, using large-scale text-guided image diffusion models. In contrast to recent works that leverage 2D text-to-image diffusion models to distill 3D objects using a slow and fragile optimization process, TexFusion introduces a new 3D-consistent generation technique specifically designed for texture synthesis that employs regular diffusion model sampling on different 2D rendered views. Specifically, we leverage latent diffusion models, apply the diffusion model's denoiser on a set of 2D renders of the 3D object, and aggregate the different denoising predictions on a shared latent texture map. Final output RGB textures are produced by optimizing an intermediate neural color field on the decodings of 2D renders of the latent texture. We thoroughly validate TexFusion and show that we can efficiently generate diverse, high quality and globally coherent textures. We achieve state-of-the-art text-guided texture synthesis performance using only image diffusion models, while avoiding the pitfalls of previous distillation-based methods. The text-conditioning offers detailed control and we also do not rely on any ground truth 3D textures for training. This makes our method versatile and applicable to a broad range of geometry and texture types. We hope that TexFusion will advance AI-based texturing of 3D assets for applications in virtual reality, game design, simulation, and more.
UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting
The scale diversity of point cloud data presents significant challenges in developing unified representation learning techniques for 3D vision. Currently, there are few unified 3D models, and no existing pre-training method is equally effective for both object- and scene-level point clouds. In this paper, we introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture. Our approach predicts Gaussian primitives as the pre-training task and employs differentiable Gaussian splatting to render images, enabling precise pixel-level supervision and end-to-end optimization. To further regulate the complexity of the pre-training task and direct the model's focus toward geometric structures, we integrate 2D features from pre-trained image models to incorporate well-established texture knowledge. We validate the universal effectiveness of our proposed method through extensive experiments across a variety of object- and scene-level tasks, using diverse point cloud models as backbones. Code is available at https://github.com/wangzy22/UniPre3D.
Review of Feed-forward 3D Reconstruction: From DUSt3R to VGGT
3D reconstruction, which aims to recover the dense three-dimensional structure of a scene, is a cornerstone technology for numerous applications, including augmented/virtual reality, autonomous driving, and robotics. While traditional pipelines like Structure from Motion (SfM) and Multi-View Stereo (MVS) achieve high precision through iterative optimization, they are limited by complex workflows, high computational cost, and poor robustness in challenging scenarios like texture-less regions. Recently, deep learning has catalyzed a paradigm shift in 3D reconstruction. A new family of models, exemplified by DUSt3R, has pioneered a feed-forward approach. These models employ a unified deep network to jointly infer camera poses and dense geometry directly from an Unconstrained set of images in a single forward pass. This survey provides a systematic review of this emerging domain. We begin by dissecting the technical framework of these feed-forward models, including their Transformer-based correspondence modeling, joint pose and geometry regression mechanisms, and strategies for scaling from two-view to multi-view scenarios. To highlight the disruptive nature of this new paradigm, we contrast it with both traditional pipelines and earlier learning-based methods like MVSNet. Furthermore, we provide an overview of relevant datasets and evaluation metrics. Finally, we discuss the technology's broad application prospects and identify key future challenges and opportunities, such as model accuracy and scalability, and handling dynamic scenes.
Vid2Avatar: 3D Avatar Reconstruction from Videos in the Wild via Self-supervised Scene Decomposition
We present Vid2Avatar, a method to learn human avatars from monocular in-the-wild videos. Reconstructing humans that move naturally from monocular in-the-wild videos is difficult. Solving it requires accurately separating humans from arbitrary backgrounds. Moreover, it requires reconstructing detailed 3D surface from short video sequences, making it even more challenging. Despite these challenges, our method does not require any groundtruth supervision or priors extracted from large datasets of clothed human scans, nor do we rely on any external segmentation modules. Instead, it solves the tasks of scene decomposition and surface reconstruction directly in 3D by modeling both the human and the background in the scene jointly, parameterized via two separate neural fields. Specifically, we define a temporally consistent human representation in canonical space and formulate a global optimization over the background model, the canonical human shape and texture, and per-frame human pose parameters. A coarse-to-fine sampling strategy for volume rendering and novel objectives are introduced for a clean separation of dynamic human and static background, yielding detailed and robust 3D human geometry reconstructions. We evaluate our methods on publicly available datasets and show improvements over prior art.
Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer
Despite the impressive generative capabilities of diffusion models, existing diffusion model-based style transfer methods require inference-stage optimization (e.g. fine-tuning or textual inversion of style) which is time-consuming, or fails to leverage the generative ability of large-scale diffusion models. To address these issues, we introduce a novel artistic style transfer method based on a pre-trained large-scale diffusion model without any optimization. Specifically, we manipulate the features of self-attention layers as the way the cross-attention mechanism works; in the generation process, substituting the key and value of content with those of style image. This approach provides several desirable characteristics for style transfer including 1) preservation of content by transferring similar styles into similar image patches and 2) transfer of style based on similarity of local texture (e.g. edge) between content and style images. Furthermore, we introduce query preservation and attention temperature scaling to mitigate the issue of disruption of original content, and initial latent Adaptive Instance Normalization (AdaIN) to deal with the disharmonious color (failure to transfer the colors of style). Our experimental results demonstrate that our proposed method surpasses state-of-the-art methods in both conventional and diffusion-based style transfer baselines.
BAM: A Balanced Attention Mechanism for Single Image Super Resolution
Recovering texture information from the aliasing regions has always been a major challenge for Single Image Super Resolution (SISR) task. These regions are often submerged in noise so that we have to restore texture details while suppressing noise. To address this issue, we propose a Balanced Attention Mechanism (BAM), which consists of Avgpool Channel Attention Module (ACAM) and Maxpool Spatial Attention Module (MSAM) in parallel. ACAM is designed to suppress extreme noise in the large scale feature maps while MSAM preserves high-frequency texture details. Thanks to the parallel structure, these two modules not only conduct self-optimization, but also mutual optimization to obtain the balance of noise reduction and high-frequency texture restoration during the back propagation process, and the parallel structure makes the inference faster. To verify the effectiveness and robustness of BAM, we applied it to 10 SOTA SISR networks. The results demonstrate that BAM can efficiently improve the networks performance, and for those originally with attention mechanism, the substitution with BAM further reduces the amount of parameters and increases the inference speed. Moreover, we present a dataset with rich texture aliasing regions in real scenes, named realSR7. Experiments prove that BAM achieves better super-resolution results on the aliasing area.
Photo3D: Advancing Photorealistic 3D Generation through Structure-Aligned Detail Enhancement
Although recent 3D-native generators have made great progress in synthesizing reliable geometry, they still fall short in achieving realistic appearances. A key obstacle lies in the lack of diverse and high-quality real-world 3D assets with rich texture details, since capturing such data is intrinsically difficult due to the diverse scales of scenes, non-rigid motions of objects, and the limited precision of 3D scanners. We introduce Photo3D, a framework for advancing photorealistic 3D generation, which is driven by the image data generated by the GPT-4o-Image model. Considering that the generated images can distort 3D structures due to their lack of multi-view consistency, we design a structure-aligned multi-view synthesis pipeline and construct a detail-enhanced multi-view dataset paired with 3D geometry. Building on it, we present a realistic detail enhancement scheme that leverages perceptual feature adaptation and semantic structure matching to enforce appearance consistency with realistic details while preserving the structural consistency with the 3D-native geometry. Our scheme is general to different 3D-native generators, and we present dedicated training strategies to facilitate the optimization of geometry-texture coupled and decoupled 3D-native generation paradigms. Experiments demonstrate that Photo3D generalizes well across diverse 3D-native generation paradigms and achieves state-of-the-art photorealistic 3D generation performance.
Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars
In this paper, we propose to create animatable avatars for interacting hands with 3D Gaussian Splatting (GS) and single-image inputs. Existing GS-based methods designed for single subjects often yield unsatisfactory results due to limited input views, various hand poses, and occlusions. To address these challenges, we introduce a novel two-stage interaction-aware GS framework that exploits cross-subject hand priors and refines 3D Gaussians in interacting areas. Particularly, to handle hand variations, we disentangle the 3D presentation of hands into optimization-based identity maps and learning-based latent geometric features and neural texture maps. Learning-based features are captured by trained networks to provide reliable priors for poses, shapes, and textures, while optimization-based identity maps enable efficient one-shot fitting of out-of-distribution hands. Furthermore, we devise an interaction-aware attention module and a self-adaptive Gaussian refinement module. These modules enhance image rendering quality in areas with intra- and inter-hand interactions, overcoming the limitations of existing GS-based methods. Our proposed method is validated via extensive experiments on the large-scale InterHand2.6M dataset, and it significantly improves the state-of-the-art performance in image quality. Project Page: https://github.com/XuanHuang0/GuassianHand.
Magic-Boost: Boost 3D Generation with Mutli-View Conditioned Diffusion
Benefiting from the rapid development of 2D diffusion models, 3D content creation has made significant progress recently. One promising solution involves the fine-tuning of pre-trained 2D diffusion models to harness their capacity for producing multi-view images, which are then lifted into accurate 3D models via methods like fast-NeRFs or large reconstruction models. However, as inconsistency still exists and limited generated resolution, the generation results of such methods still lack intricate textures and complex geometries. To solve this problem, we propose Magic-Boost, a multi-view conditioned diffusion model that significantly refines coarse generative results through a brief period of SDS optimization (sim15min). Compared to the previous text or single image based diffusion models, Magic-Boost exhibits a robust capability to generate images with high consistency from pseudo synthesized multi-view images. It provides precise SDS guidance that well aligns with the identity of the input images, enriching the local detail in both geometry and texture of the initial generative results. Extensive experiments show Magic-Boost greatly enhances the coarse inputs and generates high-quality 3D assets with rich geometric and textural details. (Project Page: https://magic-research.github.io/magic-boost/)
Two-Stream Convolutional Networks for Dynamic Texture Synthesis
We introduce a two-stream model for dynamic texture synthesis. Our model is based on pre-trained convolutional networks (ConvNets) that target two independent tasks: (i) object recognition, and (ii) optical flow prediction. Given an input dynamic texture, statistics of filter responses from the object recognition ConvNet encapsulate the per-frame appearance of the input texture, while statistics of filter responses from the optical flow ConvNet model its dynamics. To generate a novel texture, a randomly initialized input sequence is optimized to match the feature statistics from each stream of an example texture. Inspired by recent work on image style transfer and enabled by the two-stream model, we also apply the synthesis approach to combine the texture appearance from one texture with the dynamics of another to generate entirely novel dynamic textures. We show that our approach generates novel, high quality samples that match both the framewise appearance and temporal evolution of input texture. Finally, we quantitatively evaluate our texture synthesis approach with a thorough user study.
Fast Sprite Decomposition from Animated Graphics
This paper presents an approach to decomposing animated graphics into sprites, a set of basic elements or layers. Our approach builds on the optimization of sprite parameters to fit the raster video. For efficiency, we assume static textures for sprites to reduce the search space while preventing artifacts using a texture prior model. To further speed up the optimization, we introduce the initialization of the sprite parameters utilizing a pre-trained video object segmentation model and user input of single frame annotations. For our study, we construct the Crello Animation dataset from an online design service and define quantitative metrics to measure the quality of the extracted sprites. Experiments show that our method significantly outperforms baselines for similar decomposition tasks in terms of the quality/efficiency tradeoff.
TexTailor: Customized Text-aligned Texturing via Effective Resampling
We present TexTailor, a novel method for generating consistent object textures from textual descriptions. Existing text-to-texture synthesis approaches utilize depth-aware diffusion models to progressively generate images and synthesize textures across predefined multiple viewpoints. However, these approaches lead to a gradual shift in texture properties across viewpoints due to (1) insufficient integration of previously synthesized textures at each viewpoint during the diffusion process and (2) the autoregressive nature of the texture synthesis process. Moreover, the predefined selection of camera positions, which does not account for the object's geometry, limits the effective use of texture information synthesized from different viewpoints, ultimately degrading overall texture consistency. In TexTailor, we address these issues by (1) applying a resampling scheme that repeatedly integrates information from previously synthesized textures within the diffusion process, and (2) fine-tuning a depth-aware diffusion model on these resampled textures. During this process, we observed that using only a few training images restricts the model's original ability to generate high-fidelity images aligned with the conditioning, and therefore propose an performance preservation loss to mitigate this issue. Additionally, we improve the synthesis of view-consistent textures by adaptively adjusting camera positions based on the object's geometry. Experiments on a subset of the Objaverse dataset and the ShapeNet car dataset demonstrate that TexTailor outperforms state-of-the-art methods in synthesizing view-consistent textures. The source code for TexTailor is available at https://github.com/Adios42/Textailor
Towards Metamerism via Foveated Style Transfer
The problem of visual metamerism is defined as finding a family of perceptually indistinguishable, yet physically different images. In this paper, we propose our NeuroFovea metamer model, a foveated generative model that is based on a mixture of peripheral representations and style transfer forward-pass algorithms. Our gradient-descent free model is parametrized by a foveated VGG19 encoder-decoder which allows us to encode images in high dimensional space and interpolate between the content and texture information with adaptive instance normalization anywhere in the visual field. Our contributions include: 1) A framework for computing metamers that resembles a noisy communication system via a foveated feed-forward encoder-decoder network -- We observe that metamerism arises as a byproduct of noisy perturbations that partially lie in the perceptual null space; 2) A perceptual optimization scheme as a solution to the hyperparametric nature of our metamer model that requires tuning of the image-texture tradeoff coefficients everywhere in the visual field which are a consequence of internal noise; 3) An ABX psychophysical evaluation of our metamers where we also find that the rate of growth of the receptive fields in our model match V1 for reference metamers and V2 between synthesized samples. Our model also renders metamers at roughly a second, presenting a times1000 speed-up compared to the previous work, which allows for tractable data-driven metamer experiments.
TextureDreamer: Image-guided Texture Synthesis through Geometry-aware Diffusion
We present TextureDreamer, a novel image-guided texture synthesis method to transfer relightable textures from a small number of input images (3 to 5) to target 3D shapes across arbitrary categories. Texture creation is a pivotal challenge in vision and graphics. Industrial companies hire experienced artists to manually craft textures for 3D assets. Classical methods require densely sampled views and accurately aligned geometry, while learning-based methods are confined to category-specific shapes within the dataset. In contrast, TextureDreamer can transfer highly detailed, intricate textures from real-world environments to arbitrary objects with only a few casually captured images, potentially significantly democratizing texture creation. Our core idea, personalized geometry-aware score distillation (PGSD), draws inspiration from recent advancements in diffuse models, including personalized modeling for texture information extraction, variational score distillation for detailed appearance synthesis, and explicit geometry guidance with ControlNet. Our integration and several essential modifications substantially improve the texture quality. Experiments on real images spanning different categories show that TextureDreamer can successfully transfer highly realistic, semantic meaningful texture to arbitrary objects, surpassing the visual quality of previous state-of-the-art.
FlexiTex: Enhancing Texture Generation with Visual Guidance
Recent texture generation methods achieve impressive results due to the powerful generative prior they leverage from large-scale text-to-image diffusion models. However, abstract textual prompts are limited in providing global textural or shape information, which results in the texture generation methods producing blurry or inconsistent patterns. To tackle this, we present FlexiTex, embedding rich information via visual guidance to generate a high-quality texture. The core of FlexiTex is the Visual Guidance Enhancement module, which incorporates more specific information from visual guidance to reduce ambiguity in the text prompt and preserve high-frequency details. To further enhance the visual guidance, we introduce a Direction-Aware Adaptation module that automatically designs direction prompts based on different camera poses, avoiding the Janus problem and maintaining semantically global consistency. Benefiting from the visual guidance, FlexiTex produces quantitatively and qualitatively sound results, demonstrating its potential to advance texture generation for real-world applications.
End-to-End Fine-Tuning of 3D Texture Generation using Differentiable Rewards
While recent 3D generative models can produce high-quality texture images, they often fail to capture human preferences or meet task-specific requirements. Moreover, a core challenge in the 3D texture generation domain is that most existing approaches rely on repeated calls to 2D text-to-image generative models, which lack an inherent understanding of the 3D structure of the input 3D mesh object. To alleviate these issues, we propose an end-to-end differentiable, reinforcement-learning-free framework that embeds human feedback, expressed as differentiable reward functions, directly into the 3D texture synthesis pipeline. By back-propagating preference signals through both geometric and appearance modules of the proposed framework, our method generates textures that respect the 3D geometry structure and align with desired criteria. To demonstrate its versatility, we introduce three novel geometry-aware reward functions, which offer a more controllable and interpretable pathway for creating high-quality 3D content from natural language. By conducting qualitative, quantitative, and user-preference evaluations against state-of-the-art methods, we demonstrate that our proposed strategy consistently outperforms existing approaches. We will make our implementation code publicly available upon acceptance of the paper.
FDS: Frequency-Aware Denoising Score for Text-Guided Latent Diffusion Image Editing
Text-guided image editing using Text-to-Image (T2I) models often fails to yield satisfactory results, frequently introducing unintended modifications, such as the loss of local detail and color changes. In this paper, we analyze these failure cases and attribute them to the indiscriminate optimization across all frequency bands, even though only specific frequencies may require adjustment. To address this, we introduce a simple yet effective approach that enables the selective optimization of specific frequency bands within localized spatial regions for precise edits. Our method leverages wavelets to decompose images into different spatial resolutions across multiple frequency bands, enabling precise modifications at various levels of detail. To extend the applicability of our approach, we provide a comparative analysis of different frequency-domain techniques. Additionally, we extend our method to 3D texture editing by performing frequency decomposition on the triplane representation, enabling frequency-aware adjustments for 3D textures. Quantitative evaluations and user studies demonstrate the effectiveness of our method in producing high-quality and precise edits.
Im2SurfTex: Surface Texture Generation via Neural Backprojection of Multi-View Images
We present Im2SurfTex, a method that generates textures for input 3D shapes by learning to aggregate multi-view image outputs produced by 2D image diffusion models onto the shapes' texture space. Unlike existing texture generation techniques that use ad hoc backprojection and averaging schemes to blend multiview images into textures, often resulting in texture seams and artifacts, our approach employs a trained neural module to boost texture coherency. The key ingredient of our module is to leverage neural attention and appropriate positional encodings of image pixels based on their corresponding 3D point positions, normals, and surface-aware coordinates as encoded in geodesic distances within surface patches. These encodings capture texture correlations between neighboring surface points, ensuring better texture continuity. Experimental results show that our module improves texture quality, achieving superior performance in high-resolution texture generation.
RoCoTex: A Robust Method for Consistent Texture Synthesis with Diffusion Models
Text-to-texture generation has recently attracted increasing attention, but existing methods often suffer from the problems of view inconsistencies, apparent seams, and misalignment between textures and the underlying mesh. In this paper, we propose a robust text-to-texture method for generating consistent and seamless textures that are well aligned with the mesh. Our method leverages state-of-the-art 2D diffusion models, including SDXL and multiple ControlNets, to capture structural features and intricate details in the generated textures. The method also employs a symmetrical view synthesis strategy combined with regional prompts for enhancing view consistency. Additionally, it introduces novel texture blending and soft-inpainting techniques, which significantly reduce the seam regions. Extensive experiments demonstrate that our method outperforms existing state-of-the-art methods.
Neural Photometry-guided Visual Attribute Transfer
We present a deep learning-based method for propagating spatially-varying visual material attributes (e.g. texture maps or image stylizations) to larger samples of the same or similar materials. For training, we leverage images of the material taken under multiple illuminations and a dedicated data augmentation policy, making the transfer robust to novel illumination conditions and affine deformations. Our model relies on a supervised image-to-image translation framework and is agnostic to the transferred domain; we showcase a semantic segmentation, a normal map, and a stylization. Following an image analogies approach, the method only requires the training data to contain the same visual structures as the input guidance. Our approach works at interactive rates, making it suitable for material edit applications. We thoroughly evaluate our learning methodology in a controlled setup providing quantitative measures of performance. Last, we demonstrate that training the model on a single material is enough to generalize to materials of the same type without the need for massive datasets.
DreamPolish: Domain Score Distillation With Progressive Geometry Generation
We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures. In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process. Instead of relying solely on a view-conditioned diffusion prior in the novel sampled views, which often leads to undesired artifacts in the geometric surface, we incorporate an additional normal estimator to polish the geometry details, conditioned on viewpoints with varying field-of-views. We propose to add a surface polishing stage with only a few training steps, which can effectively refine the artifacts attributed to limited guidance from previous stages and produce 3D objects with more desirable geometry. The key topic of texture generation using pretrained text-to-image models is to find a suitable domain in the vast latent distribution of these models that contains photorealistic and consistent renderings. In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain. We draw inspiration from the classifier-free guidance (CFG) in textconditioned image generation tasks and show that CFG and variational distribution guidance represent distinct aspects in gradient guidance and are both imperative domains for the enhancement of texture quality. Extensive experiments show our proposed model can produce 3D assets with polished surfaces and photorealistic textures, outperforming existing state-of-the-art methods.
Instance Normalization: The Missing Ingredient for Fast Stylization
It this paper we revisit the fast stylization method introduced in Ulyanov et. al. (2016). We show how a small change in the stylization architecture results in a significant qualitative improvement in the generated images. The change is limited to swapping batch normalization with instance normalization, and to apply the latter both at training and testing times. The resulting method can be used to train high-performance architectures for real-time image generation. The code will is made available on github at https://github.com/DmitryUlyanov/texture_nets. Full paper can be found at arXiv:1701.02096.
A Scalable Attention-Based Approach for Image-to-3D Texture Mapping
High-quality textures are critical for realistic 3D content creation, yet existing generative methods are slow, rely on UV maps, and often fail to remain faithful to a reference image. To address these challenges, we propose a transformer-based framework that predicts a 3D texture field directly from a single image and a mesh, eliminating the need for UV mapping and differentiable rendering, and enabling faster texture generation. Our method integrates a triplane representation with depth-based backprojection losses, enabling efficient training and faster inference. Once trained, it generates high-fidelity textures in a single forward pass, requiring only 0.2s per shape. Extensive qualitative, quantitative, and user preference evaluations demonstrate that our method outperforms state-of-the-art baselines on single-image texture reconstruction in terms of both fidelity to the input image and perceptual quality, highlighting its practicality for scalable, high-quality, and controllable 3D content creation.
FlexPainter: Flexible and Multi-View Consistent Texture Generation
Texture map production is an important part of 3D modeling and determines the rendering quality. Recently, diffusion-based methods have opened a new way for texture generation. However, restricted control flexibility and limited prompt modalities may prevent creators from producing desired results. Furthermore, inconsistencies between generated multi-view images often lead to poor texture generation quality. To address these issues, we introduce FlexPainter, a novel texture generation pipeline that enables flexible multi-modal conditional guidance and achieves highly consistent texture generation. A shared conditional embedding space is constructed to perform flexible aggregation between different input modalities. Utilizing such embedding space, we present an image-based CFG method to decompose structural and style information, achieving reference image-based stylization. Leveraging the 3D knowledge within the image diffusion prior, we first generate multi-view images simultaneously using a grid representation to enhance global understanding. Meanwhile, we propose a view synchronization and adaptive weighting module during diffusion sampling to further ensure local consistency. Finally, a 3D-aware texture completion model combined with a texture enhancement model is used to generate seamless, high-resolution texture maps. Comprehensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods in both flexibility and generation quality.
TexGen: Text-Guided 3D Texture Generation with Multi-view Sampling and Resampling
Given a 3D mesh, we aim to synthesize 3D textures that correspond to arbitrary textual descriptions. Current methods for generating and assembling textures from sampled views often result in prominent seams or excessive smoothing. To tackle these issues, we present TexGen, a novel multi-view sampling and resampling framework for texture generation leveraging a pre-trained text-to-image diffusion model. For view consistent sampling, first of all we maintain a texture map in RGB space that is parameterized by the denoising step and updated after each sampling step of the diffusion model to progressively reduce the view discrepancy. An attention-guided multi-view sampling strategy is exploited to broadcast the appearance information across views. To preserve texture details, we develop a noise resampling technique that aids in the estimation of noise, generating inputs for subsequent denoising steps, as directed by the text prompt and current texture map. Through an extensive amount of qualitative and quantitative evaluations, we demonstrate that our proposed method produces significantly better texture quality for diverse 3D objects with a high degree of view consistency and rich appearance details, outperforming current state-of-the-art methods. Furthermore, our proposed texture generation technique can also be applied to texture editing while preserving the original identity. More experimental results are available at https://dong-huo.github.io/TexGen/
TexTile: A Differentiable Metric for Texture Tileability
We introduce TexTile, a novel differentiable metric to quantify the degree upon which a texture image can be concatenated with itself without introducing repeating artifacts (i.e., the tileability). Existing methods for tileable texture synthesis focus on general texture quality, but lack explicit analysis of the intrinsic repeatability properties of a texture. In contrast, our TexTile metric effectively evaluates the tileable properties of a texture, opening the door to more informed synthesis and analysis of tileable textures. Under the hood, TexTile is formulated as a binary classifier carefully built from a large dataset of textures of different styles, semantics, regularities, and human annotations.Key to our method is a set of architectural modifications to baseline pre-train image classifiers to overcome their shortcomings at measuring tileability, along with a custom data augmentation and training regime aimed at increasing robustness and accuracy. We demonstrate that TexTile can be plugged into different state-of-the-art texture synthesis methods, including diffusion-based strategies, and generate tileable textures while keeping or even improving the overall texture quality. Furthermore, we show that TexTile can objectively evaluate any tileable texture synthesis method, whereas the current mix of existing metrics produces uncorrelated scores which heavily hinders progress in the field.
Text-Guided 3D Face Synthesis -- From Generation to Editing
Text-guided 3D face synthesis has achieved remarkable results by leveraging text-to-image (T2I) diffusion models. However, most existing works focus solely on the direct generation, ignoring the editing, restricting them from synthesizing customized 3D faces through iterative adjustments. In this paper, we propose a unified text-guided framework from face generation to editing. In the generation stage, we propose a geometry-texture decoupled generation to mitigate the loss of geometric details caused by coupling. Besides, decoupling enables us to utilize the generated geometry as a condition for texture generation, yielding highly geometry-texture aligned results. We further employ a fine-tuned texture diffusion model to enhance texture quality in both RGB and YUV space. In the editing stage, we first employ a pre-trained diffusion model to update facial geometry or texture based on the texts. To enable sequential editing, we introduce a UV domain consistency preservation regularization, preventing unintentional changes to irrelevant facial attributes. Besides, we propose a self-guided consistency weight strategy to improve editing efficacy while preserving consistency. Through comprehensive experiments, we showcase our method's superiority in face synthesis. Project page: https://faceg2e.github.io/.
SeamlessGAN: Self-Supervised Synthesis of Tileable Texture Maps
We present SeamlessGAN, a method capable of automatically generating tileable texture maps from a single input exemplar. In contrast to most existing methods, focused solely on solving the synthesis problem, our work tackles both problems, synthesis and tileability, simultaneously. Our key idea is to realize that tiling a latent space within a generative network trained using adversarial expansion techniques produces outputs with continuity at the seam intersection that can be then be turned into tileable images by cropping the central area. Since not every value of the latent space is valid to produce high-quality outputs, we leverage the discriminator as a perceptual error metric capable of identifying artifact-free textures during a sampling process. Further, in contrast to previous work on deep texture synthesis, our model is designed and optimized to work with multi-layered texture representations, enabling textures composed of multiple maps such as albedo, normals, etc. We extensively test our design choices for the network architecture, loss function and sampling parameters. We show qualitatively and quantitatively that our approach outperforms previous methods and works for textures of different types.
RomanTex: Decoupling 3D-aware Rotary Positional Embedded Multi-Attention Network for Texture Synthesis
Painting textures for existing geometries is a critical yet labor-intensive process in 3D asset generation. Recent advancements in text-to-image (T2I) models have led to significant progress in texture generation. Most existing research approaches this task by first generating images in 2D spaces using image diffusion models, followed by a texture baking process to achieve UV texture. However, these methods often struggle to produce high-quality textures due to inconsistencies among the generated multi-view images, resulting in seams and ghosting artifacts. In contrast, 3D-based texture synthesis methods aim to address these inconsistencies, but they often neglect 2D diffusion model priors, making them challenging to apply to real-world objects To overcome these limitations, we propose RomanTex, a multiview-based texture generation framework that integrates a multi-attention network with an underlying 3D representation, facilitated by our novel 3D-aware Rotary Positional Embedding. Additionally, we incorporate a decoupling characteristic in the multi-attention block to enhance the model's robustness in image-to-texture task, enabling semantically-correct back-view synthesis. Furthermore, we introduce a geometry-related Classifier-Free Guidance (CFG) mechanism to further improve the alignment with both geometries and images. Quantitative and qualitative evaluations, along with comprehensive user studies, demonstrate that our method achieves state-of-the-art results in texture quality and consistency.
Reference-based Controllable Scene Stylization with Gaussian Splatting
Referenced-based scene stylization that edits the appearance based on a content-aligned reference image is an emerging research area. Starting with a pretrained neural radiance field (NeRF), existing methods typically learn a novel appearance that matches the given style. Despite their effectiveness, they inherently suffer from time-consuming volume rendering, and thus are impractical for many real-time applications. In this work, we propose ReGS, which adapts 3D Gaussian Splatting (3DGS) for reference-based stylization to enable real-time stylized view synthesis. Editing the appearance of a pretrained 3DGS is challenging as it uses discrete Gaussians as 3D representation, which tightly bind appearance with geometry. Simply optimizing the appearance as prior methods do is often insufficient for modeling continuous textures in the given reference image. To address this challenge, we propose a novel texture-guided control mechanism that adaptively adjusts local responsible Gaussians to a new geometric arrangement, serving for desired texture details. The proposed process is guided by texture clues for effective appearance editing, and regularized by scene depth for preserving original geometric structure. With these novel designs, we show ReGs can produce state-of-the-art stylization results that respect the reference texture while embracing real-time rendering speed for free-view navigation.
Texture Generation on 3D Meshes with Point-UV Diffusion
In this work, we focus on synthesizing high-quality textures on 3D meshes. We present Point-UV diffusion, a coarse-to-fine pipeline that marries the denoising diffusion model with UV mapping to generate 3D consistent and high-quality texture images in UV space. We start with introducing a point diffusion model to synthesize low-frequency texture components with our tailored style guidance to tackle the biased color distribution. The derived coarse texture offers global consistency and serves as a condition for the subsequent UV diffusion stage, aiding in regularizing the model to generate a 3D consistent UV texture image. Then, a UV diffusion model with hybrid conditions is developed to enhance the texture fidelity in the 2D UV space. Our method can process meshes of any genus, generating diversified, geometry-compatible, and high-fidelity textures. Code is available at https://cvmi-lab.github.io/Point-UV-Diffusion
StyleTex: Style Image-Guided Texture Generation for 3D Models
Style-guided texture generation aims to generate a texture that is harmonious with both the style of the reference image and the geometry of the input mesh, given a reference style image and a 3D mesh with its text description. Although diffusion-based 3D texture generation methods, such as distillation sampling, have numerous promising applications in stylized games and films, it requires addressing two challenges: 1) decouple style and content completely from the reference image for 3D models, and 2) align the generated texture with the color tone, style of the reference image, and the given text prompt. To this end, we introduce StyleTex, an innovative diffusion-model-based framework for creating stylized textures for 3D models. Our key insight is to decouple style information from the reference image while disregarding content in diffusion-based distillation sampling. Specifically, given a reference image, we first decompose its style feature from the image CLIP embedding by subtracting the embedding's orthogonal projection in the direction of the content feature, which is represented by a text CLIP embedding. Our novel approach to disentangling the reference image's style and content information allows us to generate distinct style and content features. We then inject the style feature into the cross-attention mechanism to incorporate it into the generation process, while utilizing the content feature as a negative prompt to further dissociate content information. Finally, we incorporate these strategies into StyleTex to obtain stylized textures. The resulting textures generated by StyleTex retain the style of the reference image, while also aligning with the text prompts and intrinsic details of the given 3D mesh. Quantitative and qualitative experiments show that our method outperforms existing baseline methods by a significant margin.
Text-Guided Texturing by Synchronized Multi-View Diffusion
This paper introduces a novel approach to synthesize texture to dress up a given 3D object, given a text prompt. Based on the pretrained text-to-image (T2I) diffusion model, existing methods usually employ a project-and-inpaint approach, in which a view of the given object is first generated and warped to another view for inpainting. But it tends to generate inconsistent texture due to the asynchronous diffusion of multiple views. We believe such asynchronous diffusion and insufficient information sharing among views are the root causes of the inconsistent artifact. In this paper, we propose a synchronized multi-view diffusion approach that allows the diffusion processes from different views to reach a consensus of the generated content early in the process, and hence ensures the texture consistency. To synchronize the diffusion, we share the denoised content among different views in each denoising step, specifically blending the latent content in the texture domain from views with overlap. Our method demonstrates superior performance in generating consistent, seamless, highly detailed textures, comparing to state-of-the-art methods.
DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation
Recent advances in 3D content creation mostly leverage optimization-based 3D generation via score distillation sampling (SDS). Though promising results have been exhibited, these methods often suffer from slow per-sample optimization, limiting their practical usage. In this paper, we propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously. Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space. In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks. To further enhance the texture quality and facilitate downstream applications, we introduce an efficient algorithm to convert 3D Gaussians into textured meshes and apply a fine-tuning stage to refine the details. Extensive experiments demonstrate the superior efficiency and competitive generation quality of our proposed approach. Notably, DreamGaussian produces high-quality textured meshes in just 2 minutes from a single-view image, achieving approximately 10 times acceleration compared to existing methods.
InsTex: Indoor Scenes Stylized Texture Synthesis
Generating high-quality textures for 3D scenes is crucial for applications in interior design, gaming, and augmented/virtual reality (AR/VR). Although recent advancements in 3D generative models have enhanced content creation, significant challenges remain in achieving broad generalization and maintaining style consistency across multiple viewpoints. Current methods, such as 2D diffusion models adapted for 3D texturing, suffer from lengthy processing times and visual artifacts, while approaches driven by 3D data often fail to generalize effectively. To overcome these challenges, we introduce InsTex, a two-stage architecture designed to generate high-quality, style-consistent textures for 3D indoor scenes. InsTex utilizes depth-to-image diffusion priors in a coarse-to-fine pipeline, first generating multi-view images with a pre-trained 2D diffusion model and subsequently refining the textures for consistency. Our method supports both textual and visual prompts, achieving state-of-the-art results in visual quality and quantitative metrics, and demonstrates its effectiveness across various 3D texturing applications.
Generative Blocks World: Moving Things Around in Pictures
We describe Generative Blocks World to interact with the scene of a generated image by manipulating simple geometric abstractions. Our method represents scenes as assemblies of convex 3D primitives, and the same scene can be represented by different numbers of primitives, allowing an editor to move either whole structures or small details. Once the scene geometry has been edited, the image is generated by a flow-based method which is conditioned on depth and a texture hint. Our texture hint takes into account the modified 3D primitives, exceeding texture-consistency provided by existing key-value caching techniques. These texture hints (a) allow accurate object and camera moves and (b) largely preserve the identity of objects depicted. Quantitative and qualitative experiments demonstrate that our approach outperforms prior works in visual fidelity, editability, and compositional generalization.
DreamSpace: Dreaming Your Room Space with Text-Driven Panoramic Texture Propagation
Diffusion-based methods have achieved prominent success in generating 2D media. However, accomplishing similar proficiencies for scene-level mesh texturing in 3D spatial applications, e.g., XR/VR, remains constrained, primarily due to the intricate nature of 3D geometry and the necessity for immersive free-viewpoint rendering. In this paper, we propose a novel indoor scene texturing framework, which delivers text-driven texture generation with enchanting details and authentic spatial coherence. The key insight is to first imagine a stylized 360{\deg} panoramic texture from the central viewpoint of the scene, and then propagate it to the rest areas with inpainting and imitating techniques. To ensure meaningful and aligned textures to the scene, we develop a novel coarse-to-fine panoramic texture generation approach with dual texture alignment, which both considers the geometry and texture cues of the captured scenes. To survive from cluttered geometries during texture propagation, we design a separated strategy, which conducts texture inpainting in confidential regions and then learns an implicit imitating network to synthesize textures in occluded and tiny structural areas. Extensive experiments and the immersive VR application on real-world indoor scenes demonstrate the high quality of the generated textures and the engaging experience on VR headsets. Project webpage: https://ybbbbt.com/publication/dreamspace
TUVF: Learning Generalizable Texture UV Radiance Fields
Textures are a vital aspect of creating visually appealing and realistic 3D models. In this paper, we study the problem of generating high-fidelity texture given shapes of 3D assets, which has been relatively less explored compared with generic 3D shape modeling. Our goal is to facilitate a controllable texture generation process, such that one texture code can correspond to a particular appearance style independent of any input shapes from a category. We introduce Texture UV Radiance Fields (TUVF) that generate textures in a learnable UV sphere space rather than directly on the 3D shape. This allows the texture to be disentangled from the underlying shape and transferable to other shapes that share the same UV space, i.e., from the same category. We integrate the UV sphere space with the radiance field, which provides a more efficient and accurate representation of textures than traditional texture maps. We perform our experiments on real-world object datasets where we achieve not only realistic synthesis but also substantial improvements over state-of-the-arts on texture controlling and editing. Project Page: https://www.anjiecheng.me/TUVF
GenesisTex2: Stable, Consistent and High-Quality Text-to-Texture Generation
Large-scale text-guided image diffusion models have shown astonishing results in text-to-image (T2I) generation. However, applying these models to synthesize textures for 3D geometries remains challenging due to the domain gap between 2D images and textures on a 3D surface. Early works that used a projecting-and-inpainting approach managed to preserve generation diversity but often resulted in noticeable artifacts and style inconsistencies. While recent methods have attempted to address these inconsistencies, they often introduce other issues, such as blurring, over-saturation, or over-smoothing. To overcome these challenges, we propose a novel text-to-texture synthesis framework that leverages pretrained diffusion models. We first introduce a local attention reweighing mechanism in the self-attention layers to guide the model in concentrating on spatial-correlated patches across different views, thereby enhancing local details while preserving cross-view consistency. Additionally, we propose a novel latent space merge pipeline, which further ensures consistency across different viewpoints without sacrificing too much diversity. Our method significantly outperforms existing state-of-the-art techniques regarding texture consistency and visual quality, while delivering results much faster than distillation-based methods. Importantly, our framework does not require additional training or fine-tuning, making it highly adaptable to a wide range of models available on public platforms.
Photorealistic Material Editing Through Direct Image Manipulation
Creating photorealistic materials for light transport algorithms requires carefully fine-tuning a set of material properties to achieve a desired artistic effect. This is typically a lengthy process that involves a trained artist with specialized knowledge. In this work, we present a technique that aims to empower novice and intermediate-level users to synthesize high-quality photorealistic materials by only requiring basic image processing knowledge. In the proposed workflow, the user starts with an input image and applies a few intuitive transforms (e.g., colorization, image inpainting) within a 2D image editor of their choice, and in the next step, our technique produces a photorealistic result that approximates this target image. Our method combines the advantages of a neural network-augmented optimizer and an encoder neural network to produce high-quality output results within 30 seconds. We also demonstrate that it is resilient against poorly-edited target images and propose a simple extension to predict image sequences with a strict time budget of 1-2 seconds per image.
UniTEX: Universal High Fidelity Generative Texturing for 3D Shapes
We present UniTEX, a novel two-stage 3D texture generation framework to create high-quality, consistent textures for 3D assets. Existing approaches predominantly rely on UV-based inpainting to refine textures after reprojecting the generated multi-view images onto the 3D shapes, which introduces challenges related to topological ambiguity. To address this, we propose to bypass the limitations of UV mapping by operating directly in a unified 3D functional space. Specifically, we first propose that lifts texture generation into 3D space via Texture Functions (TFs)--a continuous, volumetric representation that maps any 3D point to a texture value based solely on surface proximity, independent of mesh topology. Then, we propose to predict these TFs directly from images and geometry inputs using a transformer-based Large Texturing Model (LTM). To further enhance texture quality and leverage powerful 2D priors, we develop an advanced LoRA-based strategy for efficiently adapting large-scale Diffusion Transformers (DiTs) for high-quality multi-view texture synthesis as our first stage. Extensive experiments demonstrate that UniTEX achieves superior visual quality and texture integrity compared to existing approaches, offering a generalizable and scalable solution for automated 3D texture generation. Code will available in: https://github.com/YixunLiang/UniTEX.
Make-It-Vivid: Dressing Your Animatable Biped Cartoon Characters from Text
Creating and animating 3D biped cartoon characters is crucial and valuable in various applications. Compared with geometry, the diverse texture design plays an important role in making 3D biped cartoon characters vivid and charming. Therefore, we focus on automatic texture design for cartoon characters based on input instructions. This is challenging for domain-specific requirements and a lack of high-quality data. To address this challenge, we propose Make-It-Vivid, the first attempt to enable high-quality texture generation from text in UV space. We prepare a detailed text-texture paired data for 3D characters by using vision-question-answering agents. Then we customize a pretrained text-to-image model to generate texture map with template structure while preserving the natural 2D image knowledge. Furthermore, to enhance fine-grained details, we propose a novel adversarial learning scheme to shorten the domain gap between original dataset and realistic texture domain. Extensive experiments show that our approach outperforms current texture generation methods, resulting in efficient character texturing and faithful generation with prompts. Besides, we showcase various applications such as out of domain generation and texture stylization. We also provide an efficient generation system for automatic text-guided textured character generation and animation.
Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation
This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts, including single images, multi-view images, and text descriptions. The framework consists of 3D shape generation and texture generation. (1). The 3D shape generation pipeline employs a Variational Autoencoder (VAE) to encode implicit 3D geometries into a latent space and a diffusion network to generate latents conditioned on input prompts, with modifications to enhance model capacity. An alternative Artist-Created Mesh (AM) generation approach is also explored, yielding promising results for simpler geometries. (2). Texture generation involves a multi-stage process starting with frontal images generation followed by multi-view images generation, RGB-to-PBR texture conversion, and high-resolution multi-view texture refinement. A consistency scheduler is plugged into every stage, to enforce pixel-wise consistency among multi-view textures during inference, ensuring seamless integration. The pipeline demonstrates effective handling of diverse input formats, leveraging advanced neural architectures and novel methodologies to produce high-quality 3D content. This report details the system architecture, experimental results, and potential future directions to improve and expand the framework. The source code and pretrained weights are released at: https://github.com/Tencent/Tencent-XR-3DGen.
Feature Refinement to Improve High Resolution Image Inpainting
In this paper, we address the problem of degradation in inpainting quality of neural networks operating at high resolutions. Inpainting networks are often unable to generate globally coherent structures at resolutions higher than their training set. This is partially attributed to the receptive field remaining static, despite an increase in image resolution. Although downscaling the image prior to inpainting produces coherent structure, it inherently lacks detail present at higher resolutions. To get the best of both worlds, we optimize the intermediate featuremaps of a network by minimizing a multiscale consistency loss at inference. This runtime optimization improves the inpainting results and establishes a new state-of-the-art for high resolution inpainting. Code is available at: https://github.com/geomagical/lama-with-refiner/tree/refinement.
ZeroAvatar: Zero-shot 3D Avatar Generation from a Single Image
Recent advancements in text-to-image generation have enabled significant progress in zero-shot 3D shape generation. This is achieved by score distillation, a methodology that uses pre-trained text-to-image diffusion models to optimize the parameters of a 3D neural presentation, e.g. Neural Radiance Field (NeRF). While showing promising results, existing methods are often not able to preserve the geometry of complex shapes, such as human bodies. To address this challenge, we present ZeroAvatar, a method that introduces the explicit 3D human body prior to the optimization process. Specifically, we first estimate and refine the parameters of a parametric human body from a single image. Then during optimization, we use the posed parametric body as additional geometry constraint to regularize the diffusion model as well as the underlying density field. Lastly, we propose a UV-guided texture regularization term to further guide the completion of texture on invisible body parts. We show that ZeroAvatar significantly enhances the robustness and 3D consistency of optimization-based image-to-3D avatar generation, outperforming existing zero-shot image-to-3D methods.
Generative Image Inpainting with Contextual Attention
Recent deep learning based approaches have shown promising results for the challenging task of inpainting large missing regions in an image. These methods can generate visually plausible image structures and textures, but often create distorted structures or blurry textures inconsistent with surrounding areas. This is mainly due to ineffectiveness of convolutional neural networks in explicitly borrowing or copying information from distant spatial locations. On the other hand, traditional texture and patch synthesis approaches are particularly suitable when it needs to borrow textures from the surrounding regions. Motivated by these observations, we propose a new deep generative model-based approach which can not only synthesize novel image structures but also explicitly utilize surrounding image features as references during network training to make better predictions. The model is a feed-forward, fully convolutional neural network which can process images with multiple holes at arbitrary locations and with variable sizes during the test time. Experiments on multiple datasets including faces (CelebA, CelebA-HQ), textures (DTD) and natural images (ImageNet, Places2) demonstrate that our proposed approach generates higher-quality inpainting results than existing ones. Code, demo and models are available at: https://github.com/JiahuiYu/generative_inpainting.
Boosting 3D Object Generation through PBR Materials
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
DreamCraft3D++: Efficient Hierarchical 3D Generation with Multi-Plane Reconstruction Model
We introduce DreamCraft3D++, an extension of DreamCraft3D that enables efficient high-quality generation of complex 3D assets. DreamCraft3D++ inherits the multi-stage generation process of DreamCraft3D, but replaces the time-consuming geometry sculpting optimization with a feed-forward multi-plane based reconstruction model, speeding up the process by 1000x. For texture refinement, we propose a training-free IP-Adapter module that is conditioned on the enhanced multi-view images to enhance texture and geometry consistency, providing a 4x faster alternative to DreamCraft3D's DreamBooth fine-tuning. Experiments on diverse datasets demonstrate DreamCraft3D++'s ability to generate creative 3D assets with intricate geometry and realistic 360{\deg} textures, outperforming state-of-the-art image-to-3D methods in quality and speed. The full implementation will be open-sourced to enable new possibilities in 3D content creation.
Aggregated Contextual Transformations for High-Resolution Image Inpainting
State-of-the-art image inpainting approaches can suffer from generating distorted structures and blurry textures in high-resolution images (e.g., 512x512). The challenges mainly drive from (1) image content reasoning from distant contexts, and (2) fine-grained texture synthesis for a large missing region. To overcome these two challenges, we propose an enhanced GAN-based model, named Aggregated COntextual-Transformation GAN (AOT-GAN), for high-resolution image inpainting. Specifically, to enhance context reasoning, we construct the generator of AOT-GAN by stacking multiple layers of a proposed AOT block. The AOT blocks aggregate contextual transformations from various receptive fields, allowing to capture both informative distant image contexts and rich patterns of interest for context reasoning. For improving texture synthesis, we enhance the discriminator of AOT-GAN by training it with a tailored mask-prediction task. Such a training objective forces the discriminator to distinguish the detailed appearances of real and synthesized patches, and in turn, facilitates the generator to synthesize clear textures. Extensive comparisons on Places2, the most challenging benchmark with 1.8 million high-resolution images of 365 complex scenes, show that our model outperforms the state-of-the-art by a significant margin in terms of FID with 38.60% relative improvement. A user study including more than 30 subjects further validates the superiority of AOT-GAN. We further evaluate the proposed AOT-GAN in practical applications, e.g., logo removal, face editing, and object removal. Results show that our model achieves promising completions in the real world. We release code and models in https://github.com/researchmm/AOT-GAN-for-Inpainting.
Advancing high-fidelity 3D and Texture Generation with 2.5D latents
Despite the availability of large-scale 3D datasets and advancements in 3D generative models, the complexity and uneven quality of 3D geometry and texture data continue to hinder the performance of 3D generation techniques. In most existing approaches, 3D geometry and texture are generated in separate stages using different models and non-unified representations, frequently leading to unsatisfactory coherence between geometry and texture. To address these challenges, we propose a novel framework for joint generation of 3D geometry and texture. Specifically, we focus in generate a versatile 2.5D representations that can be seamlessly transformed between 2D and 3D. Our approach begins by integrating multiview RGB, normal, and coordinate images into a unified representation, termed as 2.5D latents. Next, we adapt pre-trained 2D foundation models for high-fidelity 2.5D generation, utilizing both text and image conditions. Finally, we introduce a lightweight 2.5D-to-3D refiner-decoder framework that efficiently generates detailed 3D representations from 2.5D images. Extensive experiments demonstrate that our model not only excels in generating high-quality 3D objects with coherent structure and color from text and image inputs but also significantly outperforms existing methods in geometry-conditioned texture generation.
Minecraft-ify: Minecraft Style Image Generation with Text-guided Image Editing for In-Game Application
In this paper, we first present the character texture generation system Minecraft-ify, specified to Minecraft video game toward in-game application. Ours can generate face-focused image for texture mapping tailored to 3D virtual character having cube manifold. While existing projects or works only generate texture, proposed system can inverse the user-provided real image, or generate average/random appearance from learned distribution. Moreover, it can be manipulated with text-guidance using StyleGAN and StyleCLIP. These features provide a more extended user experience with enlarged freedom as a user-friendly AI-tool. Project page can be found at https://gh-bumsookim.github.io/Minecraft-ify/
CAMS: Color-Aware Multi-Style Transfer
Image style transfer aims to manipulate the appearance of a source image, or "content" image, to share similar texture and colors of a target "style" image. Ideally, the style transfer manipulation should also preserve the semantic content of the source image. A commonly used approach to assist in transferring styles is based on Gram matrix optimization. One problem of Gram matrix-based optimization is that it does not consider the correlation between colors and their styles. Specifically, certain textures or structures should be associated with specific colors. This is particularly challenging when the target style image exhibits multiple style types. In this work, we propose a color-aware multi-style transfer method that generates aesthetically pleasing results while preserving the style-color correlation between style and generated images. We achieve this desired outcome by introducing a simple but efficient modification to classic Gram matrix-based style transfer optimization. A nice feature of our method is that it enables the users to manually select the color associations between the target style and content image for more transfer flexibility. We validated our method with several qualitative comparisons, including a user study conducted with 30 participants. In comparison with prior work, our method is simple, easy to implement, and achieves visually appealing results when targeting images that have multiple styles. Source code is available at https://github.com/mahmoudnafifi/color-aware-style-transfer.
LaFiTe: A Generative Latent Field for 3D Native Texturing
Generating high-fidelity, seamless textures directly on 3D surfaces, what we term 3D-native texturing, remains a fundamental open challenge, with the potential to overcome long-standing limitations of UV-based and multi-view projection methods. However, existing native approaches are constrained by the absence of a powerful and versatile latent representation, which severely limits the fidelity and generality of their generated textures. We identify this representation gap as the principal barrier to further progress. We introduce LaFiTe, a framework that addresses this challenge by learning to generate textures as a 3D generative sparse latent color field. At its core, LaFiTe employs a variational autoencoder (VAE) to encode complex surface appearance into a sparse, structured latent space, which is subsequently decoded into a continuous color field. This representation achieves unprecedented fidelity, exceeding state-of-the-art methods by >10 dB PSNR in reconstruction, by effectively disentangling texture appearance from mesh topology and UV parameterization. Building upon this strong representation, a conditional rectified-flow model synthesizes high-quality, coherent textures across diverse styles and geometries. Extensive experiments demonstrate that LaFiTe not only sets a new benchmark for 3D-native texturing but also enables flexible downstream applications such as material synthesis and texture super-resolution, paving the way for the next generation of 3D content creation workflows.
Real-Time Neural Appearance Models
We present a complete system for real-time rendering of scenes with complex appearance previously reserved for offline use. This is achieved with a combination of algorithmic and system level innovations. Our appearance model utilizes learned hierarchical textures that are interpreted using neural decoders, which produce reflectance values and importance-sampled directions. To best utilize the modeling capacity of the decoders, we equip the decoders with two graphics priors. The first prior -- transformation of directions into learned shading frames -- facilitates accurate reconstruction of mesoscale effects. The second prior -- a microfacet sampling distribution -- allows the neural decoder to perform importance sampling efficiently. The resulting appearance model supports anisotropic sampling and level-of-detail rendering, and allows baking deeply layered material graphs into a compact unified neural representation. By exposing hardware accelerated tensor operations to ray tracing shaders, we show that it is possible to inline and execute the neural decoders efficiently inside a real-time path tracer. We analyze scalability with increasing number of neural materials and propose to improve performance using code optimized for coherent and divergent execution. Our neural material shaders can be over an order of magnitude faster than non-neural layered materials. This opens up the door for using film-quality visuals in real-time applications such as games and live previews.
Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand
Deep image inpainting has made impressive progress with recent advances in image generation and processing algorithms. We claim that the performance of inpainting algorithms can be better judged by the generated structures and textures. Structures refer to the generated object boundary or novel geometric structures within the hole, while texture refers to high-frequency details, especially man-made repeating patterns filled inside the structural regions. We believe that better structures are usually obtained from a coarse-to-fine GAN-based generator network while repeating patterns nowadays can be better modeled using state-of-the-art high-frequency fast fourier convolutional layers. In this paper, we propose a novel inpainting network combining the advantages of the two designs. Therefore, our model achieves a remarkable visual quality to match state-of-the-art performance in both structure generation and repeating texture synthesis using a single network. Extensive experiments demonstrate the effectiveness of the method, and our conclusions further highlight the two critical factors of image inpainting quality, structures, and textures, as the future design directions of inpainting networks.
Gaussian Material Synthesis
We present a learning-based system for rapid mass-scale material synthesis that is useful for novice and expert users alike. The user preferences are learned via Gaussian Process Regression and can be easily sampled for new recommendations. Typically, each recommendation takes 40-60 seconds to render with global illumination, which makes this process impracticable for real-world workflows. Our neural network eliminates this bottleneck by providing high-quality image predictions in real time, after which it is possible to pick the desired materials from a gallery and assign them to a scene in an intuitive manner. Workflow timings against Disney's "principled" shader reveal that our system scales well with the number of sought materials, thus empowering even novice users to generate hundreds of high-quality material models without any expertise in material modeling. Similarly, expert users experience a significant decrease in the total modeling time when populating a scene with materials. Furthermore, our proposed solution also offers controllable recommendations and a novel latent space variant generation step to enable the real-time fine-tuning of materials without requiring any domain expertise.
3D Object Manipulation in a Single Image using Generative Models
Object manipulation in images aims to not only edit the object's presentation but also gift objects with motion. Previous methods encountered challenges in concurrently handling static editing and dynamic generation, while also struggling to achieve fidelity in object appearance and scene lighting. In this work, we introduce OMG3D, a novel framework that integrates the precise geometric control with the generative power of diffusion models, thus achieving significant enhancements in visual performance. Our framework first converts 2D objects into 3D, enabling user-directed modifications and lifelike motions at the geometric level. To address texture realism, we propose CustomRefiner, a texture refinement module that pre-train a customized diffusion model, aligning the details and style of coarse renderings of 3D rough model with the original image, further refine the texture. Additionally, we introduce IllumiCombiner, a lighting processing module that estimates and corrects background lighting to match human visual perception, resulting in more realistic shadow effects. Extensive experiments demonstrate the outstanding visual performance of our approach in both static and dynamic scenarios. Remarkably, all these steps can be done using one NVIDIA 3090. Project page is at https://whalesong-zrs.github.io/OMG3D-projectpage/
ARM: Appearance Reconstruction Model for Relightable 3D Generation
Recent image-to-3D reconstruction models have greatly advanced geometry generation, but they still struggle to faithfully generate realistic appearance. To address this, we introduce ARM, a novel method that reconstructs high-quality 3D meshes and realistic appearance from sparse-view images. The core of ARM lies in decoupling geometry from appearance, processing appearance within the UV texture space. Unlike previous methods, ARM improves texture quality by explicitly back-projecting measurements onto the texture map and processing them in a UV space module with a global receptive field. To resolve ambiguities between material and illumination in input images, ARM introduces a material prior that encodes semantic appearance information, enhancing the robustness of appearance decomposition. Trained on just 8 H100 GPUs, ARM outperforms existing methods both quantitatively and qualitatively.
MaterialMVP: Illumination-Invariant Material Generation via Multi-view PBR Diffusion
Physically-based rendering (PBR) has become a cornerstone in modern computer graphics, enabling realistic material representation and lighting interactions in 3D scenes. In this paper, we present MaterialMVP, a novel end-to-end model for generating PBR textures from 3D meshes and image prompts, addressing key challenges in multi-view material synthesis. Our approach leverages Reference Attention to extract and encode informative latent from the input reference images, enabling intuitive and controllable texture generation. We also introduce a Consistency-Regularized Training strategy to enforce stability across varying viewpoints and illumination conditions, ensuring illumination-invariant and geometrically consistent results. Additionally, we propose Dual-Channel Material Generation, which separately optimizes albedo and metallic-roughness (MR) textures while maintaining precise spatial alignment with the input images through Multi-Channel Aligned Attention. Learnable material embeddings are further integrated to capture the distinct properties of albedo and MR. Experimental results demonstrate that our model generates PBR textures with realistic behavior across diverse lighting scenarios, outperforming existing methods in both consistency and quality for scalable 3D asset creation.
LDM: Large Tensorial SDF Model for Textured Mesh Generation
Previous efforts have managed to generate production-ready 3D assets from text or images. However, these methods primarily employ NeRF or 3D Gaussian representations, which are not adept at producing smooth, high-quality geometries required by modern rendering pipelines. In this paper, we propose LDM, a novel feed-forward framework capable of generating high-fidelity, illumination-decoupled textured mesh from a single image or text prompts. We firstly utilize a multi-view diffusion model to generate sparse multi-view inputs from single images or text prompts, and then a transformer-based model is trained to predict a tensorial SDF field from these sparse multi-view image inputs. Finally, we employ a gradient-based mesh optimization layer to refine this model, enabling it to produce an SDF field from which high-quality textured meshes can be extracted. Extensive experiments demonstrate that our method can generate diverse, high-quality 3D mesh assets with corresponding decomposed RGB textures within seconds.
Magic123: One Image to High-Quality 3D Object Generation Using Both 2D and 3D Diffusion Priors
We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes generation from a single unposed image in the wild using both2D and 3D priors. In the first stage, we optimize a neural radiance field to produce a coarse geometry. In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture. In both stages, the 3D content is learned through reference view supervision and novel views guided by a combination of 2D and 3D diffusion priors. We introduce a single trade-off parameter between the 2D and 3D priors to control exploration (more imaginative) and exploitation (more precise) of the generated geometry. Additionally, we employ textual inversion and monocular depth regularization to encourage consistent appearances across views and to prevent degenerate solutions, respectively. Magic123 demonstrates a significant improvement over previous image-to-3D techniques, as validated through extensive experiments on synthetic benchmarks and diverse real-world images. Our code, models, and generated 3D assets are available at https://github.com/guochengqian/Magic123.
SeqTex: Generate Mesh Textures in Video Sequence
Training native 3D texture generative models remains a fundamental yet challenging problem, largely due to the limited availability of large-scale, high-quality 3D texture datasets. This scarcity hinders generalization to real-world scenarios. To address this, most existing methods finetune foundation image generative models to exploit their learned visual priors. However, these approaches typically generate only multi-view images and rely on post-processing to produce UV texture maps -- an essential representation in modern graphics pipelines. Such two-stage pipelines often suffer from error accumulation and spatial inconsistencies across the 3D surface. In this paper, we introduce SeqTex, a novel end-to-end framework that leverages the visual knowledge encoded in pretrained video foundation models to directly generate complete UV texture maps. Unlike previous methods that model the distribution of UV textures in isolation, SeqTex reformulates the task as a sequence generation problem, enabling the model to learn the joint distribution of multi-view renderings and UV textures. This design effectively transfers the consistent image-space priors from video foundation models into the UV domain. To further enhance performance, we propose several architectural innovations: a decoupled multi-view and UV branch design, geometry-informed attention to guide cross-domain feature alignment, and adaptive token resolution to preserve fine texture details while maintaining computational efficiency. Together, these components allow SeqTex to fully utilize pretrained video priors and synthesize high-fidelity UV texture maps without the need for post-processing. Extensive experiments show that SeqTex achieves state-of-the-art performance on both image-conditioned and text-conditioned 3D texture generation tasks, with superior 3D consistency, texture-geometry alignment, and real-world generalization.
Text2Tex: Text-driven Texture Synthesis via Diffusion Models
We present Text2Tex, a novel method for generating high-quality textures for 3D meshes from the given text prompts. Our method incorporates inpainting into a pre-trained depth-aware image diffusion model to progressively synthesize high resolution partial textures from multiple viewpoints. To avoid accumulating inconsistent and stretched artifacts across views, we dynamically segment the rendered view into a generation mask, which represents the generation status of each visible texel. This partitioned view representation guides the depth-aware inpainting model to generate and update partial textures for the corresponding regions. Furthermore, we propose an automatic view sequence generation scheme to determine the next best view for updating the partial texture. Extensive experiments demonstrate that our method significantly outperforms the existing text-driven approaches and GAN-based methods.
EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices
Reconstructing real-world 3D objects has numerous applications in computer vision, such as virtual reality, video games, and animations. Ideally, 3D reconstruction methods should generate high-fidelity results with 3D consistency in real-time. Traditional methods match pixels between images using photo-consistency constraints or learned features, while differentiable rendering methods like Neural Radiance Fields (NeRF) use differentiable volume rendering or surface-based representation to generate high-fidelity scenes. However, these methods require excessive runtime for rendering, making them impractical for daily applications. To address these challenges, we present EvaSurf, an Efficient View-Aware implicit textured Surface reconstruction method on mobile devices. In our method, we first employ an efficient surface-based model with a multi-view supervision module to ensure accurate mesh reconstruction. To enable high-fidelity rendering, we learn an implicit texture embedded with a set of Gaussian lobes to capture view-dependent information. Furthermore, with the explicit geometry and the implicit texture, we can employ a lightweight neural shader to reduce the expense of computation and further support real-time rendering on common mobile devices. Extensive experiments demonstrate that our method can reconstruct high-quality appearance and accurate mesh on both synthetic and real-world datasets. Moreover, our method can be trained in just 1-2 hours using a single GPU and run on mobile devices at over 40 FPS (Frames Per Second), with a final package required for rendering taking up only 40-50 MB.
TextureSAM: Towards a Texture Aware Foundation Model for Segmentation
Segment Anything Models (SAM) have achieved remarkable success in object segmentation tasks across diverse datasets. However, these models are predominantly trained on large-scale semantic segmentation datasets, which introduce a bias toward object shape rather than texture cues in the image. This limitation is critical in domains such as medical imaging, material classification, and remote sensing, where texture changes define object boundaries. In this study, we investigate SAM's bias toward semantics over textures and introduce a new texture-aware foundation model, TextureSAM, which performs superior segmentation in texture-dominant scenarios. To achieve this, we employ a novel fine-tuning approach that incorporates texture augmentation techniques, incrementally modifying training images to emphasize texture features. By leveraging a novel texture-alternation of the ADE20K dataset, we guide TextureSAM to prioritize texture-defined regions, thereby mitigating the inherent shape bias present in the original SAM model. Our extensive experiments demonstrate that TextureSAM significantly outperforms SAM-2 on both natural (+0.2 mIoU) and synthetic (+0.18 mIoU) texture-based segmentation datasets. The code and texture-augmented dataset will be publicly available.
Metropolis Theorem and Its Applications in Single Image Detail Enhancement
Traditional image detail enhancement is local filter-based or global filter-based. In both approaches, the original image is first divided into the base layer and the detail layer, and then the enhanced image is obtained by amplifying the detail layer. Our method is different, and its innovation lies in the special way to get the image detail layer. The detail layer in our method is obtained by updating the residual features, and the updating mechanism is usually based on searching and matching similar patches. However, due to the diversity of image texture features, perfect matching is often not possible. In this paper, the process of searching and matching is treated as a thermodynamic process, where the Metropolis theorem can minimize the internal energy and get the global optimal solution of this task, that is, to find a more suitable feature for a better detail enhancement performance. Extensive experiments have proven that our algorithm can achieve better results in quantitative metrics testing and visual effects evaluation. The source code can be obtained from the link.
DreamPolisher: Towards High-Quality Text-to-3D Generation via Geometric Diffusion
We present DreamPolisher, a novel Gaussian Splatting based method with geometric guidance, tailored to learn cross-view consistency and intricate detail from textual descriptions. While recent progress on text-to-3D generation methods have been promising, prevailing methods often fail to ensure view-consistency and textural richness. This problem becomes particularly noticeable for methods that work with text input alone. To address this, we propose a two-stage Gaussian Splatting based approach that enforces geometric consistency among views. Initially, a coarse 3D generation undergoes refinement via geometric optimization. Subsequently, we use a ControlNet driven refiner coupled with the geometric consistency term to improve both texture fidelity and overall consistency of the generated 3D asset. Empirical evaluations across diverse textual prompts spanning various object categories demonstrate the efficacy of DreamPolisher in generating consistent and realistic 3D objects, aligning closely with the semantics of the textual instructions.
