new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

PRES: Toward Scalable Memory-Based Dynamic Graph Neural Networks

Memory-based Dynamic Graph Neural Networks (MDGNNs) are a family of dynamic graph neural networks that leverage a memory module to extract, distill, and memorize long-term temporal dependencies, leading to superior performance compared to memory-less counterparts. However, training MDGNNs faces the challenge of handling entangled temporal and structural dependencies, requiring sequential and chronological processing of data sequences to capture accurate temporal patterns. During the batch training, the temporal data points within the same batch will be processed in parallel, while their temporal dependencies are neglected. This issue is referred to as temporal discontinuity and restricts the effective temporal batch size, limiting data parallelism and reducing MDGNNs' flexibility in industrial applications. This paper studies the efficient training of MDGNNs at scale, focusing on the temporal discontinuity in training MDGNNs with large temporal batch sizes. We first conduct a theoretical study on the impact of temporal batch size on the convergence of MDGNN training. Based on the analysis, we propose PRES, an iterative prediction-correction scheme combined with a memory coherence learning objective to mitigate the effect of temporal discontinuity, enabling MDGNNs to be trained with significantly larger temporal batches without sacrificing generalization performance. Experimental results demonstrate that our approach enables up to a 4x larger temporal batch (3.4x speed-up) during MDGNN training.

  • 3 authors
·
Feb 5, 2024

Un-Mixing Test-Time Normalization Statistics: Combatting Label Temporal Correlation

Recent test-time adaptation methods heavily rely on nuanced adjustments of batch normalization (BN) parameters. However, one critical assumption often goes overlooked: that of independently and identically distributed (i.i.d.) test batches with respect to unknown labels. This oversight leads to skewed BN statistics and undermines the reliability of the model under non-i.i.d. scenarios. To tackle this challenge, this paper presents a novel method termed 'Un-Mixing Test-Time Normalization Statistics' (UnMix-TNS). Our method re-calibrates the statistics for each instance within a test batch by mixing it with multiple distinct statistics components, thus inherently simulating the i.i.d. scenario. The core of this method hinges on a distinctive online unmixing procedure that continuously updates these statistics components by incorporating the most similar instances from new test batches. Remarkably generic in its design, UnMix-TNS seamlessly integrates with a wide range of leading test-time adaptation methods and pre-trained architectures equipped with BN layers. Empirical evaluations corroborate the robustness of UnMix-TNS under varied scenarios-ranging from single to continual and mixed domain shifts, particularly excelling with temporally correlated test data and corrupted non-i.i.d. real-world streams. This adaptability is maintained even with very small batch sizes or single instances. Our results highlight UnMix-TNS's capacity to markedly enhance stability and performance across various benchmarks. Our code is publicly available at https://github.com/devavratTomar/unmixtns.

  • 4 authors
·
Jan 16, 2024

ReMoMask: Retrieval-Augmented Masked Motion Generation

Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions. However, current approaches face dual challenges: Generative models (e.g., diffusion models) suffer from limited diversity, error accumulation, and physical implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit diffusion inertia, partial-mode collapse, and asynchronous artifacts. To address these limitations, we propose ReMoMask, a unified framework integrating three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates minor unconditional generation to enhance generalization. Built upon MoMask's RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal steps. Extensive experiments on standard benchmarks demonstrate the state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97% improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to the previous SOTA method RAG-T2M. Code: https://github.com/AIGeeksGroup/ReMoMask. Website: https://aigeeksgroup.github.io/ReMoMask.

  • 4 authors
·
Aug 4, 2025 2