4 HTSC-2025: A Benchmark Dataset of Ambient-Pressure High-Temperature Superconductors for AI-Driven Critical Temperature Prediction The discovery of high-temperature superconducting materials holds great significance for human industry and daily life. In recent years, research on predicting superconducting transition temperatures using artificial intelligence~(AI) has gained popularity, with most of these tools claiming to achieve remarkable accuracy. However, the lack of widely accepted benchmark datasets in this field has severely hindered fair comparisons between different AI algorithms and impeded further advancement of these methods. In this work, we present the HTSC-2025, an ambient-pressure high-temperature superconducting benchmark dataset. This comprehensive compilation encompasses theoretically predicted superconducting materials discovered by theoretical physicists from 2023 to 2025 based on BCS superconductivity theory, including the renowned X_2YH_6 system, perovskite MXH_3 system, M_3XH_8 system, cage-like BCN-doped metal atomic systems derived from LaH_{10} structural evolution, and two-dimensional honeycomb-structured systems evolving from MgB_2. The HTSC-2025 benchmark has been open-sourced at https://github.com/xqh19970407/HTSC-2025 and will be continuously updated. This benchmark holds significant importance for accelerating the discovery of superconducting materials using AI-based methods. 6 authors · Jun 4, 2025 2
1 AtomGPT: Atomistic Generative Pre-trained Transformer for Forward and Inverse Materials Design Large language models (LLMs) such as generative pretrained transformers (GPTs) have shown potential for various commercial applications, but their applicability for materials design remains underexplored. In this article, we introduce AtomGPT, a model specifically developed for materials design based on transformer architectures, to demonstrate the capability for both atomistic property prediction and structure generation. We show that a combination of chemical and structural text descriptions can efficiently predict material properties with accuracy comparable to graph neural network models, including formation energies, electronic bandgaps from two different methods and superconducting transition temperatures. Furthermore, we demonstrate that AtomGPT can generate atomic structures for tasks such as designing new superconductors, with the predictions validated through density functional theory calculations. This work paves the way for leveraging LLMs in forward and inverse materials design, offering an efficient approach to the discovery and optimization of materials. 1 authors · May 6, 2024
- Enhancing $T_{\mathrm{c}}$ in a composite superconductor/metal bilayer system: a dynamical cluster approximation study It has been proposed that the superconducting transition temperature T_{c} of an unconventional superconductor with a large pairing scale but strong phase fluctuations can be enhanced by coupling it to a metal. However, the general efficacy of this approach across different parameter regimes remains an open question. Using the dynamical cluster approximation, we study this question in a system composed of an attractive Hubbard layer in the intermediate coupling regime, where the magnitude of the attractive Coulomb interaction |U| is slightly larger than the bandwidth W, hybridized with a noninteracting metallic layer. We find that while the superconducting transition becomes more mean-field-like with increasing interlayer hopping, the superconducting transition temperature T_{c} exhibits a nonmonotonic dependence on the strength of the hybridization t_{perp}. This behavior arises from a reduction of the effective pairing interaction in the correlated layer that out-competes the growth in the intrinsic pair-field susceptibility induced by the coupling to the metallic layer. We find that the largest T_{c} inferred here for the composite system is below the maximum value currently estimated for the isolated negative-U Hubbard model. 3 authors · Mar 10, 2022
- Measuring Casimir Force Across a Superconducting Transition The Casimir effect and superconductivity are foundational quantum phenomena whose interaction remains an open question in physics. How Casimir forces behave across a superconducting transition remains unresolved, owing to the experimental difficulty of achieving alignment, cryogenic environments, and isolating small changes from competing effects. This question carries implications for electron physics, quantum gravity, and high-temperature superconductivity. Here we demonstrate an on-chip superconducting platform that overcomes these challenges, achieving one of the most parallel Casimir configurations to date. Our microchip-based cavities achieve unprecedented area-to-separation ratio between plates, exceeding previous Casimir experiments by orders of magnitude and generating the strongest Casimir forces yet between compliant surfaces. Scanning tunneling microscopy (STM) is used for the first time to directly detect the resonant motion of a suspended membrane, with subatomic precision in both lateral positioning and displacement. Such precision measurements across a superconducting transition allow for the suppression of all van der Waals, electrostatic, and thermal effects. Preliminary measurements suggest superconductivity-dependent shifts in the Casimir force, motivating further investigation and comparison with theories. By uniting extreme parallelism, nanomechanics, and STM readout, our platform opens a new experimental frontier at the intersection of Casimir physics and superconductivity. 7 authors · Apr 14, 2025
- Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity We construct holographic superconductors from Einstein-Maxwell-dilaton gravity in 3+1 dimensions with two adjustable couplings alpha and the charge q carried by the scalar field. For the values of alpha and q we consider, there is always a critical temperature at which a second order phase transition occurs between a hairy black hole and the AdS RN black hole in the canonical ensemble, which can be identified with the superconducting phase transition of the dual field theory. We calculate the electric conductivity of the dual superconductor and find that for the values of alpha and q where alpha/q is small the dual superconductor has similar properties to the minimal model, while for the values of alpha and q where alpha/q is large enough, the electric conductivity of the dual superconductor exhibits novel properties at low frequencies where it shows a "Drude Peak" in the real part of the conductivity. 2 authors · Jun 14, 2010
- First Order Quantum Phase Transition in the Hybrid Metal-Mott Insulator Transition Metal Dichalcogenide 4Hb-TaS2 Coupling together distinct correlated and topologically non-trivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here we investigate the compound 4Hb-TaS_2 that interleaves the Mott-insulating state of 1T-TaS_2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS_2 and the low temperature superconducting phase it harbors. We reveal a thermodynamic phase diagram that hosts a first order quantum phase transition between a correlated Kondo cluster state and a flat band state in which the Kondo cluster becomes depleted. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo cluster and the flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein. 11 authors · Mar 2, 2023