new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

A Hierarchical Framework for Humanoid Locomotion with Supernumerary Limbs

The integration of Supernumerary Limbs (SLs) on humanoid robots poses a significant stability challenge due to the dynamic perturbations they introduce. This thesis addresses this issue by designing a novel hierarchical control architecture to improve humanoid locomotion stability with SLs. The core of this framework is a decoupled strategy that combines learning-based locomotion with model-based balancing. The low-level component consists of a walking gait for a Unitree H1 humanoid through imitation learning and curriculum learning. The high-level component actively utilizes the SLs for dynamic balancing. The effectiveness of the system is evaluated in a physics-based simulation under three conditions: baseline gait for an unladen humanoid (baseline walking), walking with a static SL payload (static payload), and walking with the active dynamic balancing controller (dynamic balancing). Our evaluation shows that the dynamic balancing controller improves stability. Compared to the static payload condition, the balancing strategy yields a gait pattern closer to the baseline and decreases the Dynamic Time Warping (DTW) distance of the CoM trajectory by 47\%. The balancing controller also improves the re-stabilization within gait cycles and achieves a more coordinated anti-phase pattern of Ground Reaction Forces (GRF). The results demonstrate that a decoupled, hierarchical design can effectively mitigate the internal dynamic disturbances arising from the mass and movement of the SLs, enabling stable locomotion for humanoids equipped with functional limbs. Code and videos are available here: https://github.com/heyzbw/HuSLs.

Learning to Stabilize Faces

Nowadays, it is possible to scan faces and automatically register them with high quality. However, the resulting face meshes often need further processing: we need to stabilize them to remove unwanted head movement. Stabilization is important for tasks like game development or movie making which require facial expressions to be cleanly separated from rigid head motion. Since manual stabilization is labor-intensive, there have been attempts to automate it. However, previous methods remain impractical: they either still require some manual input, produce imprecise alignments, rely on dubious heuristics and slow optimization, or assume a temporally ordered input. Instead, we present a new learning-based approach that is simple and fully automatic. We treat stabilization as a regression problem: given two face meshes, our network directly predicts the rigid transform between them that brings their skulls into alignment. We generate synthetic training data using a 3D Morphable Model (3DMM), exploiting the fact that 3DMM parameters separate skull motion from facial skin motion. Through extensive experiments we show that our approach outperforms the state-of-the-art both quantitatively and qualitatively on the tasks of stabilizing discrete sets of facial expressions as well as dynamic facial performances. Furthermore, we provide an ablation study detailing the design choices and best practices to help others adopt our approach for their own uses. Supplementary videos can be found on the project webpage syntec-research.github.io/FaceStab.

  • 7 authors
·
Nov 22, 2024

Fast Full-frame Video Stabilization with Iterative Optimization

Video stabilization refers to the problem of transforming a shaky video into a visually pleasing one. The question of how to strike a good trade-off between visual quality and computational speed has remained one of the open challenges in video stabilization. Inspired by the analogy between wobbly frames and jigsaw puzzles, we propose an iterative optimization-based learning approach using synthetic datasets for video stabilization, which consists of two interacting submodules: motion trajectory smoothing and full-frame outpainting. First, we develop a two-level (coarse-to-fine) stabilizing algorithm based on the probabilistic flow field. The confidence map associated with the estimated optical flow is exploited to guide the search for shared regions through backpropagation. Second, we take a divide-and-conquer approach and propose a novel multiframe fusion strategy to render full-frame stabilized views. An important new insight brought about by our iterative optimization approach is that the target video can be interpreted as the fixed point of nonlinear mapping for video stabilization. We formulate video stabilization as a problem of minimizing the amount of jerkiness in motion trajectories, which guarantees convergence with the help of fixed-point theory. Extensive experimental results are reported to demonstrate the superiority of the proposed approach in terms of computational speed and visual quality. The code will be available on GitHub.

  • 7 authors
·
Jul 24, 2023