- Coherent shuttle of electron-spin states We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip. 5 authors · Jan 3, 2017
- Kohn-Luttinger mechanism driven exotic topological superconductivity on the Penrose lattice The Kohn-Luttinger mechanism for unconventional superconductivity (SC) driven by weak repulsive electron-electron interactions on a periodic lattice is generalized to the quasicrystal (QC) via a real-space perturbative approach. The repulsive Hubbard model on the Penrose lattice is studied as an example, on which a classification of the pairing symmetries is performed and a pairing phase diagram is obtained. Two remarkable properties of these pairing states are revealed, due to the combination of the presence of the point-group symmetry and the lack of translation symmetry on this lattice. Firstly, the spin and spacial angular momenta of a Cooper pair is de-correlated: for each pairing symmetry, both spin-singlet and spin-triplet pairings are possible even in the weak-pairing limit. Secondly, the pairing states belonging to the 2D irreducible representations of the D_5 point group can be time-reversal-symmetry-breaking topological SCs carrying spontaneous bulk super current and spontaneous vortices. These two remarkable properties are general for the SCs on all QCs, and are rare on periodic lattices. Our work starts the new area of unconventional SCs driven by repulsive interactions on the QC. 6 authors · Jan 20, 2020
- Single replica spin-glass phase detection using field variation and machine learning The Sherrington-Kirkpatrick spin-glass model used the replica symmetry method to find the phase transition of the system. In 1979-1980, Parisi proposed a solution based on replica symmetry breaking (RSB), which allowed him to identify the underlying phases of complex systems such as spin-glasses. Regardless of the method used for detection, the intrinsic phase of a system exists whether or not replicas are considered. We introduce a single replica method of spin-glass phase detection using the field's variation experienced by each spin in a system configuration. This method focuses on a single replica with quenched random couplings. Each spin inevitably observes a different field from the others. Our results show that the mean and variance of fields named "Spontaneous Configurational Field" experienced by spins are suitable indicators to explore different ferromagnetic, paramagnetic, and mixed phases. To classify different phases of the system with defined indicators we have developed an algorithm based on machine learning to analyze the desired samples. 4 authors · Nov 7, 2024
- Sub-second spin and lifetime-limited optical coherences in $^{171}$Yb$^{3+}$:CaWO$_4$ Optically addressable solid-state spins have been extensively studied for quantum technologies, offering unique advantages for quantum computing, communication, and sensing. Advancing these applications is generally limited by finding materials that simultaneously provide lifetime-limited optical and long spin coherences. Here, we introduce ^{171}Yb^{3+} ions doped into a CaWO_4 crystal. We perform high-resolution spectroscopy of the excited state, and demonstrate all-optical coherent control of the electron-nuclear spin ensemble. We find narrow inhomogeneous broadening of the optical transitions of 185 MHz and radiative-lifetime-limited coherence time up to 0.75 ms. Next to this, we measure a spin-transition ensemble line width of 5 kHz and electron-nuclear spin coherence time reaching 0.15 seconds at zero magnetic field between 50 mK and 1 K temperatures. These results demonstrate the potential of ^{171}Yb^{3+}:CaWO_4 as a low-noise platform for building quantum technologies with ensemble-based memories, microwave-to-optical transducers, and optically addressable single-ion spin qubits. 11 authors · Apr 2, 2025
44 SPIN-Bench: How Well Do LLMs Plan Strategically and Reason Socially? Reasoning and strategic behavior in social interactions is a hallmark of intelligence. This form of reasoning is significantly more sophisticated than isolated planning or reasoning tasks in static settings (e.g., math problem solving). In this paper, we present Strategic Planning, Interaction, and Negotiation (SPIN-Bench), a new multi-domain evaluation designed to measure the intelligence of strategic planning and social reasoning. While many existing benchmarks focus on narrow planning or single-agent reasoning, SPIN-Bench combines classical PDDL tasks, competitive board games, cooperative card games, and multi-agent negotiation scenarios in one unified framework. The framework includes both a benchmark as well as an arena to simulate and evaluate the variety of social settings to test reasoning and strategic behavior of AI agents. We formulate the benchmark SPIN-Bench by systematically varying action spaces, state complexity, and the number of interacting agents to simulate a variety of social settings where success depends on not only methodical and step-wise decision making, but also conceptual inference of other (adversarial or cooperative) participants. Our experiments reveal that while contemporary LLMs handle basic fact retrieval and short-range planning reasonably well, they encounter significant performance bottlenecks in tasks requiring deep multi-hop reasoning over large state spaces and socially adept coordination under uncertainty. We envision SPIN-Bench as a catalyst for future research on robust multi-agent planning, social reasoning, and human--AI teaming. 8 authors · Mar 16, 2025 3
- SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting with Neural Radiance Fields Neural Radiance Fields (NeRFs) have emerged as a popular approach for novel view synthesis. While NeRFs are quickly being adapted for a wider set of applications, intuitively editing NeRF scenes is still an open challenge. One important editing task is the removal of unwanted objects from a 3D scene, such that the replaced region is visually plausible and consistent with its context. We refer to this task as 3D inpainting. In 3D, solutions must be both consistent across multiple views and geometrically valid. In this paper, we propose a novel 3D inpainting method that addresses these challenges. Given a small set of posed images and sparse annotations in a single input image, our framework first rapidly obtains a 3D segmentation mask for a target object. Using the mask, a perceptual optimizationbased approach is then introduced that leverages learned 2D image inpainters, distilling their information into 3D space, while ensuring view consistency. We also address the lack of a diverse benchmark for evaluating 3D scene inpainting methods by introducing a dataset comprised of challenging real-world scenes. In particular, our dataset contains views of the same scene with and without a target object, enabling more principled benchmarking of the 3D inpainting task. We first demonstrate the superiority of our approach on multiview segmentation, comparing to NeRFbased methods and 2D segmentation approaches. We then evaluate on the task of 3D inpainting, establishing state-ofthe-art performance against other NeRF manipulation algorithms, as well as a strong 2D image inpainter baseline. Project Page: https://spinnerf3d.github.io 7 authors · Nov 22, 2022
- Nuclear spin-lattice relaxation time in UCoGe The NMR measurements performed on a single orthorhombic crystal of superconducting ferromagnet UCoGe (Y.Ihara et al, Phys. Rev. Lett. v.105, 206403 (2010)) demonstrate strongly anisotropic magnetic properties of this material. The presented calculations allow to establish the dependence of longitudinal spin-lattice relaxation rate from temperature and magnetic field. The value 1/T_1T in field perpendicular to spontaneous magnetisation directed along c-axis has maximum in vicinity of Curie temperature whereas it does not reveal similar behaviour in field parallel to the direction of spontaneous magnetisation. Also there was shown that the longitudinal spin-lattice relaxation rate is strongly field dependent when the field directed in b-crystallographic direction but field independent if magnetic field is oriented along a-axis. 1 authors · Jun 21, 2021
- Quantum Spin Glass in the Two-Dimensional Disordered Heisenberg Model via Foundation Neural-Network Quantum States We investigate the two-dimensional frustrated quantum Heisenberg model with bond disorder on nearest-neighbor couplings using the recently introduced Foundation Neural-Network Quantum States framework, which enables accurate and efficient computation of disorder-averaged observables with a single variational optimization. Simulations on large lattices reveal an extended region of the phase diagram where long-range magnetic order vanishes in the thermodynamic limit, while the overlap order parameter, which characterizes quantum spin glass states, remains finite. These findings, supported by a semiclassical analysis based on a large-spin expansion, provide compelling evidence that the spin glass phase is stable against quantum fluctuations, unlike the classical case where it disappears at any finite temperature. 7 authors · Jul 7, 2025
19 DrawingSpinUp: 3D Animation from Single Character Drawings Animating various character drawings is an engaging visual content creation task. Given a single character drawing, existing animation methods are limited to flat 2D motions and thus lack 3D effects. An alternative solution is to reconstruct a 3D model from a character drawing as a proxy and then retarget 3D motion data onto it. However, the existing image-to-3D methods could not work well for amateur character drawings in terms of appearance and geometry. We observe the contour lines, commonly existing in character drawings, would introduce significant ambiguity in texture synthesis due to their view-dependence. Additionally, thin regions represented by single-line contours are difficult to reconstruct (e.g., slim limbs of a stick figure) due to their delicate structures. To address these issues, we propose a novel system, DrawingSpinUp, to produce plausible 3D animations and breathe life into character drawings, allowing them to freely spin up, leap, and even perform a hip-hop dance. For appearance improvement, we adopt a removal-then-restoration strategy to first remove the view-dependent contour lines and then render them back after retargeting the reconstructed character. For geometry refinement, we develop a skeleton-based thinning deformation algorithm to refine the slim structures represented by the single-line contours. The experimental evaluations and a perceptual user study show that our proposed method outperforms the existing 2D and 3D animation methods and generates high-quality 3D animations from a single character drawing. Please refer to our project page (https://lordliang.github.io/DrawingSpinUp) for the code and generated animations. 4 authors · Sep 13, 2024 2
- AQCat25: Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis Large-scale datasets have enabled highly accurate machine learning interatomic potentials (MLIPs) for general-purpose heterogeneous catalysis modeling. There are, however, some limitations in what can be treated with these potentials because of gaps in the underlying training data. To extend these capabilities, we introduce AQCat25, a complementary dataset of 13.5 million density functional theory (DFT) single point calculations designed to improve the treatment of systems where spin polarization and/or higher fidelity are critical. We also investigate methodologies for integrating new datasets, such as AQCat25, with the broader Open Catalyst 2020 (OC20) dataset to create spin-aware models without sacrificing generalizability. We find that directly tuning a general model on AQCat25 leads to catastrophic forgetting of the original dataset's knowledge. Conversely, joint training strategies prove effective for improving accuracy on the new data without sacrificing general performance. This joint approach introduces a challenge, as the model must learn from a dataset containing both mixed-fidelity calculations and mixed-physics (spin-polarized vs. unpolarized). We show that explicitly conditioning the model on this system-specific metadata, for example by using Feature-wise Linear Modulation (FiLM), successfully addresses this challenge and further enhances model accuracy. Ultimately, our work establishes an effective protocol for bridging DFT fidelity domains to advance the predictive power of foundational models in catalysis. 3 authors · Oct 26, 2025
- Enhanced Spectral Density of a Single Germanium Vacancy Center in a Nanodiamond by Cavity-Integration Color centers in diamond, among them the negatively-charged germanium vacancy (GeV^-), are promising candidates for many applications of quantum optics such as a quantum network. For efficient implementation, the optical transitions need to be coupled to a single optical mode. Here, we demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P\'erot microcavity by nanomanipulation utilizing an atomic force microscope. Coupling of the GeV- defect to the cavity mode is achieved, while the optical resonator maintains a high finesse of F = 7,700 and a 48-fold spectral density enhancement is observed. This article demonstrates the integration of a GeV- defect with a Fabry-P\'erot microcavity under ambient conditions with the potential to extend the experiments to cryogenic temperatures towards an efficient spin-photon platform. 9 authors · Jul 3, 2023
- Experimental demonstration of memory-enhanced quantum communication The ability to communicate quantum information over long distances is of central importance in quantum science and engineering. For example, it enables secure quantum key distribution (QKD) relying on fundamental principles that prohibit the "cloning" of unknown quantum states. While QKD is being successfully deployed, its range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising its unconditional security. Alternatively, quantum repeaters, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we report the experimental realization of memory-enhanced quantum communication. We use a single solid-state spin memory integrated in a nanophotonic diamond resonator to implement asynchronous Bell-state measurements. This enables a four-fold increase in the secret key rate of measurement device independent (MDI)-QKD over the loss-equivalent direct-transmission method while operating megahertz clock rates. Our results represent a significant step towards practical quantum repeaters and large-scale quantum networks. 11 authors · Sep 3, 2019
- BeyondMimic: From Motion Tracking to Versatile Humanoid Control via Guided Diffusion The human-like form of humanoid robots positions them uniquely to achieve the agility and versatility in motor skills that humans possess. Learning from human demonstrations offers a scalable approach to acquiring these capabilities. However, prior works either produce unnatural motions or rely on motion-specific tuning to achieve satisfactory naturalness. Furthermore, these methods are often motion- or goal-specific, lacking the versatility to compose diverse skills, especially when solving unseen tasks. We present BeyondMimic, a framework that scales to diverse motions and carries the versatility to compose them seamlessly in tackling unseen downstream tasks. At heart, a compact motion-tracking formulation enables mastering a wide range of radically agile behaviors, including aerial cartwheels, spin-kicks, flip-kicks, and sprinting, with a single setup and shared hyperparameters, all while achieving state-of-the-art human-like performance. Moving beyond the mere imitation of existing motions, we propose a unified latent diffusion model that empowers versatile goal specification, seamless task switching, and dynamic composition of these agile behaviors. Leveraging classifier guidance, a diffusion-specific technique for test-time optimization toward novel objectives, our model extends its capability to solve downstream tasks never encountered during training, including motion inpainting, joystick teleoperation, and obstacle avoidance, and transfers these skills zero-shot to real hardware. This work opens new frontiers for humanoid robots by pushing the limits of scalable human-like motor skill acquisition from human motion and advancing seamless motion synthesis that achieves generalization and versatility beyond training setups. 7 authors · Aug 11, 2025