1 MetaShadow: Object-Centered Shadow Detection, Removal, and Synthesis Shadows are often under-considered or even ignored in image editing applications, limiting the realism of the edited results. In this paper, we introduce MetaShadow, a three-in-one versatile framework that enables detection, removal, and controllable synthesis of shadows in natural images in an object-centered fashion. MetaShadow combines the strengths of two cooperative components: Shadow Analyzer, for object-centered shadow detection and removal, and Shadow Synthesizer, for reference-based controllable shadow synthesis. Notably, we optimize the learning of the intermediate features from Shadow Analyzer to guide Shadow Synthesizer to generate more realistic shadows that blend seamlessly with the scene. Extensive evaluations on multiple shadow benchmark datasets show significant improvements of MetaShadow over the existing state-of-the-art methods on object-centered shadow detection, removal, and synthesis. MetaShadow excels in image-editing tasks such as object removal, relocation, and insertion, pushing the boundaries of object-centered image editing. 10 authors · Dec 3, 2024
- SCOTCH and SODA: A Transformer Video Shadow Detection Framework Shadows in videos are difficult to detect because of the large shadow deformation between frames. In this work, we argue that accounting for shadow deformation is essential when designing a video shadow detection method. To this end, we introduce the shadow deformation attention trajectory (SODA), a new type of video self-attention module, specially designed to handle the large shadow deformations in videos. Moreover, we present a new shadow contrastive learning mechanism (SCOTCH) which aims at guiding the network to learn a unified shadow representation from massive positive shadow pairs across different videos. We demonstrate empirically the effectiveness of our two contributions in an ablation study. Furthermore, we show that SCOTCH and SODA significantly outperforms existing techniques for video shadow detection. Code is available at the project page: https://lihaoliu-cambridge.github.io/scotch_and_soda/ 7 authors · Nov 13, 2022
- AdapterShadow: Adapting Segment Anything Model for Shadow Detection Segment anything model (SAM) has shown its spectacular performance in segmenting universal objects, especially when elaborate prompts are provided. However, the drawback of SAM is twofold. On the first hand, it fails to segment specific targets, e.g., shadow images or lesions in medical images. On the other hand, manually specifying prompts is extremely time-consuming. To overcome the problems, we propose AdapterShadow, which adapts SAM model for shadow detection. To adapt SAM for shadow images, trainable adapters are inserted into the frozen image encoder of SAM, since the training of the full SAM model is both time and memory consuming. Moreover, we introduce a novel grid sampling method to generate dense point prompts, which helps to automatically segment shadows without any manual interventions. Extensive experiments are conducted on four widely used benchmark datasets to demonstrate the superior performance of our proposed method. Codes will are publicly available at https://github.com/LeipingJie/AdapterShadow. 2 authors · Nov 15, 2023
- SILT: Shadow-aware Iterative Label Tuning for Learning to Detect Shadows from Noisy Labels Existing shadow detection datasets often contain missing or mislabeled shadows, which can hinder the performance of deep learning models trained directly on such data. To address this issue, we propose SILT, the Shadow-aware Iterative Label Tuning framework, which explicitly considers noise in shadow labels and trains the deep model in a self-training manner. Specifically, we incorporate strong data augmentations with shadow counterfeiting to help the network better recognize non-shadow regions and alleviate overfitting. We also devise a simple yet effective label tuning strategy with global-local fusion and shadow-aware filtering to encourage the network to make significant refinements on the noisy labels. We evaluate the performance of SILT by relabeling the test set of the SBU dataset and conducting various experiments. Our results show that even a simple U-Net trained with SILT can outperform all state-of-the-art methods by a large margin. When trained on SBU / UCF / ISTD, our network can successfully reduce the Balanced Error Rate by 25.2% / 36.9% / 21.3% over the best state-of-the-art method. 4 authors · Aug 23, 2023
- SAM Fails to Segment Anything? -- SAM-Adapter: Adapting SAM in Underperformed Scenes: Camouflage, Shadow, Medical Image Segmentation, and More The emergence of large models, also known as foundation models, has brought significant advancements to AI research. One such model is Segment Anything (SAM), which is designed for image segmentation tasks. However, as with other foundation models, our experimental findings suggest that SAM may fail or perform poorly in certain segmentation tasks, such as shadow detection and camouflaged object detection (concealed object detection). This study first paves the way for applying the large pre-trained image segmentation model SAM to these downstream tasks, even in situations where SAM performs poorly. Rather than fine-tuning the SAM network, we propose SAM-Adapter, which incorporates domain-specific information or visual prompts into the segmentation network by using simple yet effective adapters. By integrating task-specific knowledge with general knowledge learnt by the large model, SAM-Adapter can significantly elevate the performance of SAM in challenging tasks as shown in extensive experiments. We can even outperform task-specific network models and achieve state-of-the-art performance in the task we tested: camouflaged object detection, shadow detection. We also tested polyp segmentation (medical image segmentation) and achieves better results. We believe our work opens up opportunities for utilizing SAM in downstream tasks, with potential applications in various fields, including medical image processing, agriculture, remote sensing, and more. 9 authors · Apr 18, 2023
- Gibberish is All You Need for Membership Inference Detection in Contrastive Language-Audio Pretraining Audio can disclose PII, particularly when combined with related text data. Therefore, it is essential to develop tools to detect privacy leakage in Contrastive Language-Audio Pretraining(CLAP). Existing MIAs need audio as input, risking exposure of voiceprint and requiring costly shadow models. We first propose PRMID, a membership inference detector based probability ranking given by CLAP, which does not require training shadow models but still requires both audio and text of the individual as input. To address these limitations, we then propose USMID, a textual unimodal speaker-level membership inference detector, querying the target model using only text data. We randomly generate textual gibberish that are clearly not in training dataset. Then we extract feature vectors from these texts using the CLAP model and train a set of anomaly detectors on them. During inference, the feature vector of each test text is input into the anomaly detector to determine if the speaker is in the training set (anomalous) or not (normal). If available, USMID can further enhance detection by integrating real audio of the tested speaker. Extensive experiments on various CLAP model architectures and datasets demonstrate that USMID outperforms baseline methods using only text data. 5 authors · Oct 23, 2024
- WASP-180Ab: Doppler tomography of an hot Jupiter orbiting the primary star in a visual binary We report the discovery and characterisation of WASP-180Ab, a hot Jupiter confirmed by the detection of its Doppler shadow and by measuring its mass using radial velocities. We find the 0.9 pm 0.1 M_{rm Jup}, 1.24 pm 0.04 R_{rm Jup} planet to be in a misaligned, retrograde orbit around an F7 star with T_{rm eff} = 6500K and a moderate rotation speed of vsini = 19.9 km s^{-1}. The host star is the primary of a V = 10.7 binary, where a secondary separated by 5'' (sim1200 AU) contributes sim30% of the light. WASP-180Ab therefore adds to a small sample of transiting hot Jupiters known in binary systems. A 4.6-day modulation seen in the WASP data is likely to be the rotational modulation of the companion star, WASP-180B. 29 authors · Mar 19, 2019