new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Holi-DETR: Holistic Fashion Item Detection Leveraging Contextual Information

Fashion item detection is challenging due to the ambiguities introduced by the highly diverse appearances of fashion items and the similarities among item subcategories. To address this challenge, we propose a novel Holistic Detection Transformer (Holi-DETR) that detects fashion items in outfit images holistically, by leveraging contextual information. Fashion items often have meaningful relationships as they are combined to create specific styles. Unlike conventional detectors that detect each item independently, Holi-DETR detects multiple items while reducing ambiguities by leveraging three distinct types of contextual information: (1) the co-occurrence relationship between fashion items, (2) the relative position and size based on inter-item spatial arrangements, and (3) the spatial relationships between items and human body key-points. %Holi-DETR explicitly incorporates three types of contextual information: (1) the co-occurrence probability between fashion items, (2) the relative position and size based on inter-item spatial arrangements, and (3) the spatial relationships between items and human body key-points. To this end, we propose a novel architecture that integrates these three types of heterogeneous contextual information into the Detection Transformer (DETR) and its subsequent models. In experiments, the proposed methods improved the performance of the vanilla DETR and the more recently developed Co-DETR by 3.6 percent points (pp) and 1.1 pp, respectively, in terms of average precision (AP).

  • 3 authors
·
Dec 29, 2025

Large Reasoning Embedding Models: Towards Next-Generation Dense Retrieval Paradigm

In modern e-commerce search systems, dense retrieval has become an indispensable component. By computing similarities between query and item (product) embeddings, it efficiently selects candidate products from large-scale repositories. With the breakthroughs in large language models (LLMs), mainstream embedding models have gradually shifted from BERT to LLMs for more accurate text modeling. However, these models still adopt direct-embedding methods, and the semantic accuracy of embeddings remains inadequate. Therefore, contrastive learning is heavily employed to achieve tight semantic alignment between positive pairs. Consequently, such models tend to capture statistical co-occurrence patterns in the training data, biasing them toward shallow lexical and semantic matches. For difficult queries exhibiting notable lexical disparity from target items, the performance degrades significantly. In this work, we propose the Large Reasoning Embedding Model (LREM), which novelly integrates reasoning processes into representation learning. For difficult queries, LREM first conducts reasoning to achieve a deep understanding of the original query, and then produces a reasoning-augmented query embedding for retrieval. This reasoning process effectively bridges the semantic gap between original queries and target items, significantly improving retrieval accuracy. Specifically, we adopt a two-stage training process: the first stage optimizes the LLM on carefully curated Query-CoT-Item triplets with SFT and InfoNCE losses to establish preliminary reasoning and embedding capabilities, and the second stage further refines the reasoning trajectories via reinforcement learning (RL). Extensive offline and online experiments validate the effectiveness of LREM, leading to its deployment on China's largest e-commerce platform since August 2025.

  • 6 authors
·
Oct 16, 2025