- Self-supervised Learning of Geometrically Stable Features Through Probabilistic Introspection Self-supervision can dramatically cut back the amount of manually-labelled data required to train deep neural networks. While self-supervision has usually been considered for tasks such as image classification, in this paper we aim at extending it to geometry-oriented tasks such as semantic matching and part detection. We do so by building on several recent ideas in unsupervised landmark detection. Our approach learns dense distinctive visual descriptors from an unlabelled dataset of images using synthetic image transformations. It does so by means of a robust probabilistic formulation that can introspectively determine which image regions are likely to result in stable image matching. We show empirically that a network pre-trained in this manner requires significantly less supervision to learn semantic object parts compared to numerous pre-training alternatives. We also show that the pre-trained representation is excellent for semantic object matching. 4 authors · Apr 4, 2018
1 Edit2Perceive: Image Editing Diffusion Models Are Strong Dense Perceivers Recent advances in diffusion transformers have shown remarkable generalization in visual synthesis, yet most dense perception methods still rely on text-to-image (T2I) generators designed for stochastic generation. We revisit this paradigm and show that image editing diffusion models are inherently image-to-image consistent, providing a more suitable foundation for dense perception task. We introduce Edit2Perceive, a unified diffusion framework that adapts editing models for depth, normal, and matting. Built upon the FLUX.1 Kontext architecture, our approach employs full-parameter fine-tuning and a pixel-space consistency loss to enforce structure-preserving refinement across intermediate denoising states. Moreover, our single-step deterministic inference yields up to faster runtime while training on relatively small datasets. Extensive experiments demonstrate comprehensive state-of-the-art results across all three tasks, revealing the strong potential of editing-oriented diffusion transformers for geometry-aware perception. 3 authors · Nov 23
- WorldRFT: Latent World Model Planning with Reinforcement Fine-Tuning for Autonomous Driving Latent World Models enhance scene representation through temporal self-supervised learning, presenting a perception annotation-free paradigm for end-to-end autonomous driving. However, the reconstruction-oriented representation learning tangles perception with planning tasks, leading to suboptimal optimization for planning. To address this challenge, we propose WorldRFT, a planning-oriented latent world model framework that aligns scene representation learning with planning via a hierarchical planning decomposition and local-aware interactive refinement mechanism, augmented by reinforcement learning fine-tuning (RFT) to enhance safety-critical policy performance. Specifically, WorldRFT integrates a vision-geometry foundation model to improve 3D spatial awareness, employs hierarchical planning task decomposition to guide representation optimization, and utilizes local-aware iterative refinement to derive a planning-oriented driving policy. Furthermore, we introduce Group Relative Policy Optimization (GRPO), which applies trajectory Gaussianization and collision-aware rewards to fine-tune the driving policy, yielding systematic improvements in safety. WorldRFT achieves state-of-the-art (SOTA) performance on both open-loop nuScenes and closed-loop NavSim benchmarks. On nuScenes, it reduces collision rates by 83% (0.30% -> 0.05%). On NavSim, using camera-only sensors input, it attains competitive performance with the LiDAR-based SOTA method DiffusionDrive (87.8 vs. 88.1 PDMS). 10 authors · Dec 22