new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

Infinite-LLM: Efficient LLM Service for Long Context with DistAttention and Distributed KVCache

The rapid proliferation of Large Language Models (LLMs) has been a driving force in the growth of cloud-based LLM services, which are now integral to advancing AI applications. However, the dynamic auto-regressive nature of LLM service, along with the need to support exceptionally long context lengths, demands the flexible allocation and release of substantial resources. This presents considerable challenges in designing cloud-based LLM service systems, where inefficient management can lead to performance degradation or resource wastage. In response to these challenges, this work introduces DistAttention, a novel distributed attention algorithm that segments the KV Cache into smaller, manageable units, enabling distributed processing and storage of the attention module. Based on that, we propose DistKV-LLM, a distributed LLM serving system that dynamically manages KV Cache and effectively orchestrates all accessible GPU and CPU memories spanning across the data center. This ensures a high-performance LLM service on the cloud, adaptable to a broad range of context lengths. Validated in a cloud environment with 32 NVIDIA A100 GPUs in configurations from 2 to 32 instances, our system exhibited 1.03-2.4x end-to-end throughput improvements and supported context lengths 2-19x longer than current state-of-the-art LLM service systems, as evidenced by extensive testing across 18 datasets with context lengths up to 1,900K.

  • 13 authors
·
Jan 5, 2024 2

AdaSwitch: Adaptive Switching between Small and Large Agents for Effective Cloud-Local Collaborative Learning

Recent advancements in large language models (LLMs) have been remarkable. Users face a choice between using cloud-based LLMs for generation quality and deploying local-based LLMs for lower computational cost. The former option is typically costly and inefficient, while the latter usually fails to deliver satisfactory performance for reasoning steps requiring deliberate thought processes. In this work, we propose a novel LLM utilization paradigm that facilitates the collaborative operation of large cloud-based LLMs and smaller local-deployed LLMs. Our framework comprises two primary modules: the local agent instantiated with a relatively smaller LLM, handling less complex reasoning steps, and the cloud agent equipped with a larger LLM, managing more intricate reasoning steps. This collaborative processing is enabled through an adaptive mechanism where the local agent introspectively identifies errors and proactively seeks assistance from the cloud agent, thereby effectively integrating the strengths of both locally-deployed and cloud-based LLMs, resulting in significant enhancements in task completion performance and efficiency. We evaluate AdaSwitch across 7 benchmarks, ranging from mathematical reasoning and complex question answering, using various types of LLMs to instantiate the local and cloud agents. The empirical results show that AdaSwitch effectively improves the performance of the local agent, and sometimes achieves competitive results compared to the cloud agent while utilizing much less computational overhead.

  • 9 authors
·
Oct 16, 2024

QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving

Quantization can accelerate large language model (LLM) inference. Going beyond INT8 quantization, the research community is actively exploring even lower precision, such as INT4. Nonetheless, state-of-the-art INT4 quantization techniques only accelerate low-batch, edge LLM inference, failing to deliver performance gains in large-batch, cloud-based LLM serving. We uncover a critical issue: existing INT4 quantization methods suffer from significant runtime overhead (20-90%) when dequantizing either weights or partial sums on GPUs. To address this challenge, we introduce QoQ, a W4A8KV4 quantization algorithm with 4-bit weight, 8-bit activation, and 4-bit KV cache. QoQ stands for quattuor-octo-quattuor, which represents 4-8-4 in Latin. QoQ is implemented by the QServe inference library that achieves measured speedup. The key insight driving QServe is that the efficiency of LLM serving on GPUs is critically influenced by operations on low-throughput CUDA cores. Building upon this insight, in QoQ algorithm, we introduce progressive quantization that can allow low dequantization overhead in W4A8 GEMM. Additionally, we develop SmoothAttention to effectively mitigate the accuracy degradation incurred by 4-bit KV quantization. In the QServe system, we perform compute-aware weight reordering and take advantage of register-level parallelism to reduce dequantization latency. We also make fused attention memory-bound, harnessing the performance gain brought by KV4 quantization. As a result, QServe improves the maximum achievable serving throughput of Llama-3-8B by 1.2x on A100, 1.4x on L40S; and Qwen1.5-72B by 2.4x on A100, 3.5x on L40S, compared to TensorRT-LLM. Remarkably, QServe on L40S GPU can achieve even higher throughput than TensorRT-LLM on A100. Thus, QServe effectively reduces the dollar cost of LLM serving by 3x. Code is available at https://github.com/mit-han-lab/qserve.

  • 7 authors
·
May 7, 2024

CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration

Large Language Models (LLMs) have achieved remarkable success in serving end-users with human-like intelligence. However, LLMs demand high computational resources, making it challenging to deploy them to satisfy various performance objectives, such as meeting the resource constraints on edge devices close to end-users or achieving high accuracy with ample resources. In this paper, we introduce CE-CoLLM, a novel cloud-edge collaboration framework that supports efficient and adaptive LLM inference for end-users at the edge with two modes, (1) low-latency edge standalone inference and (2) highly accurate cloud-edge collaborative inference. First, we show that the inherent high communication costs for transmitting LLM contextual information between the edge and cloud dominate the overall latency, making it inefficient and costly to deploy LLMs using cloud-edge collaboration. Second, we propose several critical techniques to address this challenge, including early-exit mechanism, cloud context manager, and quantization in cloud-edge collaboration to enable not only low-latency standalone edge inference but also efficient and adaptive cloud-edge collaborative inference for LLMs. Third, we perform comprehensive experimental analysis, which demonstrates that CE-CoLLM significantly reduces inference time by up to 13.81% and cloud computation costs by up to 84.55% compared to the popular cloud-based LLM deployment, while maintaining comparable model accuracy. The proposed approach effectively shifts the computational load to the edge, reduces the communication overhead, scales efficiently with multiple edge clients, and provides reliable LLM deployment using cloud-edge collaboration.

  • 2 authors
·
Nov 5, 2024

Wireless Multi-Agent Generative AI: From Connected Intelligence to Collective Intelligence

The convergence of generative large language models (LLMs), edge networks, and multi-agent systems represents a groundbreaking synergy that holds immense promise for future wireless generations, harnessing the power of collective intelligence and paving the way for self-governed networks where intelligent decision-making happens right at the edge. This article puts the stepping-stone for incorporating multi-agent generative artificial intelligence (AI) in wireless networks, and sets the scene for realizing on-device LLMs, where multi-agent LLMs are collaboratively planning and solving tasks to achieve a number of network goals. We further investigate the profound limitations of cloud-based LLMs, and explore multi-agent LLMs from a game theoretic perspective, where agents collaboratively solve tasks in competitive environments. Moreover, we establish the underpinnings for the architecture design of wireless multi-agent generative AI systems at the network level and the agent level, and we identify the wireless technologies that are envisioned to play a key role in enabling on-device LLM. To demonstrate the promising potentials of wireless multi-agent generative AI networks, we highlight the benefits that can be achieved when implementing wireless generative agents in intent-based networking, and we provide a case study to showcase how on-device LLMs can contribute to solving network intents in a collaborative fashion. We finally shed lights on potential challenges and sketch a research roadmap towards realizing the vision of wireless collective intelligence.

  • 5 authors
·
Jul 5, 2023

Efficient and Personalized Mobile Health Event Prediction via Small Language Models

Healthcare monitoring is crucial for early detection, timely intervention, and the ongoing management of health conditions, ultimately improving individuals' quality of life. Recent research shows that Large Language Models (LLMs) have demonstrated impressive performance in supporting healthcare tasks. However, existing LLM-based healthcare solutions typically rely on cloud-based systems, which raise privacy concerns and increase the risk of personal information leakage. As a result, there is growing interest in running these models locally on devices like mobile phones and wearables to protect users' privacy. Small Language Models (SLMs) are potential candidates to solve privacy and computational issues, as they are more efficient and better suited for local deployment. However, the performance of SLMs in healthcare domains has not yet been investigated. This paper examines the capability of SLMs to accurately analyze health data, such as steps, calories, sleep minutes, and other vital statistics, to assess an individual's health status. Our results show that, TinyLlama, which has 1.1 billion parameters, utilizes 4.31 GB memory, and has 0.48s latency, showing the best performance compared other four state-of-the-art (SOTA) SLMs on various healthcare applications. Our results indicate that SLMs could potentially be deployed on wearable or mobile devices for real-time health monitoring, providing a practical solution for efficient and privacy-preserving healthcare.

  • 4 authors
·
Sep 16, 2024

Automated Privacy Information Annotation in Large Language Model Interactions

Users interacting with large language models (LLMs) under their real identifiers often unknowingly risk disclosing private information. Automatically notifying users whether their queries leak privacy and which phrases leak what private information has therefore become a practical need. Existing privacy detection methods, however, were designed for different objectives and application scenarios, typically tagging personally identifiable information (PII) in anonymous content. In this work, to support the development and evaluation of privacy detection models for LLM interactions that are deployable on local user devices, we construct a large-scale multilingual dataset with 249K user queries and 154K annotated privacy phrases. In particular, we build an automated privacy annotation pipeline with cloud-based strong LLMs to automatically extract privacy phrases from dialogue datasets and annotate leaked information. We also design evaluation metrics at the levels of privacy leakage, extracted privacy phrase, and privacy information. We further establish baseline methods using light-weight LLMs with both tuning-free and tuning-based methods, and report a comprehensive evaluation of their performance. Evaluation results reveal a gap between current performance and the requirements of real-world LLM applications, motivating future research into more effective local privacy detection methods grounded in our dataset.

  • 7 authors
·
May 27, 2025

Are We There Yet? A Measurement Study of Efficiency for LLM Applications on Mobile Devices

Recent advancements in large language models (LLMs) have prompted interest in deploying these models on mobile devices to enable new applications without relying on cloud connectivity. However, the efficiency constraints of deploying LLMs on resource-limited devices present significant challenges. In this paper, we conduct a comprehensive measurement study to evaluate the efficiency tradeoffs between mobile-based, edge-based, and cloud-based deployments for LLM applications. We implement AutoLife-Lite, a simplified LLM-based application that analyzes smartphone sensor data to infer user location and activity contexts. Our experiments reveal that: (1) Only small-size LLMs (<4B parameters) can run successfully on powerful mobile devices, though they exhibit quality limitations compared to larger models; (2) Model compression is effective in lower the hardware requirement, but may lead to significant performance degradation; (3) The latency to run LLMs on mobile devices with meaningful output is significant (>30 seconds), while cloud services demonstrate better time efficiency (<10 seconds); (4) Edge deployments offer intermediate tradeoffs between latency and model capabilities, with different results on CPU-based and GPU-based settings. These findings provide valuable insights for system designers on the current limitations and future directions for on-device LLM applications.

  • 2 authors
·
Mar 10, 2025

EdgeReasoning: Characterizing Reasoning LLM Deployment on Edge GPUs

Edge intelligence paradigm is increasingly demanded by the emerging autonomous systems, such as robotics. Beyond ensuring privacy-preserving operation and resilience in connectivity-limited environments, edge deployment offers significant energy and cost advantages over cloud-based solutions. However, deploying large language models (LLMs) for reasoning tasks on edge GPUs faces critical challenges from strict latency constraints and limited computational resources. To navigate these constraints, developers must balance multiple design factors - choosing reasoning versus non-reasoning architectures, selecting appropriate model sizes, allocating token budgets, and applying test-time scaling strategies - to meet target latency and optimize accuracy. Yet guidance on optimal combinations of these variables remains scarce. In this work, we present EdgeReasoning, a comprehensive study characterizing the deployment of reasoning LLMs on edge GPUs. We systematically quantify latency-accuracy tradeoffs across various LLM architectures and model sizes. We systematically evaluate prompt-based and model-tuning-based techniques for reducing reasoning token length while maintaining performance quality. We further profile test-time scaling methods with varying degrees of parallelism to maximize accuracy under strict latency budgets. Through these analyses, EdgeReasoning maps the Pareto frontier of achievable accuracy-latency configurations, offering systematic guidance for optimal edge deployment of reasoning LLMs.

  • 2 authors
·
Oct 21, 2025

The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities

This report examines the fine-tuning of Large Language Models (LLMs), integrating theoretical insights with practical applications. It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI. A comparison of fine-tuning methodologies, including supervised, unsupervised, and instruction-based approaches, highlights their applicability to different tasks. The report introduces a structured seven-stage pipeline for fine-tuning LLMs, spanning data preparation, model initialization, hyperparameter tuning, and model deployment. Emphasis is placed on managing imbalanced datasets and optimization techniques. Parameter-efficient methods like Low-Rank Adaptation (LoRA) and Half Fine-Tuning are explored for balancing computational efficiency with performance. Advanced techniques such as memory fine-tuning, Mixture of Experts (MoE), and Mixture of Agents (MoA) are discussed for leveraging specialized networks and multi-agent collaboration. The report also examines novel approaches like Proximal Policy Optimization (PPO) and Direct Preference Optimization (DPO), which align LLMs with human preferences, alongside pruning and routing optimizations to improve efficiency. Further sections cover validation frameworks, post-deployment monitoring, and inference optimization, with attention to deploying LLMs on distributed and cloud-based platforms. Emerging areas such as multimodal LLMs, fine-tuning for audio and speech, and challenges related to scalability, privacy, and accountability are also addressed. This report offers actionable insights for researchers and practitioners navigating LLM fine-tuning in an evolving landscape.

  • 4 authors
·
Aug 23, 2024

APEX: An Extensible and Dynamism-Aware Simulator for Automated Parallel Execution in LLM Serving

Efficiently serving Large Language Models (LLMs) requires selecting an optimal parallel execution plan, balancing computation, memory, and communication overhead. However, determining the best strategy is challenging due to varying parallelism techniques (data, pipeline, tensor) and workload characteristics (e.g., compute-intensive tasks with long prompts vs. memory-intensive tasks with long generation). We propose APEX, an LLM serving system simulator that efficiently identifies optimal parallel execution plans by considering key factors of LLM serving systems, such as memory usage, batching behavior, etc. APEX performs dynamism-aware simulation to model iteration-level batching, and leverages LLMs' repetitive structure to reduce design space, scaling efficiently to trillion-scale models. APEX abstracts the key components of LLM serving systems, including the model, batching module, quantization formats, and device clusters, enabling the simulator to be general and extensible. Simulating on a CPU, APEX evaluates execution plans for various device clusters, covering diverse LLMs and workloads. APEX finds plans up to 3.37x faster than heuristics, and also plans that reduce energy consumption by up to 45% compared to latency-optimal plans. APEX performs comprehensive evaluations, reporting key system metrics like time per output token and time to first token, which can help service providers meet SLOs. APEX identifies an optimal plan within 15 minutes on a CPU, making it 71x faster and 1234x more cost-effective than cloud-based GPU deployment. APEX can be accessed at https://github.com/microsoft/apex_plus

  • 4 authors
·
Nov 26, 2024

TinyAgent: Function Calling at the Edge

Recent large language models (LLMs) have enabled the development of advanced agentic systems that can integrate various tools and APIs to fulfill user queries through function calling. However, the deployment of these LLMs on the edge has not been explored since they typically require cloud-based infrastructure due to their substantial model size and computational demands. To this end, we present TinyAgent, an end-to-end framework for training and deploying task-specific small language model agents capable of function calling for driving agentic systems at the edge. We first show how to enable accurate function calling for open-source models via the LLMCompiler framework. We then systematically curate a high-quality dataset for function calling, which we use to fine-tune two small language models, TinyAgent-1.1B and 7B. For efficient inference, we introduce a novel tool retrieval method to reduce the input prompt length and utilize quantization to further accelerate the inference speed. As a driving application, we demonstrate a local Siri-like system for Apple's MacBook that can execute user commands through text or voice input. Our results show that our models can achieve, and even surpass, the function-calling capabilities of larger models like GPT-4-Turbo, while being fully deployed at the edge. We open-source our dataset, models, and installable package and provide a demo video for our MacBook assistant agent.

  • 10 authors
·
Sep 1, 2024

MedBench v4: A Robust and Scalable Benchmark for Evaluating Chinese Medical Language Models, Multimodal Models, and Intelligent Agents

Recent advances in medical large language models (LLMs), multimodal models, and agents demand evaluation frameworks that reflect real clinical workflows and safety constraints. We present MedBench v4, a nationwide, cloud-based benchmarking infrastructure comprising over 700,000 expert-curated tasks spanning 24 primary and 91 secondary specialties, with dedicated tracks for LLMs, multimodal models, and agents. Items undergo multi-stage refinement and multi-round review by clinicians from more than 500 institutions, and open-ended responses are scored by an LLM-as-a-judge calibrated to human ratings. We evaluate 15 frontier models. Base LLMs reach a mean overall score of 54.1/100 (best: Claude Sonnet 4.5, 62.5/100), but safety and ethics remain low (18.4/100). Multimodal models perform worse overall (mean 47.5/100; best: GPT-5, 54.9/100), with solid perception yet weaker cross-modal reasoning. Agents built on the same backbones substantially improve end-to-end performance (mean 79.8/100), with Claude Sonnet 4.5-based agents achieving up to 85.3/100 overall and 88.9/100 on safety tasks. MedBench v4 thus reveals persisting gaps in multimodal reasoning and safety for base models, while showing that governance-aware agentic orchestration can markedly enhance benchmarked clinical readiness without sacrificing capability. By aligning tasks with Chinese clinical guidelines and regulatory priorities, the platform offers a practical reference for hospitals, developers, and policymakers auditing medical AI.

  • 18 authors
·
Nov 18, 2025

Aligning Large Language Models to Low-Resource Languages through LLM-Based Selective Translation: A Systematic Study

Multilingual large language models (LLMs) often demonstrate a performance gap between English and non-English languages, particularly in low-resource settings. Aligning these models to low-resource languages is essential yet challenging due to limited high-quality data. While English alignment datasets are readily available, curating equivalent data in other languages is expensive and time-consuming. A common workaround is to translate existing English alignment data; however, standard translation techniques often fail to preserve critical elements such as code, mathematical expressions, and structured formats like JSON. In this work, we investigate LLM-based selective translation, a technique that selectively translates only the translatable parts of a text while preserving non-translatable content and sentence structure. We conduct a systematic study to explore key questions around this approach, including its effectiveness compared to vanilla translation, the importance of filtering noisy outputs, and the benefits of mixing translated samples with original English data during alignment. Our experiments focus on the low-resource Indic language Hindi and compare translations generated by Google Cloud Translation (GCP) and Llama-3.1-405B. The results highlight the promise of selective translation as a practical and effective method for improving multilingual alignment in LLMs.

  • 7 authors
·
Jul 18, 2025

PACE-LM: Prompting and Augmentation for Calibrated Confidence Estimation with GPT-4 in Cloud Incident Root Cause Analysis

Major cloud providers have employed advanced AI-based solutions like large language models to aid humans in identifying the root causes of cloud incidents. Despite the growing prevalence of AI-driven assistants in the root cause analysis process, their effectiveness in assisting on-call engineers is constrained by low accuracy due to the intrinsic difficulty of the task, a propensity for LLM-based approaches to hallucinate, and difficulties in distinguishing these well-disguised hallucinations. To address this challenge, we propose to perform confidence estimation for the predictions to help on-call engineers make decisions on whether to adopt the model prediction. Considering the black-box nature of many LLM-based root cause predictors, fine-tuning or temperature-scaling-based approaches are inapplicable. We therefore design an innovative confidence estimation framework based on prompting retrieval-augmented large language models (LLMs) that demand a minimal amount of information from the root cause predictor. This approach consists of two scoring phases: the LLM-based confidence estimator first evaluates its confidence in making judgments in the face of the current incident that reflects its ``grounded-ness" level in reference data, then rates the root cause prediction based on historical references. An optimization step combines these two scores for a final confidence assignment. We show that our method is able to produce calibrated confidence estimates for predicted root causes, validate the usefulness of retrieved historical data and the prompting strategy as well as the generalizability across different root cause prediction models. Our study takes an important move towards reliably and effectively embedding LLMs into cloud incident management systems.

  • 6 authors
·
Sep 11, 2023

Towards Generalizable Context-aware Anomaly Detection: A Large-scale Benchmark in Cloud Environments

Anomaly detection in cloud environments remains both critical and challenging. Existing context-level benchmarks typically focus on either metrics or logs and often lack reliable annotation, while most detection methods emphasize point anomalies within a single modality, overlooking contextual signals and limiting real-world applicability. Constructing a benchmark for context anomalies that combines metrics and logs is inherently difficult: reproducing anomalous scenarios on real servers is often infeasible or potentially harmful, while generating synthetic data introduces the additional challenge of maintaining cross-modal consistency. We introduce CloudAnoBench, a large-scale benchmark for context anomalies in cloud environments, comprising 28 anomalous scenarios and 16 deceptive normal scenarios, with 1,252 labeled cases and roughly 200,000 log and metric entries. Compared with prior benchmarks, CloudAnoBench exhibits higher ambiguity and greater difficulty, on which both prior machine learning methods and vanilla LLM prompting perform poorly. To demonstrate its utility, we further propose CloudAnoAgent, an LLM-based agent enhanced by symbolic verification that integrates metrics and logs. This agent system achieves substantial improvements in both anomaly detection and scenario identification on CloudAnoBench, and shows strong generalization to existing datasets. Together, CloudAnoBench and CloudAnoAgent lay the groundwork for advancing context-aware anomaly detection in cloud systems. Project Page: https://jayzou3773.github.io/cloudanobench-agent/

  • 11 authors
·
Aug 3, 2025

Barbarians at the Gate: How AI is Upending Systems Research

Artificial Intelligence (AI) is starting to transform the research process as we know it by automating the discovery of new solutions. Given a task, the typical AI-driven approach is (i) to generate a set of diverse solutions, and then (ii) to verify these solutions and select one that solves the problem. Crucially, this approach assumes the existence of a reliable verifier, i.e., one that can accurately determine whether a solution solves the given problem. We argue that systems research, long focused on designing and evaluating new performance-oriented algorithms, is particularly well-suited for AI-driven solution discovery. This is because system performance problems naturally admit reliable verifiers: solutions are typically implemented in real systems or simulators, and verification reduces to running these software artifacts against predefined workloads and measuring performance. We term this approach as AI-Driven Research for Systems (ADRS), which iteratively generates, evaluates, and refines solutions. Using penEvolve, an existing open-source ADRS instance, we present case studies across diverse domains, including load balancing for multi-region cloud scheduling, Mixture-of-Experts inference, LLM-based SQL queries, and transaction scheduling. In multiple instances, ADRS discovers algorithms that outperform state-of-the-art human designs (e.g., achieving up to 5.0x runtime improvements or 50% cost reductions). We distill best practices for guiding algorithm evolution, from prompt design to evaluator construction, for existing frameworks. We then discuss the broader implications for the systems community: as AI assumes a central role in algorithm design, we argue that human researchers will increasingly focus on problem formulation and strategic guidance. Our results highlight both the disruptive potential and the urgent need to adapt systems research practices in the age of AI.

  • 17 authors
·
Oct 7, 2025 1

POLCA: Power Oversubscription in LLM Cloud Providers

Recent innovation in large language models (LLMs), and their myriad use-cases have rapidly driven up the compute capacity demand for datacenter GPUs. Several cloud providers and other enterprises have made substantial plans of growth in their datacenters to support these new workloads. One of the key bottleneck resources in datacenters is power, and given the increasing model sizes of LLMs, they are becoming increasingly power intensive. In this paper, we show that there is a significant opportunity to oversubscribe power in LLM clusters. Power oversubscription improves the power efficiency of these datacenters, allowing more deployable servers per datacenter, and reduces the deployment time, since building new datacenters is slow. We extensively characterize the power consumption patterns of a variety of LLMs and their configurations. We identify the differences between the inference and training power consumption patterns. Based on our analysis of these LLMs, we claim that the average and peak power utilization in LLM clusters for inference should not be very high. Our deductions align with the data from production LLM clusters, revealing that inference workloads offer substantial headroom for power oversubscription. However, the stringent set of telemetry and controls that GPUs offer in a virtualized environment, makes it challenging to have a reliable and robust power oversubscription mechanism. We propose POLCA, our framework for power oversubscription that is robust, reliable, and readily deployable for GPU clusters. Using open-source models to replicate the power patterns observed in production, we simulate POLCA and demonstrate that we can deploy 30% more servers in the same GPU cluster for inference, with minimal performance loss

  • 7 authors
·
Aug 24, 2023

AirLLM: Diffusion Policy-based Adaptive LoRA for Remote Fine-Tuning of LLM over the Air

Operating Large Language Models (LLMs) on edge devices is increasingly challenged by limited communication bandwidth and strained computational and memory costs. Thus, cloud-assisted remote fine-tuning becomes indispensable. Nevertheless, existing Low-Rank Adaptation (LoRA) approaches typically employ fixed or heuristic rank configurations, and the subsequent over-the-air transmission of all LoRA parameters could be rather inefficient. To address this limitation, we develop AirLLM, a hierarchical diffusion policy framework for communication-aware LoRA adaptation. Specifically, AirLLM models the rank configuration as a structured action vector that spans all LoRA-inserted projections. To solve the underlying high-dimensional sequential decision-making problem, a Proximal Policy Optimization (PPO) agent generates coarse-grained decisions by jointly observing wireless states and linguistic complexity, which are then refined via Denoising Diffusion Implicit Models (DDIM) to produce high-resolution, task- and channel-adaptive rank vectors. The two modules are optimized alternatively, with the DDIM trained under the Classifier-Free Guidance (CFG) paradigm to maintain alignment with PPO rewards. Experiments under varying signal-to-noise ratios demonstrate that AirLLM consistently enhances fine-tuning performance while significantly reducing transmission costs, highlighting the effectiveness of reinforcement-driven, diffusion-refined rank adaptation for scalable and efficient remote fine-tuning over the air.

  • 6 authors
·
Jul 15, 2025

Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud

Specializing LLMs in various domain-specific tasks has emerged as a critical step towards achieving high performance. However, the construction and annotation of datasets in specific domains are always very costly. Apart from using superior and expensive closed-source LLM APIs to construct datasets, some open-source models have become strong enough to handle dataset construction in many scenarios. Thus, we present a family of data augmentation models designed to significantly improve the efficiency for model fine-tuning. These models, trained based on sufficiently small LLMs, support key functionalities with low inference costs: instruction expansion, instruction refinement, and instruction-response pair expansion. To fulfill this goal, we first construct an automatic data collection system with seed datasets generated from both public repositories and our in-house datasets. This system leverages powerful LLMs to expand, refine and re-write the instructions and responses, incorporating quality assessment techniques. Following this, we introduce the training process of our models, which effectively distills task-solving and text synthesis abilities from teacher LLMs. Finally, we demonstrate how we integrate these functionalities into a machine learning platform to support low-cost LLM fine-tuning from both dataset preparation and training perspectives for users. Experiments and an application study prove the effectiveness of our approach.

  • 4 authors
·
Dec 6, 2024

Beyond Data Filtering: Knowledge Localization for Capability Removal in LLMs

Large Language Models increasingly possess capabilities that carry dual-use risks. While data filtering has emerged as a pretraining-time mitigation, it faces significant challenges: labeling whether data is harmful is expensive at scale, and given improving sample efficiency with larger models, even small amounts of mislabeled content could give rise to dangerous capabilities. To address risks associated with mislabeled harmful content, prior work proposed Gradient Routing (Cloud et al., 2024) -- a technique that localizes target knowledge into a dedicated subset of model parameters so they can later be removed. We explore an improved variant of Gradient Routing, which we call Selective GradienT Masking (SGTM), with particular focus on evaluating its robustness to label noise. SGTM zero-masks selected gradients such that target domain examples only update their dedicated parameters. We test SGTM's effectiveness in two applications: removing knowledge of one language from a model trained on a bilingual synthetic dataset, and removing biology knowledge from a model trained on English Wikipedia. In both cases SGTM provides better retain/forget trade-off in the presence of labeling errors compared to both data filtering and a previously proposed instantiation of Gradient Routing. Unlike shallow unlearning approaches that can be quickly undone through fine-tuning, SGTM exhibits strong robustness to adversarial fine-tuning, requiring seven times more fine-tuning steps to reach baseline performance on the forget set compared to a finetuning-based unlearning method (RMU). Our results suggest SGTM provides a promising pretraining-time complement to existing safety mitigations, particularly in settings where label noise is unavoidable.

  • 8 authors
·
Dec 5, 2025

ArtiWorld: LLM-Driven Articulation of 3D Objects in Scenes

Building interactive simulators and scalable robot-learning environments requires a large number of articulated assets. However, most existing 3D assets in simulation are rigid, and manually converting them into articulated objects is extremely labor- and cost-intensive. This raises a natural question: can we automatically identify articulable objects in a scene and convert them into articulated assets directly? In this paper, we present ArtiWorld, a scene-aware pipeline that localizes candidate articulable objects from textual scene descriptions and reconstructs executable URDF models that preserve the original geometry. At the core of this pipeline is Arti4URDF, which leverages 3D point cloud, prior knowledge of a large language model (LLM), and a URDF-oriented prompt design to rapidly convert rigid objects into interactive URDF-based articulated objects while maintaining their 3D shape. We evaluate ArtiWorld at three levels: 3D simulated objects, full 3D simulated scenes, and real-world scan scenes. Across all three settings, our method consistently outperforms existing approaches and achieves state-of-the-art performance, while preserving object geometry and correctly capturing object interactivity to produce usable URDF-based articulated models. This provides a practical path toward building interactive, robot-ready simulation environments directly from existing 3D assets. Code and data will be released.

  • 7 authors
·
Nov 16, 2025

CloudFix: Automated Policy Repair for Cloud Access Control Policies Using Large Language Models

Access control policies are vital for securing modern cloud computing, where organizations must manage access to sensitive data across thousands of users in distributed system settings. Cloud administrators typically write and update policies manually, which can be an error-prone and time-consuming process and can potentially lead to security vulnerabilities. Existing approaches based on symbolic analysis have demon- strated success in automated debugging and repairing access control policies; however, their generalizability is limited in the context of cloud-based access control. Conversely, Large Language Models (LLMs) have been utilized for automated program repair; however, their applicability to repairing cloud access control policies remains unexplored. In this work, we introduce CloudFix, the first automated policy repair framework for cloud access control that combines formal methods with LLMs. Given an access control policy and a specification of allowed and denied access requests, CloudFix employs Formal Methods-based Fault Localization to identify faulty statements in the policy and leverages LLMs to generate potential repairs, which are then verified using SMT solvers. To evaluate CloudFix, we curated a dataset of 282 real-world AWS access control policies extracted from forum posts and augmented them with synthetically generated request sets based on real scenarios. Our experimental results show that CloudFix improves repair accuracy over a Baseline implementation across varying request sizes. Our work is the first to leverage LLMs for policy repair, showcasing the effectiveness of LLMs for access control and enabling efficient and automated repair of cloud access control policies. We make our tool Cloudfix and AWS dataset publicly available.

A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness

Large language models (LLM) have demonstrated emergent abilities in text generation, question answering, and reasoning, facilitating various tasks and domains. Despite their proficiency in various tasks, LLMs like LaPM 540B and Llama-3.1 405B face limitations due to large parameter sizes and computational demands, often requiring cloud API use which raises privacy concerns, limits real-time applications on edge devices, and increases fine-tuning costs. Additionally, LLMs often underperform in specialized domains such as healthcare and law due to insufficient domain-specific knowledge, necessitating specialized models. Therefore, Small Language Models (SLMs) are increasingly favored for their low inference latency, cost-effectiveness, efficient development, and easy customization and adaptability. These models are particularly well-suited for resource-limited environments and domain knowledge acquisition, addressing LLMs' challenges and proving ideal for applications that require localized data handling for privacy, minimal inference latency for efficiency, and domain knowledge acquisition through lightweight fine-tuning. The rising demand for SLMs has spurred extensive research and development. However, a comprehensive survey investigating issues related to the definition, acquisition, application, enhancement, and reliability of SLM remains lacking, prompting us to conduct a detailed survey on these topics. The definition of SLMs varies widely, thus to standardize, we propose defining SLMs by their capability to perform specialized tasks and suitability for resource-constrained settings, setting boundaries based on the minimal size for emergent abilities and the maximum size sustainable under resource constraints. For other aspects, we provide a taxonomy of relevant models/methods and develop general frameworks for each category to enhance and utilize SLMs effectively.

  • 14 authors
·
Nov 3, 2024

Parrot: Efficient Serving of LLM-based Applications with Semantic Variable

The rise of large language models (LLMs) has enabled LLM-based applications (a.k.a. AI agents or co-pilots), a new software paradigm that combines the strength of LLM and conventional software. Diverse LLM applications from different tenants could design complex workflows using multiple LLM requests to accomplish one task. However, they have to use the over-simplified request-level API provided by today's public LLM services, losing essential application-level information. Public LLM services have to blindly optimize individual LLM requests, leading to sub-optimal end-to-end performance of LLM applications. This paper introduces Parrot, an LLM service system that focuses on the end-to-end experience of LLM-based applications. Parrot proposes Semantic Variable, a unified abstraction to expose application-level knowledge to public LLM services. A Semantic Variable annotates an input/output variable in the prompt of a request, and creates the data pipeline when connecting multiple LLM requests, providing a natural way to program LLM applications. Exposing Semantic Variables to the public LLM service allows it to perform conventional data flow analysis to uncover the correlation across multiple LLM requests. This correlation opens a brand-new optimization space for the end-to-end performance of LLM-based applications. Extensive evaluations demonstrate that Parrot can achieve up to an order-of-magnitude improvement for popular and practical use cases of LLM applications.

  • 7 authors
·
May 30, 2024

AIBrix: Towards Scalable, Cost-Effective Large Language Model Inference Infrastructure

We introduce AIBrix, a cloud-native, open-source framework designed to optimize and simplify large-scale LLM deployment in cloud environments. Unlike traditional cloud-native stacks, AIBrix follows a co-design philosophy, ensuring every layer of the infrastructure is purpose-built for seamless integration with inference engines like vLLM. AIBrix introduces several key innovations to reduce inference costs and enhance performance including high-density LoRA management for dynamic adapter scheduling, LLM-specific autoscalers, and prefix-aware, load-aware routing. To further improve efficiency, AIBrix incorporates a distributed KV cache, boosting token reuse across nodes, leading to a 50% increase in throughput and a 70% reduction in inference latency. AIBrix also supports unified AI runtime which streamlines model management while maintaining vendor-agnostic engine compatibility. For large-scale multi-node inference, AIBrix employs hybrid orchestration -- leveraging Kubernetes for coarse-grained scheduling and Ray for fine-grained execution -- to balance efficiency and flexibility. Additionally, an SLO-driven GPU optimizer dynamically adjusts resource allocations, optimizing heterogeneous serving to maximize cost efficiency while maintaining service guarantees. Finally, AIBrix enhances system reliability with AI accelerator diagnostic tools, enabling automated failure detection and mock-up testing to improve fault resilience. AIBrix is available at https://github.com/vllm-project/aibrix.

  • 27 authors
·
Feb 22, 2025

Intelligence per Watt: Measuring Intelligence Efficiency of Local AI

Large language model (LLM) queries are predominantly processed by frontier models in centralized cloud infrastructure. Rapidly growing demand strains this paradigm, and cloud providers struggle to scale infrastructure at pace. Two advances enable us to rethink this paradigm: small LMs (<=20B active parameters) now achieve competitive performance to frontier models on many tasks, and local accelerators (e.g., Apple M4 Max) run these models at interactive latencies. This raises the question: can local inference viably redistribute demand from centralized infrastructure? Answering this requires measuring whether local LMs can accurately answer real-world queries and whether they can do so efficiently enough to be practical on power-constrained devices (i.e., laptops). We propose intelligence per watt (IPW), task accuracy divided by unit of power, as a metric for assessing capability and efficiency of local inference across model-accelerator pairs. We conduct a large-scale empirical study across 20+ state-of-the-art local LMs, 8 accelerators, and a representative subset of LLM traffic: 1M real-world single-turn chat and reasoning queries. For each query, we measure accuracy, energy, latency, and power. Our analysis reveals 3 findings. First, local LMs can accurately answer 88.7% of single-turn chat and reasoning queries with accuracy varying by domain. Second, from 2023-2025, IPW improved 5.3x and local query coverage rose from 23.2% to 71.3%. Third, local accelerators achieve at least 1.4x lower IPW than cloud accelerators running identical models, revealing significant headroom for optimization. These findings demonstrate that local inference can meaningfully redistribute demand from centralized infrastructure, with IPW serving as the critical metric for tracking this transition. We release our IPW profiling harness for systematic intelligence-per-watt benchmarking.

Stanford Stanford AI
·
Nov 11, 2025 3

Data-Juicer: A One-Stop Data Processing System for Large Language Models

The immense evolution in Large Language Models (LLMs) has underscored the importance of massive, diverse, and high-quality data. Despite this, existing open-source tools for LLM data processing remain limited and mostly tailored to specific datasets, with an emphasis on the reproducibility of released data over adaptability and usability, inhibiting potential applications. In response, we propose a one-stop, powerful yet flexible and user-friendly LLM data processing system named Data-Juicer. Our system offers over 50 built-in versatile operators and pluggable tools, which synergize modularity, composability, and extensibility dedicated to diverse LLM data processing needs. By incorporating visualized and automatic evaluation capabilities, Data-Juicer enables a timely feedback loop to accelerate data processing and gain data insights. To enhance usability, Data-Juicer provides out-of-the-box components for users with various backgrounds, and fruitful data recipes for LLM pre-training and post-tuning usages. Further, we employ multi-facet system optimization and seamlessly integrate Data-Juicer with both LLM and distributed computing ecosystems, to enable efficient and scalable data processing. Empirical validation of the generated data recipes reveals considerable improvements in LLaMA performance for various pre-training and post-tuning cases, demonstrating up to 7.45% relative improvement of averaged score across 16 LLM benchmarks and 16.25% higher win rate using pair-wise GPT-4 evaluation. The system's efficiency and scalability are also validated, supported by up to 88.7% reduction in single-machine processing time, 77.1% and 73.1% less memory and CPU usage respectively, and 7.91x processing acceleration when utilizing distributed computing ecosystems. Our system, data recipes, and multiple tutorial demos are released, calling for broader research centered on LLM data.

  • 13 authors
·
Sep 5, 2023

LLM Inference Unveiled: Survey and Roofline Model Insights

The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges. Although the field has expanded and is vibrant, there hasn't been a concise framework that analyzes the various methods of LLM Inference to provide a clear understanding of this domain. Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model for systematic analysis of LLM inference techniques. This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems, such as why LLMs are memory-bound, how much memory and computation they need, and how to choose the right hardware. We systematically collate the latest advancements in efficient LLM inference, covering crucial areas such as model compression (e.g., Knowledge Distillation and Quantization), algorithm improvements (e.g., Early Exit and Mixture-of-Expert), and both hardware and system-level enhancements. Our survey stands out by analyzing these methods with roofline model, helping us understand their impact on memory access and computation. This distinctive approach not only showcases the current research landscape but also delivers valuable insights for practical implementation, positioning our work as an indispensable resource for researchers new to the field as well as for those seeking to deepen their understanding of efficient LLM deployment. The analyze tool, LLM-Viewer, is open-sourced.

  • 14 authors
·
Feb 26, 2024 2

RefactorCoderQA: Benchmarking LLMs for Multi-Domain Coding Question Solutions in Cloud and Edge Deployment

To optimize the reasoning and problem-solving capabilities of Large Language Models (LLMs), we propose a novel cloud-edge collaborative architecture that enables a structured, multi-agent prompting framework. This framework comprises three specialized components: GuideLLM, a lightweight model deployed at the edge to provide methodological guidance; SolverLLM, a more powerful model hosted in the cloud responsible for generating code solutions; and JudgeLLM, an automated evaluator for assessing solution correctness and quality. To evaluate and demonstrate the effectiveness of this architecture in realistic settings, we introduce RefactorCoderQA, a comprehensive benchmark designed to evaluate and enhance the performance of Large Language Models (LLMs) across multi-domain coding tasks. Motivated by the limitations of existing benchmarks, RefactorCoderQA systematically covers various technical domains, including Software Engineering, Data Science, Machine Learning, and Natural Language Processing, using authentic coding challenges from Stack Overflow. Extensive experiments reveal that our fine-tuned model, RefactorCoder-MoE, achieves state-of-the-art performance, significantly outperforming leading open-source and commercial baselines with an overall accuracy of 76.84%. Human evaluations further validate the interpretability, accuracy, and practical relevance of the generated solutions. In addition, we evaluate system-level metrics, such as throughput and latency, to gain deeper insights into the performance characteristics and trade-offs of the proposed architecture.

  • 4 authors
·
Sep 12, 2025

On-Device Language Models: A Comprehensive Review

The advent of large language models (LLMs) revolutionized natural language processing applications, and running LLMs on edge devices has become increasingly attractive for reasons including reduced latency, data localization, and personalized user experiences. This comprehensive review examines the challenges of deploying computationally expensive LLMs on resource-constrained devices and explores innovative solutions across multiple domains. The paper investigates the development of on-device language models, their efficient architectures, including parameter sharing and modular designs, as well as state-of-the-art compression techniques like quantization, pruning, and knowledge distillation. Hardware acceleration strategies and collaborative edge-cloud deployment approaches are analyzed, highlighting the intricate balance between performance and resource utilization. Case studies of on-device language models from major mobile manufacturers demonstrate real-world applications and potential benefits. The review also addresses critical aspects such as adaptive learning, multi-modal capabilities, and personalization. By identifying key research directions and open challenges, this paper provides a roadmap for future advancements in on-device language models, emphasizing the need for interdisciplinary efforts to realize the full potential of ubiquitous, intelligent computing while ensuring responsible and ethical deployment. For a comprehensive review of research work and educational resources on on-device large language models (LLMs), please visit https://github.com/NexaAI/Awesome-LLMs-on-device. To download and run on-device LLMs, visit https://www.nexaai.com/models.

  • 7 authors
·
Aug 25, 2024

CRAFT: Customizing LLMs by Creating and Retrieving from Specialized Toolsets

Large language models (LLMs) are often augmented with tools to solve complex tasks. By generating code snippets and executing them through task-specific Application Programming Interfaces (APIs), they can offload certain functions to dedicated external modules, such as image encoding and performing calculations. However, most existing approaches to augment LLMs with tools are constrained by general-purpose APIs and lack the flexibility for tailoring them to specific tasks. In this work, we present CRAFT, a general tool creation and retrieval framework for LLMs. It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks. For each task, we collect specific code solutions by prompting GPT-4 to solve the training examples. Following a validation step ensuring the correctness, these solutions are abstracted into code snippets to enhance reusability, and deduplicated for higher quality. At inference time, the language model retrieves snippets from the toolsets and then executes them or generates the output conditioning on the retrieved snippets. Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning. Experiments on vision-language, tabular processing, and mathematical reasoning tasks show that our approach achieves substantial improvements compared to strong baselines. In addition, our in-depth analysis reveals that: (1) consistent performance improvement can be achieved by scaling up the number of tools and the capability of the backbone models; (2) each component of our approach contributes to the performance gains; (3) the created tools are well-structured and reliable with low complexity and atomicity. The code is available at https://github.com/lifan-yuan/CRAFT.

  • 6 authors
·
Sep 29, 2023

ArcMMLU: A Library and Information Science Benchmark for Large Language Models

In light of the rapidly evolving capabilities of large language models (LLMs), it becomes imperative to develop rigorous domain-specific evaluation benchmarks to accurately assess their capabilities. In response to this need, this paper introduces ArcMMLU, a specialized benchmark tailored for the Library & Information Science (LIS) domain in Chinese. This benchmark aims to measure the knowledge and reasoning capability of LLMs within four key sub-domains: Archival Science, Data Science, Library Science, and Information Science. Following the format of MMLU/CMMLU, we collected over 6,000 high-quality questions for the compilation of ArcMMLU. This extensive compilation can reflect the diverse nature of the LIS domain and offer a robust foundation for LLM evaluation. Our comprehensive evaluation reveals that while most mainstream LLMs achieve an average accuracy rate above 50% on ArcMMLU, there remains a notable performance gap, suggesting substantial headroom for refinement in LLM capabilities within the LIS domain. Further analysis explores the effectiveness of few-shot examples on model performance and highlights challenging questions where models consistently underperform, providing valuable insights for targeted improvements. ArcMMLU fills a critical gap in LLM evaluations within the Chinese LIS domain and paves the way for future development of LLMs tailored to this specialized area.

  • 5 authors
·
Nov 30, 2023

A Survey of LLM times DATA

The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.

  • 17 authors
·
May 23, 2025

Small Language Models for Efficient Agentic Tool Calling: Outperforming Large Models with Targeted Fine-tuning

As organizations scale adoption of generative AI, model cost optimization and operational efficiency have emerged as critical factors determining sustainability and accessibility. While Large Language Models (LLMs) demonstrate impressive capabilities across diverse tasks, their extensive computational requirements make them cost-prohibitive for routine enterprise use. This limitation motivates the exploration of Small Language Models (SLMs), which can deliver comparable performance in targeted applications while drastically reducing infrastructure overhead (Irugalbandara et al., 2023). In this work, we investigate the feasibility of replacing LLM-driven workflows with optimized SLMs. We trained a domain-adapted SLM to execute representative tasks traditionally handled by LLMs, such as document summarization, query answering, and structured data interpretation. As part of the experiment, we investigated the fine-tuning of facebook/opt-350m model (single epoch only) using the Hugging Face TRL (Transformer Reinforcement Learning), specifically the Supervised Fine-Tuning (SFT) trainer. The OPT-350M model was released by Meta AI in 2022 as part of the OPT (Open Pretrained Transformer) family of models. Similar studies demonstrate that even models at the 350M parameter scale can meaningfully contribute to instruction-tuning pipelines (Mekala et al., 2024). Experimental results demonstrated that our fine-tuned SLM achieves exceptional performance with a 77.55\% pass rate on ToolBench evaluation, significantly outperforming all baseline models including ChatGPT-CoT (26.00\%), ToolLLaMA-DFS (30.18\%), and ToolLLaMA-CoT (16.27\%). These findings emphasize that thoughtful design and targeted training of SLMs can significantly lower barriers to adoption, enabling cost-effective, large-scale integration of generative AI into production systems.

  • 4 authors
·
Dec 17, 2025

KubeIntellect: A Modular LLM-Orchestrated Agent Framework for End-to-End Kubernetes Management

Kubernetes has become the foundation of modern cloud-native infrastructure, yet its management remains complex and fragmented. Administrators must navigate a vast API surface, manage heterogeneous workloads, and coordinate tasks across disconnected tools - often requiring precise commands, YAML configuration, and contextual expertise. This paper presents KubeIntellect, a Large Language Model (LLM)-powered system for intelligent, end-to-end Kubernetes control. Unlike existing tools that focus on observability or static automation, KubeIntellect supports natural language interaction across the full spectrum of Kubernetes API operations, including read, write, delete, exec, access control, lifecycle, and advanced verbs. The system uses modular agents aligned with functional domains (e.g., logs, metrics, RBAC), orchestrated by a supervisor that interprets user queries, maintains workflow memory, invokes reusable tools, or synthesizes new ones via a secure Code Generator Agent. KubeIntellect integrates memory checkpoints, human-in-the-loop clarification, and dynamic task sequencing into a structured orchestration framework. Evaluation results show a 93% tool synthesis success rate and 100% reliability across 200 natural language queries, demonstrating the system's ability to operate efficiently under diverse workloads. An automated demo environment is provided on Azure, with additional support for local testing via kind. This work introduces a new class of interpretable, extensible, and LLM-driven systems for managing complex infrastructure.

  • 2 authors
·
Sep 2, 2025

Achieving Peak Performance for Large Language Models: A Systematic Review

In recent years, large language models (LLMs) have achieved remarkable success in natural language processing (NLP). LLMs require an extreme amount of parameters to attain high performance. As models grow into the trillion-parameter range, computational and memory costs increase significantly. This makes it difficult for many researchers to access the resources needed to train or apply these models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while maintaining similar performance. This paper presents a systematic literature review (SLR) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed 65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy. We begin with an overview of the development of language modeling, followed by a detailed explanation of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization and acceleration strategies such as training optimization, hardware optimization, scalability and reliability, accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth comparison of each class and strategy, with two case studies on optimizing model training and enhancing inference efficiency. These case studies showcase practical approaches to address LLM resource limitations while maintaining performance.

  • 3 authors
·
Sep 7, 2024

Intelligent Virtual Assistants with LLM-based Process Automation

While intelligent virtual assistants like Siri, Alexa, and Google Assistant have become ubiquitous in modern life, they still face limitations in their ability to follow multi-step instructions and accomplish complex goals articulated in natural language. However, recent breakthroughs in large language models (LLMs) show promise for overcoming existing barriers by enhancing natural language processing and reasoning capabilities. Though promising, applying LLMs to create more advanced virtual assistants still faces challenges like ensuring robust performance and handling variability in real-world user commands. This paper proposes a novel LLM-based virtual assistant that can automatically perform multi-step operations within mobile apps based on high-level user requests. The system represents an advance in assistants by providing an end-to-end solution for parsing instructions, reasoning about goals, and executing actions. LLM-based Process Automation (LLMPA) has modules for decomposing instructions, generating descriptions, detecting interface elements, predicting next actions, and error checking. Experiments demonstrate the system completing complex mobile operation tasks in Alipay based on natural language instructions. This showcases how large language models can enable automated assistants to accomplish real-world tasks. The main contributions are the novel LLMPA architecture optimized for app process automation, the methodology for applying LLMs to mobile apps, and demonstrations of multi-step task completion in a real-world environment. Notably, this work represents the first real-world deployment and extensive evaluation of a large language model-based virtual assistant in a widely used mobile application with an enormous user base numbering in the hundreds of millions.

  • 9 authors
·
Dec 4, 2023

BlockLLM: Multi-tenant Finer-grained Serving for Large Language Models

The growing demand for Large Language Models (LLMs) across diverse applications has prompted a paradigm shift in the design of deep learning serving systems. Deploying LLMs, especially in multi-tenant environments, presents considerable challenges due to their high computational and memory demands. We present BlockLLM, a serving system that exploits the potential of sharing components among fine-tuned LLM models to offer an efficient and flexible solution for LLM workloads. BlockLLM partitions the models into finer-grained blocks to enable the reuse of model components and independent provisioning to improve the computation efficiency. BlockLLM consists of an offline block zoo, for storing the blocks, and an online system to serve the requests through chains of blocks. It offers multi-fold flexibility: (1) Adaptive assembly of block chains on-the-fly is achieved with the help of equivalence evaluation among blocks in the zoo. (2) We enable per-block batch size and configure best-effort KV cache coordination at individual block level. (3) We adopt speculative execution and locality-aware block placement to mitigate the communication costs from dynamic block resource allocation. Our evaluation demonstrates that BlockLLM reduces memory and storage footprints and improves computation efficiency, outperforming existing serving approach in 95\%ile latency and GPU utilization by 33.5\% and 20.1\%, respectively.

  • 4 authors
·
Apr 28, 2024

HEXGEN-TEXT2SQL: Optimizing LLM Inference Request Scheduling for Agentic Text-to-SQL Workflow

Recent advances in leveraging the agentic paradigm of large language models (LLMs) utilization have significantly enhanced Text-to-SQL capabilities, enabling users without specialized database expertise to query data intuitively. However, deploying these agentic LLM-based Text-to-SQL systems in production poses substantial challenges due to their inherently multi-stage workflows, stringent latency constraints, and potentially heterogeneous GPU infrastructure in enterprise environments. Current LLM serving frameworks lack effective mechanisms for handling interdependent inference tasks, dynamic latency variability, and resource heterogeneity, leading to suboptimal performance and frequent service-level objective (SLO) violations. In this paper, we introduce HEXGEN-TEXT2SQL, a novel framework designed explicitly to schedule and execute agentic multi-stage LLM-based Text-to-SQL workflows on heterogeneous GPU clusters that handle multi-tenant end-to-end queries. HEXGEN-TEXT2SQL introduce a hierarchical scheduling approach combining global workload-balanced task dispatching and local adaptive urgency-guided prioritization, guided by a systematic analysis of agentic Text-to-SQL workflows. Additionally, we propose a lightweight simulation-based method for tuning critical scheduling hyperparameters, further enhancing robustness and adaptability. Our extensive evaluation on realistic Text-to-SQL benchmarks demonstrates that HEXGEN-TEXT2SQL significantly outperforms state-of-the-art LLM serving frameworks. Specifically, HEXGEN-TEXT2SQL reduces latency deadlines by up to 1.67times (average: 1.41times) and improves system throughput by up to 1.75times (average: 1.65times) compared to vLLM under diverse, realistic workload conditions. Our code is available at https://github.com/Relaxed-System-Lab/Hexgen-Flow.

  • 4 authors
·
May 8, 2025

Small Language Models for Agentic Systems: A Survey of Architectures, Capabilities, and Deployment Trade offs

Small language models (SLMs; 1-12B params, sometimes up to 20B) are sufficient and often superior for agentic workloads where the objective is schema- and API-constrained accuracy rather than open-ended generation. We synthesize recent evidence across open and proprietary SLMs (Phi-4-Mini, Qwen-2.5-7B, Gemma-2-9B, Llama-3.2-1B/3B, Ministral-3B/8B, Apple on-device 3B, DeepSeek-R1-Distill) and connect it to modern evaluations (BFCL v3/v4, StableToolBench) and serving stacks (vLLM, SGLang, TensorRT-LLM) paired with guided decoding libraries (XGrammar, Outlines). We formalize SLM-default, LLM-fallback systems with uncertainty-aware routing and verifier cascades, and propose engineering metrics that reflect real production goals: cost per successful task (CPS), schema validity rate, executable call rate, p50/p95 latency, and energy per request. Guided decoding, strict JSON Schema outputs, and validator-first tool execution close much of the capability gap with larger models and often let SLMs match or surpass LLMs on tool use, function calling, and RAG at 10x-100x lower token cost with materially better latency and energy. We provide design patterns for agent stacks that prioritize SLMs: schema-first prompting, type-safe function registries, confidence scoring with verifier rollups, and lightweight adaptation via LoRA/QLoRA. We also delineate limits where fallback remains valuable (open-domain reasoning and some long-horizon planning). The result is a practical blueprint for building fast, inexpensive, and reliable agents that default to SLMs while preserving headroom with targeted LLM assistance. Keywords: small language models, agents, function calling, structured outputs, JSON Schema, guided decoding, LoRA/QLoRA, routing, energy efficiency, edge inference

  • 2 authors
·
Oct 4, 2025

Empowering 1000 tokens/second on-device LLM prefilling with mllm-NPU

On-device large language models (LLMs) are catalyzing novel mobile applications such as UI task automation and personalized email auto-reply, without giving away users' private data. However, on-device LLMs still suffer from unacceptably long inference latency, especially the time to first token (prefill stage) due to the need of long context for accurate, personalized content generation, as well as the lack of parallel computing capacity of mobile CPU/GPU. To enable practical on-device LLM, we present mllm-NPU, the first-of-its-kind LLM inference system that efficiently leverages on-device Neural Processing Unit (NPU) offloading. Essentially, mllm-NPU is an algorithm-system co-design that tackles a few semantic gaps between the LLM architecture and contemporary NPU design. Specifically, it re-constructs the prompt and model in three levels: (1) At prompt level, it divides variable-length prompts into multiple fixed-sized chunks while maintaining data dependencies; (2) At tensor level, it identifies and extracts significant outliers to run on the CPU/GPU in parallel with minimal overhead; (3) At block level, it schedules Transformer blocks in an out-of-order manner to the CPU/GPU and NPU based on their hardware affinity and sensitivity to accuracy. Compared to competitive baselines, mllm-NPU achieves 22.4x faster prefill speed and 30.7x energy savings on average, and up to 32.8x speedup in an end-to-end real-world application. For the first time, mllm-NPU achieves more than 1,000 tokens/sec prefilling for a billion-sized model (Qwen1.5-1.8B), paving the way towards practical on-device LLM.

  • 7 authors
·
Jul 8, 2024

Small LLMs Are Weak Tool Learners: A Multi-LLM Agent

Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs, empowering them to interact with external tools (e.g., APIs, functions) and complete complex tasks in a self-directed fashion. The challenge of tool use demands that LLMs not only understand user queries and generate answers but also excel in task planning, memory management, tool invocation, and result summarization. While traditional approaches focus on training a single LLM with all these capabilities, performance limitations become apparent, particularly with smaller models. Moreover, the entire LLM may require retraining when tools are updated. To overcome these challenges, we propose a novel strategy that decomposes the aforementioned capabilities into a planner, caller, and summarizer. Each component is implemented by a single LLM that focuses on a specific capability and collaborates with other components to accomplish the task. This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability. To effectively train this framework, we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM on the entire dataset without discriminating sub-tasks, providing the model with a comprehensive understanding of the task. Second, the fine-tuned LLM is used to instantiate the planner, caller, and summarizer respectively, which are continually fine-tuned on respective sub-tasks. Evaluation across various tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses the traditional single-LLM approach, highlighting its efficacy and advantages in tool learning.

  • 8 authors
·
Jan 14, 2024 2

ToolBridge: An Open-Source Dataset to Equip LLMs with External Tool Capabilities

Through the integration of external tools, large language models (LLMs) such as GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving from elementary conversational agents to general-purpose assistants. We argue that the primary drivers of these advancements are the quality and diversity of the training data. However, the existing LLMs with external tool integration provide only limited transparency regarding their datasets and data collection methods, which has led to the initiation of this research. Specifically, in this paper, our objective is to elucidate the detailed process involved in constructing datasets that empower LLMs to effectively learn how to utilize external tools and make this information available to the public through the introduction of ToolBridge. ToolBridge proposes to employ a collection of general open-access datasets as its raw dataset pool and applies a series of strategies to identify appropriate data entries from the pool for external tool API insertions. By supervised fine-tuning on these curated data entries, LLMs can invoke external tools in appropriate contexts to boost their predictive accuracy, particularly for basic functions including data processing, numerical computation, and factual retrieval. Our experiments rigorously isolates model architectures and training configurations, focusing exclusively on the role of data. The experimental results indicate that LLMs trained on ToolBridge demonstrate consistent performance improvements on both standard benchmarks and custom evaluation datasets. All the associated code and data will be open-source at https://github.com/CharlesPikachu/ToolBridge, promoting transparency and facilitating the broader community to explore approaches for equipping LLMs with external tools capabilities.

  • 6 authors
·
Oct 8, 2024

From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future

With the rise of large language models (LLMs), researchers are increasingly exploring their applications in var ious vertical domains, such as software engineering. LLMs have achieved remarkable success in areas including code generation and vulnerability detection. However, they also exhibit numerous limitations and shortcomings. LLM-based agents, a novel tech nology with the potential for Artificial General Intelligence (AGI), combine LLMs as the core for decision-making and action-taking, addressing some of the inherent limitations of LLMs such as lack of autonomy and self-improvement. Despite numerous studies and surveys exploring the possibility of using LLMs in software engineering, it lacks a clear distinction between LLMs and LLM based agents. It is still in its early stage for a unified standard and benchmarking to qualify an LLM solution as an LLM-based agent in its domain. In this survey, we broadly investigate the current practice and solutions for LLMs and LLM-based agents for software engineering. In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance. We review and differentiate the work of LLMs and LLM-based agents from these six topics, examining their differences and similarities in tasks, benchmarks, and evaluation metrics. Finally, we discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering. We anticipate this work will shed some lights on pushing the boundaries of LLM-based agents in software engineering for future research.

  • 6 authors
·
Aug 5, 2024

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development

Code Large Language Models (LLMs) enhance software development efficiency by automatically generating code and documentation in response to user requirements. However, code LLMs cannot synthesize specialized programs when tasked with IoT applications that require domain knowledge. While Retrieval-Augmented Generation (RAG) offers a promising solution by fetching relevant domain knowledge, it necessitates powerful cloud LLMs (e.g., GPT-4) to process user requirements and retrieved contents, which raises significant privacy concerns. This approach also suffers from unstable networks and prohibitive LLM query costs. Moreover, it is challenging to ensure the correctness and relevance of the fetched contents. To address these issues, we propose GPIoT, a code generation system for IoT applications by fine-tuning locally deployable Small Language Models (SLMs) on IoT-specialized datasets. SLMs have smaller model sizes, allowing efficient local deployment and execution to mitigate privacy concerns and network uncertainty. Furthermore, by fine-tuning the SLMs with our IoT-specialized datasets, the SLMs' ability to synthesize IoT-related programs can be substantially improved. To evaluate GPIoT's capability in synthesizing programs for IoT applications, we develop a benchmark, IoTBench. Extensive experiments and user trials demonstrate the effectiveness of GPIoT in generating IoT-specialized code, outperforming state-of-the-art code LLMs with an average task accuracy increment of 64.7% and significant improvements in user satisfaction.

  • 5 authors
·
Mar 1, 2025

The Open Source Advantage in Large Language Models (LLMs)

Large language models (LLMs) mark a key shift in natural language processing (NLP), having advanced text generation, translation, and domain-specific reasoning. Closed-source models like GPT-4, powered by proprietary datasets and extensive computational resources, lead with state-of-the-art performance today. However, they face criticism for their "black box" nature and for limiting accessibility in a manner that hinders reproducibility and equitable AI development. By contrast, open-source initiatives like LLaMA and BLOOM prioritize democratization through community-driven development and computational efficiency. These models have significantly reduced performance gaps, particularly in linguistic diversity and domain-specific applications, while providing accessible tools for global researchers and developers. Notably, both paradigms rely on foundational architectural innovations, such as the Transformer framework by Vaswani et al. (2017). Closed-source models excel by scaling effectively, while open-source models adapt to real-world applications in underrepresented languages and domains. Techniques like Low-Rank Adaptation (LoRA) and instruction-tuning datasets enable open-source models to achieve competitive results despite limited resources. To be sure, the tension between closed-source and open-source approaches underscores a broader debate on transparency versus proprietary control in AI. Ethical considerations further highlight this divide. Closed-source systems restrict external scrutiny, while open-source models promote reproducibility and collaboration but lack standardized auditing documentation frameworks to mitigate biases. Hybrid approaches that leverage the strengths of both paradigms are likely to shape the future of LLM innovation, ensuring accessibility, competitive technical performance, and ethical deployment.

  • 4 authors
·
Dec 16, 2024 2

Complex QA and language models hybrid architectures, Survey

This paper reviews the state-of-the-art of language models architectures and strategies for "complex" question-answering (QA, CQA, CPS) with a focus on hybridization. Large Language Models (LLM) are good at leveraging public data on standard problems but once you want to tackle more specific complex questions or problems (e.g. How does the concept of personal freedom vary between different cultures ? What is the best mix of power generation methods to reduce climate change ?) you may need specific architecture, knowledge, skills, methods, sensitive data protection, explainability, human approval and versatile feedback... Recent projects like ChatGPT and GALACTICA have allowed non-specialists to grasp the great potential as well as the equally strong limitations of LLM in complex QA. In this paper, we start by reviewing required skills and evaluation techniques. We integrate findings from the robust community edited research papers BIG, BLOOM and HELM which open source, benchmark and analyze limits and challenges of LLM in terms of tasks complexity and strict evaluation on accuracy (e.g. fairness, robustness, toxicity, ...) as a baseline. We discuss some challenges associated with complex QA, including domain adaptation, decomposition and efficient multi-step QA, long form and non-factoid QA, safety and multi-sensitivity data protection, multimodal search, hallucinations, explainability and truthfulness, temporal reasoning. We analyze current solutions and promising research trends, using elements such as: hybrid LLM architectural patterns, training and prompting strategies, active human reinforcement learning supervised with AI, neuro-symbolic and structured knowledge grounding, program synthesis, iterated decomposition and others.

  • 5 authors
·
Feb 17, 2023

Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models

The burgeoning field of Large Language Models (LLMs), exemplified by sophisticated models like OpenAI's ChatGPT, represents a significant advancement in artificial intelligence. These models, however, bring forth substantial challenges in the high consumption of computational, memory, energy, and financial resources, especially in environments with limited resource capabilities. This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs. We categorize methods based on their optimization focus: computational, memory, energy, financial, and network resources and their applicability across various stages of an LLM's lifecycle, including architecture design, pretraining, finetuning, and system design. Additionally, the survey introduces a nuanced categorization of resource efficiency techniques by their specific resource types, which uncovers the intricate relationships and mappings between various resources and corresponding optimization techniques. A standardized set of evaluation metrics and datasets is also presented to facilitate consistent and fair comparisons across different models and techniques. By offering a comprehensive overview of the current sota and identifying open research avenues, this survey serves as a foundational reference for researchers and practitioners, aiding them in developing more sustainable and efficient LLMs in a rapidly evolving landscape.

  • 13 authors
·
Dec 31, 2023

Chain of Tools: Large Language Model is an Automatic Multi-tool Learner

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extend their utility, empowering them to solve practical tasks. Existing work typically empowers LLMs as tool users with a manually designed workflow, where the LLM plans a series of tools in a step-by-step manner, and sequentially executes each tool to obtain intermediate results until deriving the final answer. However, they suffer from two challenges in realistic scenarios: (1) The handcrafted control flow is often ad-hoc and constraints the LLM to local planning; (2) The LLM is instructed to use only manually demonstrated tools or well-trained Python functions, which limits its generalization to new tools. In this work, we first propose Automatic Tool Chain (ATC), a framework that enables the LLM to act as a multi-tool user, which directly utilizes a chain of tools through programming. To scale up the scope of the tools, we next propose a black-box probing method. This further empowers the LLM as a tool learner that can actively discover and document tool usages, teaching themselves to properly master new tools. For a comprehensive evaluation, we build a challenging benchmark named ToolFlow, which diverges from previous benchmarks by its long-term planning scenarios and complex toolset. Experiments on both existing datasets and ToolFlow illustrate the superiority of our framework. Analysis on different settings also validates the effectiveness and the utility of our black-box probing algorithm.

  • 10 authors
·
May 26, 2024

New Solutions on LLM Acceleration, Optimization, and Application

Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a wide range of applications. However, the increasing size and complexity of LLMs present significant challenges in both training and deployment, leading to substantial computational and storage costs as well as heightened energy consumption. In this paper, we provide a review of recent advancements and research directions aimed at addressing these challenges and enhancing the efficiency of LLM-based systems. We begin by discussing algorithm-level acceleration techniques focused on optimizing LLM inference speed and resource utilization. We also explore LLM-hardware co-design strategies with a vision to improve system efficiency by tailoring hardware architectures to LLM requirements. Further, we delve into LLM-to-accelerator compilation approaches, which involve customizing hardware accelerators for efficient LLM deployment. Finally, as a case study to leverage LLMs for assisting circuit design, we examine LLM-aided design methodologies for an important task: High-Level Synthesis (HLS) functional verification, by creating a new dataset that contains a large number of buggy and bug-free codes, which can be essential for training LLMs to specialize on HLS verification and debugging. For each aspect mentioned above, we begin with a detailed background study, followed by the presentation of several novel solutions proposed to overcome specific challenges. We then outline future research directions to drive further advancements. Through these efforts, we aim to pave the way for more efficient and scalable deployment of LLMs across a diverse range of applications.

  • 8 authors
·
Jun 16, 2024

Exploring Large Language Models for Access Control Policy Synthesis and Summarization

Cloud computing is ubiquitous, with a growing number of services being hosted on the cloud every day. Typical cloud compute systems allow administrators to write policies implementing access control rules which specify how access to private data is governed. These policies must be manually written, and due to their complexity can often be error prone. Moreover, existing policies often implement complex access control specifications and thus can be difficult to precisely analyze in determining their behavior works exactly as intended. Recently, Large Language Models (LLMs) have shown great success in automated code synthesis and summarization. Given this success, they could potentially be used for automatically generating access control policies or aid in understanding existing policies. In this paper, we explore the effectiveness of LLMs for access control policy synthesis and summarization. Specifically, we first investigate diverse LLMs for access control policy synthesis, finding that: although LLMs can effectively generate syntactically correct policies, they have permissiveness issues, generating policies equivalent to the given specification 45.8% of the time for non-reasoning LLMs, and 93.7% of the time for reasoning LLMs. We then investigate how LLMs can be used to analyze policies by introducing a novel semantic-based request summarization approach which leverages LLMs to generate a precise characterization of the requests allowed by a policy. Our results show that while there are significant hurdles in leveraging LLMs for automated policy generation, LLMs show promising results when combined with symbolic approaches in analyzing existing policies.

  • 3 authors
·
Oct 23, 2025

On the Tool Manipulation Capability of Open-source Large Language Models

Recent studies on software tool manipulation with large language models (LLMs) mostly rely on closed model APIs. The industrial adoption of these models is substantially constrained due to the security and robustness risks in exposing information to closed LLM API services. In this paper, we ask can we enhance open-source LLMs to be competitive to leading closed LLM APIs in tool manipulation, with practical amount of human supervision. By analyzing common tool manipulation failures, we first demonstrate that open-source LLMs may require training with usage examples, in-context demonstration and generation style regulation to resolve failures. These insights motivate us to revisit classical methods in LLM literature, and demonstrate that we can adapt them as model alignment with programmatic data generation, system prompts and in-context demonstration retrievers to enhance open-source LLMs for tool manipulation. To evaluate these techniques, we create the ToolBench, a tool manipulation benchmark consisting of diverse software tools for real-world tasks. We demonstrate that our techniques can boost leading open-source LLMs by up to 90% success rate, showing capabilities competitive to OpenAI GPT-4 in 4 out of 8 ToolBench tasks. We show that such enhancement typically requires about one developer day to curate data for each tool, rendering a recipe with practical amount of human supervision.

sambanovasystems SambaNova
·
May 25, 2023

FedNano: Toward Lightweight Federated Tuning for Pretrained Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) excel in tasks like multimodal reasoning and cross-modal retrieval but face deployment challenges in real-world scenarios due to distributed multimodal data and strict privacy requirements. Federated Learning (FL) offers a solution by enabling collaborative model training without centralizing data. However, realizing FL for MLLMs presents significant challenges, including high computational demands, limited client capacity, substantial communication costs, and heterogeneous client data. Existing FL methods assume client-side deployment of full models, an assumption that breaks down for large-scale MLLMs due to their massive size and communication demands. To address these limitations, we propose FedNano, the first FL framework that centralizes the LLM on the server while introducing NanoEdge, a lightweight module for client-specific adaptation. NanoEdge employs modality-specific encoders, connectors, and trainable NanoAdapters with low-rank adaptation. This design eliminates the need to deploy LLM on clients, reducing client-side storage by 95%, and limiting communication overhead to only 0.01% of the model parameters. By transmitting only compact NanoAdapter updates, FedNano handles heterogeneous client data and resource constraints while preserving privacy. Experiments demonstrate that FedNano outperforms prior FL baselines, bridging the gap between MLLM scale and FL feasibility, and enabling scalable, decentralized multimodal AI systems.

  • 6 authors
·
Jun 12, 2025 2

From Commands to Prompts: LLM-based Semantic File System for AIOS

Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.

  • 12 authors
·
Sep 23, 2024 1

Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming

The integration of Large Language Models (LLMs) into Development Environments (IDEs) has become a focal point in modern software development. LLMs such as OpenAI GPT-3.5/4 and Code Llama offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants. However, utilizing LLMs out of the box is unlikely to be optimal for any given scenario. Rather, each system requires the LLM to be honed to its set of heuristics to ensure the best performance. In this paper, we introduce the Copilot evaluation harness: a set of data and tools for evaluating LLM-guided IDE interactions, covering various programming scenarios and languages. We propose our metrics as a more robust and information-dense evaluation than previous state of the art evaluation systems. We design and compute both static and execution based success metrics for scenarios encompassing a wide range of developer tasks, including code generation from natural language (generate), documentation generation from code (doc), test case generation (test), bug-fixing (fix), and workspace understanding and query resolution (workspace). These success metrics are designed to evaluate the performance of LLMs within a given IDE and its respective parameter space. Our learnings from evaluating three common LLMs using these metrics can inform the development and validation of future scenarios in LLM guided IDEs.

  • 9 authors
·
Feb 21, 2024 1

Automated Federated Pipeline for Parameter-Efficient Fine-Tuning of Large Language Models

Recently, there has been a surge in the development of advanced intelligent generative content (AIGC), especially large language models (LLMs). However, for many downstream tasks, it is necessary to fine-tune LLMs using private data. While federated learning offers a promising privacy-preserving solution to LLM fine-tuning, the substantial size of an LLM, combined with high computational and communication demands, makes it hard to apply to downstream tasks. More importantly, private edge servers often possess varying computing and network resources in real-world scenarios, introducing additional complexities to LLM fine-tuning. To tackle these problems, we design and implement an automated federated pipeline, named FedPipe, to fine-tune LLMs with minimal training cost but without adding any inference latency. FedPipe firstly identifies the weights to be fine-tuned based on their contributions to the LLM training. It then configures a low-rank adapter for each selected weight to train local low-rank adapters on an edge server, and aggregate local adapters of all edge servers to fine-tune the whole LLM. Finally, it appropriately quantizes the parameters of LLM to reduce memory space according to the requirements of edge servers. Extensive experiments demonstrate that FedPipe expedites the model training and achieves higher accuracy than state-of-the-art benchmarks.

  • 6 authors
·
Apr 9, 2024