2 PlainQAFact: Automatic Factuality Evaluation Metric for Biomedical Plain Language Summaries Generation Hallucinated outputs from language models pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing factuality evaluation methods, such as entailment- and question-answering-based (QA), struggle with plain language summary (PLS) generation due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the source document to enhance comprehension. To address this, we introduce PlainQAFact, a framework trained on a fine-grained, human-annotated dataset PlainFact, to evaluate the factuality of both source-simplified and elaboratively explained sentences. PlainQAFact first classifies factuality type and then assesses factuality using a retrieval-augmented QA-based scoring method. Our approach is lightweight and computationally efficient. Empirical results show that existing factuality metrics fail to effectively evaluate factuality in PLS, especially for elaborative explanations, whereas PlainQAFact achieves state-of-the-art performance. We further analyze its effectiveness across external knowledge sources, answer extraction strategies, overlap measures, and document granularity levels, refining its overall factuality assessment. 2 authors · Mar 11 2
- CABINET: Content Relevance based Noise Reduction for Table Question Answering Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at https://github.com/Sohanpatnaik106/CABINET_QA. 6 authors · Feb 2, 2024
- SQUARE: Automatic Question Answering Evaluation using Multiple Positive and Negative References Evaluation of QA systems is very challenging and expensive, with the most reliable approach being human annotations of correctness of answers for questions. Recent works (AVA, BEM) have shown that transformer LM encoder based similarity metrics transfer well for QA evaluation, but they are limited by the usage of a single correct reference answer. We propose a new evaluation metric: SQuArE (Sentence-level QUestion AnsweRing Evaluation), using multiple reference answers (combining multiple correct and incorrect references) for sentence-form QA. We evaluate SQuArE on both sentence-level extractive (Answer Selection) and generative (GenQA) QA systems, across multiple academic and industrial datasets, and show that it outperforms previous baselines and obtains the highest correlation with human annotations. 4 authors · Sep 21, 2023
1 A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers Readers of academic research papers often read with the goal of answering specific questions. Question Answering systems that can answer those questions can make consumption of the content much more efficient. However, building such tools requires data that reflect the difficulty of the task arising from complex reasoning about claims made in multiple parts of a paper. In contrast, existing information-seeking question answering datasets usually contain questions about generic factoid-type information. We therefore present QASPER, a dataset of 5,049 questions over 1,585 Natural Language Processing papers. Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text. The questions are then answered by a separate set of NLP practitioners who also provide supporting evidence to answers. We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers, motivating further research in document-grounded, information-seeking QA, which our dataset is designed to facilitate. 6 authors · May 6, 2021
3 Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa 5 authors · Jul 31, 2023
- Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning Motivated by suggested question generation in conversational news recommendation systems, we propose a model for generating question-answer pairs (QA pairs) with self-contained, summary-centric questions and length-constrained, article-summarizing answers. We begin by collecting a new dataset of news articles with questions as titles and pairing them with summaries of varying length. This dataset is used to learn a QA pair generation model producing summaries as answers that balance brevity with sufficiency jointly with their corresponding questions. We then reinforce the QA pair generation process with a differentiable reward function to mitigate exposure bias, a common problem in natural language generation. Both automatic metrics and human evaluation demonstrate these QA pairs successfully capture the central gists of the articles and achieve high answer accuracy. 4 authors · Sep 10, 2021
- SPBERTQA: A Two-Stage Question Answering System Based on Sentence Transformers for Medical Texts Question answering (QA) systems have gained explosive attention in recent years. However, QA tasks in Vietnamese do not have many datasets. Significantly, there is mostly no dataset in the medical domain. Therefore, we built a Vietnamese Healthcare Question Answering dataset (ViHealthQA), including 10,015 question-answer passage pairs for this task, in which questions from health-interested users were asked on prestigious health websites and answers from highly qualified experts. This paper proposes a two-stage QA system based on Sentence-BERT (SBERT) using multiple negatives ranking (MNR) loss combined with BM25. Then, we conduct diverse experiments with many bag-of-words models to assess our system's performance. With the obtained results, this system achieves better performance than traditional methods. 5 authors · Jun 20, 2022
1 RQUGE: Reference-Free Metric for Evaluating Question Generation by Answering the Question Existing metrics for evaluating the quality of automatically generated questions such as BLEU, ROUGE, BERTScore, and BLEURT compare the reference and predicted questions, providing a high score when there is a considerable lexical overlap or semantic similarity between the candidate and the reference questions. This approach has two major shortcomings. First, we need expensive human-provided reference questions. Second, it penalises valid questions that may not have high lexical or semantic similarity to the reference questions. In this paper, we propose a new metric, RQUGE, based on the answerability of the candidate question given the context. The metric consists of a question-answering and a span scorer modules, using pre-trained models from existing literature, thus it can be used without any further training. We demonstrate that RQUGE has a higher correlation with human judgment without relying on the reference question. Additionally, RQUGE is shown to be more robust to several adversarial corruptions. Furthermore, we illustrate that we can significantly improve the performance of QA models on out-of-domain datasets by fine-tuning on synthetic data generated by a question generation model and re-ranked by RQUGE. 7 authors · Nov 2, 2022
1 HEAD-QA: A Healthcare Dataset for Complex Reasoning We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work. 2 authors · Jun 11, 2019
3 QuALITY: Question Answering with Long Input Texts, Yes! To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%). 11 authors · Dec 15, 2021
- T2Ranking: A large-scale Chinese Benchmark for Passage Ranking Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/ 11 authors · Apr 7, 2023
- Building Efficient and Effective OpenQA Systems for Low-Resource Languages Question answering (QA) is the task of answering questions posed in natural language with free-form natural language answers extracted from a given passage. In the OpenQA variant, only a question text is given, and the system must retrieve relevant passages from an unstructured knowledge source and use them to provide answers, which is the case in the mainstream QA systems on the Web. QA systems currently are mostly limited to the English language due to the lack of large-scale labeled QA datasets in non-English languages. In this paper, we show that effective, low-cost OpenQA systems can be developed for low-resource contexts. The key ingredients are (1) weak supervision using machine-translated labeled datasets and (2) a relevant unstructured knowledge source in the target language context. Furthermore, we show that only a few hundred gold assessment examples are needed to reliably evaluate these systems. We apply our method to Turkish as a challenging case study, since English and Turkish are typologically very distinct and Turkish has limited resources for QA. We present SQuAD-TR, a machine translation of SQuAD2.0, and we build our OpenQA system by adapting ColBERT-QA and retraining it over Turkish resources and SQuAD-TR using two versions of Wikipedia dumps spanning two years. We obtain a performance improvement of 24-32% in the Exact Match (EM) score and 22-29% in the F1 score compared to the BM25-based and DPR-based baseline QA reader models. Our results show that SQuAD-TR makes OpenQA feasible for Turkish, which we hope encourages researchers to build OpenQA systems in other low-resource languages. We make all the code, models, and the dataset publicly available at https://github.com/boun-tabi/SQuAD-TR. 6 authors · Jan 7, 2024
- SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs Large language models (LLMs) have made significant advancements in various natural language processing tasks, including question answering (QA) tasks. While incorporating new information with the retrieval of relevant passages is a promising way to improve QA with LLMs, the existing methods often require additional fine-tuning which becomes infeasible with recent LLMs. Augmenting retrieved passages via prompting has the potential to address this limitation, but this direction has been limitedly explored. To this end, we design a simple yet effective framework to enhance open-domain QA (ODQA) with LLMs, based on the summarized retrieval (SuRe). SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval that could be viewed as an explicit rationale extracted from the retrieved passages. Specifically, SuRe first constructs summaries of the retrieved passages for each of the multiple answer candidates. Then, SuRe confirms the most plausible answer from the candidate set by evaluating the validity and ranking of the generated summaries. Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches. SuRe also can be integrated with a broad range of retrieval methods and LLMs. Finally, the generated summaries from SuRe show additional advantages to measure the importance of retrieved passages and serve as more preferred rationales by models and humans. 8 authors · Apr 16, 2024
13 WebGLM: Towards An Efficient Web-Enhanced Question Answering System with Human Preferences We present WebGLM, a web-enhanced question-answering system based on the General Language Model (GLM). Its goal is to augment a pre-trained large language model (LLM) with web search and retrieval capabilities while being efficient for real-world deployments. To achieve this, we develop WebGLM with strategies for the LLM-augmented retriever, bootstrapped generator, and human preference-aware scorer. Specifically, we identify and address the limitations of WebGPT (OpenAI), through which WebGLM is enabled with accuracy, efficiency, and cost-effectiveness advantages. In addition, we propose systematic criteria for evaluating web-enhanced QA systems. We conduct multi-dimensional human evaluation and quantitative ablation studies, which suggest the outperformance of the proposed WebGLM designs over existing systems. WebGLM with the 10-billion-parameter GLM (10B) is shown to perform better than the similar-sized WebGPT (13B) and even comparably to WebGPT (175B) in human evaluation. The code, demo, and data are at https://github.com/THUDM/WebGLM. 9 authors · Jun 13, 2023
- Context Filtering with Reward Modeling in Question Answering Question Answering (QA) in NLP is the task of finding answers to a query within a relevant context retrieved by a retrieval system. Yet, the mix of relevant and irrelevant information in these contexts can hinder performance enhancements in QA tasks. To address this, we introduce a context filtering approach that removes non-essential details, summarizing crucial content through Reward Modeling. This method emphasizes keeping vital data while omitting the extraneous during summarization model training. We offer a framework for developing efficient QA models by discerning useful information from dataset pairs, bypassing the need for costly human evaluation. Furthermore, we show that our approach can significantly outperform the baseline, as evidenced by a 6.8-fold increase in the EM Per Token (EPT) metric, which we propose as a measure of token efficiency, indicating a notable token-efficiency boost for low-resource settings. 2 authors · Dec 16, 2024
- Revisiting the Open-Domain Question Answering Pipeline Open-domain question answering (QA) is the tasl of identifying answers to natural questions from a large corpus of documents. The typical open-domain QA system starts with information retrieval to select a subset of documents from the corpus, which are then processed by a machine reader to select the answer spans. This paper describes Mindstone, an open-domain QA system that consists of a new multi-stage pipeline that employs a traditional BM25-based information retriever, RM3-based neural relevance feedback, neural ranker, and a machine reading comprehension stage. This paper establishes a new baseline for end-to-end performance on question answering for Wikipedia/SQuAD dataset (EM=58.1, F1=65.8), with substantial gains over the previous state of the art (Yang et al., 2019b). We also show how the new pipeline enables the use of low-resolution labels, and can be easily tuned to meet various timing requirements. 2 authors · Sep 2, 2020
1 Dense X Retrieval: What Retrieval Granularity Should We Use? Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information. 8 authors · Dec 11, 2023
2 Large Language Models Meet Knowledge Graphs for Question Answering: Synthesis and Opportunities Large language models (LLMs) have demonstrated remarkable performance on question-answering (QA) tasks because of their superior capabilities in natural language understanding and generation. However, LLM-based QA struggles with complex QA tasks due to poor reasoning capacity, outdated knowledge, and hallucinations. Several recent works synthesize LLMs and knowledge graphs (KGs) for QA to address the above challenges. In this survey, we propose a new structured taxonomy that categorizes the methodology of synthesizing LLMs and KGs for QA according to the categories of QA and the KG's role when integrating with LLMs. We systematically survey state-of-the-art advances in synthesizing LLMs and KGs for QA and compare and analyze these approaches in terms of strength, limitations, and KG requirements. We then align the approaches with QA and discuss how these approaches address the main challenges of different complex QA. Finally, we summarize the advancements, evaluation metrics, and benchmark datasets and highlight open challenges and opportunities. 5 authors · May 26 2
- QAFactEval: Improved QA-Based Factual Consistency Evaluation for Summarization Factual consistency is an essential quality of text summarization models in practical settings. Existing work in evaluating this dimension can be broadly categorized into two lines of research, entailment-based and question answering (QA)-based metrics, and different experimental setups often lead to contrasting conclusions as to which paradigm performs the best. In this work, we conduct an extensive comparison of entailment and QA-based metrics, demonstrating that carefully choosing the components of a QA-based metric, especially question generation and answerability classification, is critical to performance. Building on those insights, we propose an optimized metric, which we call QAFactEval, that leads to a 14% average improvement over previous QA-based metrics on the SummaC factual consistency benchmark, and also outperforms the best-performing entailment-based metric. Moreover, we find that QA-based and entailment-based metrics can offer complementary signals and be combined into a single metric for a further performance boost. 4 authors · Dec 15, 2021
1 Augmenting Pre-trained Language Models with QA-Memory for Open-Domain Question Answering Retrieval augmented language models have recently become the standard for knowledge intensive tasks. Rather than relying purely on latent semantics within the parameters of large neural models, these methods enlist a semi-parametric memory to encode an index of knowledge for the model to retrieve over. Most prior work has employed text passages as the unit of knowledge, which has high coverage at the cost of interpretability, controllability, and efficiency. The opposite properties arise in other methods which have instead relied on knowledge base (KB) facts. At the same time, more recent work has demonstrated the effectiveness of storing and retrieving from an index of Q-A pairs derived from text lewis2021paq. This approach yields a high coverage knowledge representation that maintains KB-like properties due to its representations being more atomic units of information. In this work we push this line of research further by proposing a question-answer augmented encoder-decoder model and accompanying pretraining strategy. This yields an end-to-end system that not only outperforms prior QA retrieval methods on single-hop QA tasks but also enables compositional reasoning, as demonstrated by strong performance on two multi-hop QA datasets. Together, these methods improve the ability to interpret and control the model while narrowing the performance gap with passage retrieval systems. 5 authors · Apr 9, 2022
2 Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation Retrieval-Augmented Generation (RAG) mitigates issues of the factual errors and hallucinated outputs generated by Large Language Models (LLMs) in open-domain question-answering tasks (OpenQA) via introducing external knowledge. For complex QA, however, existing RAG methods use LLMs to actively predict retrieval timing and directly use the retrieved information for generation, regardless of whether the retrieval timing accurately reflects the actual information needs, or sufficiently considers prior retrieved knowledge, which may result in insufficient information gathering and interaction, yielding low-quality answers. To address these, we propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks, which includes the iterative information collector, adaptive memory reviewer, and task-oriented generator, while following a new Retriever-and-Memory paradigm. Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes and updating them into the existing optimal knowledge structure, enhancing high-quality knowledge interactions. In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration. We conduct extensive experiments on five complex QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The code and data are at https://github.com/thunlp/Adaptive-Note. 12 authors · Oct 11, 2024
- Narrative Question Answering with Cutting-Edge Open-Domain QA Techniques: A Comprehensive Study Recent advancements in open-domain question answering (ODQA), i.e., finding answers from large open-domain corpus like Wikipedia, have led to human-level performance on many datasets. However, progress in QA over book stories (Book QA) lags behind despite its similar task formulation to ODQA. This work provides a comprehensive and quantitative analysis about the difficulty of Book QA: (1) We benchmark the research on the NarrativeQA dataset with extensive experiments with cutting-edge ODQA techniques. This quantifies the challenges Book QA poses, as well as advances the published state-of-the-art with a sim7\% absolute improvement on Rouge-L. (2) We further analyze the detailed challenges in Book QA through human studies.\url{https://github.com/gorov/BookQA.} Our findings indicate that the event-centric questions dominate this task, which exemplifies the inability of existing QA models to handle event-oriented scenarios. 7 authors · Jun 7, 2021
- Using clarification questions to improve software developers' Web search Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals. 2 authors · Jul 26, 2022
1 A question-answering system for aircraft pilots' documentation The aerospace industry relies on massive collections of complex and technical documents covering system descriptions, manuals or procedures. This paper presents a question answering (QA) system that would help aircraft pilots access information in this documentation by naturally interacting with the system and asking questions in natural language. After describing each module of the dialog system, we present a multi-task based approach for the QA module which enables performance improvement on a Flight Crew Operating Manual (FCOM) dataset. A method to combine scores from the retriever and the QA modules is also presented. 5 authors · Nov 26, 2020
- Measuring Retrieval Complexity in Question Answering Systems In this paper, we investigate which questions are challenging for retrieval-based Question Answering (QA). We (i) propose retrieval complexity (RC), a novel metric conditioned on the completeness of retrieved documents, which measures the difficulty of answering questions, and (ii) propose an unsupervised pipeline to measure RC given an arbitrary retrieval system. Our proposed pipeline measures RC more accurately than alternative estimators, including LLMs, on six challenging QA benchmarks. Further investigation reveals that RC scores strongly correlate with both QA performance and expert judgment across five of the six studied benchmarks, indicating that RC is an effective measure of question difficulty. Subsequent categorization of high-RC questions shows that they span a broad set of question shapes, including multi-hop, compositional, and temporal QA, indicating that RC scores can categorize a new subset of complex questions. Our system can also have a major impact on retrieval-based systems by helping to identify more challenging questions on existing datasets. 5 authors · Jun 5, 2024
12 Can Multimodal Foundation Models Understand Schematic Diagrams? An Empirical Study on Information-Seeking QA over Scientific Papers This paper introduces MISS-QA, the first benchmark specifically designed to evaluate the ability of models to interpret schematic diagrams within scientific literature. MISS-QA comprises 1,500 expert-annotated examples over 465 scientific papers. In this benchmark, models are tasked with interpreting schematic diagrams that illustrate research overviews and answering corresponding information-seeking questions based on the broader context of the paper. We assess the performance of 18 frontier multimodal foundation models, including o4-mini, Gemini-2.5-Flash, and Qwen2.5-VL. We reveal a significant performance gap between these models and human experts on MISS-QA. Our analysis of model performance on unanswerable questions and our detailed error analysis further highlight the strengths and limitations of current models, offering key insights to enhance models in comprehending multimodal scientific literature. Yale NLP Lab · Jul 14 1
- A Survey on Multi-hop Question Answering and Generation The problem of Question Answering (QA) has attracted significant research interest for long. Its relevance to language understanding and knowledge retrieval tasks, along with the simple setting makes the task of QA crucial for strong AI systems. Recent success on simple QA tasks has shifted the focus to more complex settings. Among these, Multi-Hop QA (MHQA) is one of the most researched tasks over the recent years. The ability to answer multi-hop questions and perform multi step reasoning can significantly improve the utility of NLP systems. Consequently, the field has seen a sudden surge with high quality datasets, models and evaluation strategies. The notion of `multiple hops' is somewhat abstract which results in a large variety of tasks that require multi-hop reasoning. This implies that different datasets and models differ significantly which makes the field challenging to generalize and survey. This work aims to provide a general and formal definition of MHQA task, and organize and summarize existing MHQA frameworks. We also outline the best methods to create MHQA datasets. The paper provides a systematic and thorough introduction as well as the structuring of the existing attempts to this highly interesting, yet quite challenging task. 3 authors · Apr 19, 2022
- Ranking Paragraphs for Improving Answer Recall in Open-Domain Question Answering Recently, open-domain question answering (QA) has been combined with machine comprehension models to find answers in a large knowledge source. As open-domain QA requires retrieving relevant documents from text corpora to answer questions, its performance largely depends on the performance of document retrievers. However, since traditional information retrieval systems are not effective in obtaining documents with a high probability of containing answers, they lower the performance of QA systems. Simply extracting more documents increases the number of irrelevant documents, which also degrades the performance of QA systems. In this paper, we introduce Paragraph Ranker which ranks paragraphs of retrieved documents for a higher answer recall with less noise. We show that ranking paragraphs and aggregating answers using Paragraph Ranker improves performance of open-domain QA pipeline on the four open-domain QA datasets by 7.8% on average. 5 authors · Sep 30, 2018
- Zero-Shot Translation Quality Estimation with Explicit Cross-Lingual Patterns This paper describes our submission of the WMT 2020 Shared Task on Sentence Level Direct Assessment, Quality Estimation (QE). In this study, we empirically reveal the mismatching issue when directly adopting BERTScore to QE. Specifically, there exist lots of mismatching errors between the source sentence and translated candidate sentence with token pairwise similarity. In response to this issue, we propose to expose explicit cross-lingual patterns, e.g. word alignments and generation score, to our proposed zero-shot models. Experiments show that our proposed QE model with explicit cross-lingual patterns could alleviate the mismatching issue, thereby improving the performance. Encouragingly, our zero-shot QE method could achieve comparable performance with supervised QE method, and even outperforms the supervised counterpart on 2 out of 6 directions. We expect our work could shed light on the zero-shot QE model improvement. 3 authors · Oct 10, 2020
2 Improving Question Answering Performance through Manual Annotation: Costs, Benefits and Strategies Recently proposed systems for open-domain question answering (OpenQA) require large amounts of training data to achieve state-of-the-art performance. However, data annotation is known to be time-consuming and therefore expensive to acquire. As a result, the appropriate datasets are available only for a handful of languages (mainly English and Chinese). In this work, we introduce and publicly release PolQA, the first Polish dataset for OpenQA. It consists of 7,000 questions, 87,525 manually labeled evidence passages, and a corpus of over 7,097,322 candidate passages. Each question is classified according to its formulation, type, as well as entity type of the answer. This resource allows us to evaluate the impact of different annotation choices on the performance of the QA system and propose an efficient annotation strategy that increases the passage retrieval performance by 10.55 p.p. while reducing the annotation cost by 82%. 3 authors · Dec 17, 2022
- Dealing with Typos for BERT-based Passage Retrieval and Ranking Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effectively model the semantic matching between queries and passages, also in presence of keyword mismatch, i.e. passages that are relevant to a query but do not contain important query keywords. In this paper we consider the Dense Retriever (DR), a passage retrieval method, and the BERT re-ranker, a popular passage re-ranking method. In this context, we formally investigate how these models respond and adapt to a specific type of keyword mismatch -- that caused by keyword typos occurring in queries. Through empirical investigation, we find that typos can lead to a significant drop in retrieval and ranking effectiveness. We then propose a simple typos-aware training framework for DR and BERT re-ranker to address this issue. Our experimental results on the MS MARCO passage ranking dataset show that, with our proposed typos-aware training, DR and BERT re-ranker can become robust to typos in queries, resulting in significantly improved effectiveness compared to models trained without appropriately accounting for typos. 2 authors · Aug 27, 2021
- Question Answering Survey: Directions, Challenges, Datasets, Evaluation Matrices The usage and amount of information available on the internet increase over the past decade. This digitization leads to the need for automated answering system to extract fruitful information from redundant and transitional knowledge sources. Such systems are designed to cater the most prominent answer from this giant knowledge source to the user query using natural language understanding (NLU) and thus eminently depends on the Question-answering(QA) field. Question answering involves but not limited to the steps like mapping of user question to pertinent query, retrieval of relevant information, finding the best suitable answer from the retrieved information etc. The current improvement of deep learning models evince compelling performance improvement in all these tasks. In this review work, the research directions of QA field are analyzed based on the type of question, answer type, source of evidence-answer, and modeling approach. This detailing followed by open challenges of the field like automatic question generation, similarity detection and, low resource availability for a language. In the end, a survey of available datasets and evaluation measures is presented. 2 authors · Dec 7, 2021
- DEXTER: A Benchmark for open-domain Complex Question Answering using LLMs Open-domain complex Question Answering (QA) is a difficult task with challenges in evidence retrieval and reasoning. The complexity of such questions could stem from questions being compositional, hybrid evidence, or ambiguity in questions. While retrieval performance for classical QA tasks is well explored, their capabilities for heterogeneous complex retrieval tasks, especially in an open-domain setting, and the impact on downstream QA performance, are relatively unexplored. To address this, in this work, we propose a benchmark composing diverse complex QA tasks and provide a toolkit to evaluate state-of-the-art pre-trained dense and sparse retrieval models in an open-domain setting. We observe that late interaction models and surprisingly lexical models like BM25 perform well compared to other pre-trained dense retrieval models. In addition, since context-based reasoning is critical for solving complex QA tasks, we also evaluate the reasoning capabilities of LLMs and the impact of retrieval performance on their reasoning capabilities. Through experiments, we observe that much progress is to be made in retrieval for complex QA to improve downstream QA performance. Our software and related data can be accessed at https://github.com/VenkteshV/DEXTER 2 authors · Jun 24, 2024
- Learning Answer Generation using Supervision from Automatic Question Answering Evaluators Recent studies show that sentence-level extractive QA, i.e., based on Answer Sentence Selection (AS2), is outperformed by Generation-based QA (GenQA) models, which generate answers using the top-k answer sentences ranked by AS2 models (a la retrieval-augmented generation style). In this paper, we propose a novel training paradigm for GenQA using supervision from automatic QA evaluation models (GAVA). Specifically, we propose three strategies to transfer knowledge from these QA evaluation models to a GenQA model: (i) augmenting training data with answers generated by the GenQA model and labelled by GAVA (either statically, before training, or (ii) dynamically, at every training epoch); and (iii) using the GAVA score for weighting the generator loss during the learning of the GenQA model. We evaluate our proposed methods on two academic and one industrial dataset, obtaining a significant improvement in answering accuracy over the previous state of the art. 4 authors · May 24, 2023
- QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate our model on QA benchmarks in the commonsense (CommonsenseQA, OpenBookQA) and biomedical (MedQA-USMLE) domains. QA-GNN outperforms existing LM and LM+KG models, and exhibits capabilities to perform interpretable and structured reasoning, e.g., correctly handling negation in questions. 5 authors · Apr 13, 2021
- Consecutive Question Generation via Dynamic Multitask Learning In this paper, we propose the task of consecutive question generation (CQG), which generates a set of logically related question-answer pairs to understand a whole passage, with a comprehensive consideration of the aspects including accuracy, coverage, and informativeness. To achieve this, we first examine the four key elements of CQG, i.e., question, answer, rationale, and context history, and propose a novel dynamic multitask framework with one main task generating a question-answer pair, and four auxiliary tasks generating other elements. It directly helps the model generate good questions through both joint training and self-reranking. At the same time, to fully explore the worth-asking information in a given passage, we make use of the reranking losses to sample the rationales and search for the best question series globally. Finally, we measure our strategy by QA data augmentation and manual evaluation, as well as a novel application of generated question-answer pairs on DocNLI. We prove that our strategy can improve question generation significantly and benefit multiple related NLP tasks. 3 authors · Nov 16, 2022
2 Dense Passage Retrieval for Open-Domain Question Answering Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks. 8 authors · Apr 10, 2020
- ComQA: A Community-sourced Dataset for Complex Factoid Question Answering with Paraphrase Clusters To bridge the gap between the capabilities of the state-of-the-art in factoid question answering (QA) and what users ask, we need large datasets of real user questions that capture the various question phenomena users are interested in, and the diverse ways in which these questions are formulated. We introduce ComQA, a large dataset of real user questions that exhibit different challenging aspects such as compositionality, temporal reasoning, and comparisons. ComQA questions come from the WikiAnswers community QA platform, which typically contains questions that are not satisfactorily answerable by existing search engine technology. Through a large crowdsourcing effort, we clean the question dataset, group questions into paraphrase clusters, and annotate clusters with their answers. ComQA contains 11,214 questions grouped into 4,834 paraphrase clusters. We detail the process of constructing ComQA, including the measures taken to ensure its high quality while making effective use of crowdsourcing. We also present an extensive analysis of the dataset and the results achieved by state-of-the-art systems on ComQA, demonstrating that our dataset can be a driver of future research on QA. 4 authors · Sep 25, 2018
1 A Simple Approach to Jointly Rank Passages and Select Relevant Sentences in the OBQA Context In the open book question answering (OBQA) task, selecting the relevant passages and sentences from distracting information is crucial to reason the answer to a question. HotpotQA dataset is designed to teach and evaluate systems to do both passage ranking and sentence selection. Many existing frameworks use separate models to select relevant passages and sentences respectively. Such systems not only have high complexity in terms of the parameters of models but also fail to take the advantage of training these two tasks together since one task can be beneficial for the other one. In this work, we present a simple yet effective framework to address these limitations by jointly ranking passages and selecting sentences. Furthermore, we propose consistency and similarity constraints to promote the correlation and interaction between passage ranking and sentence selection.The experiments demonstrate that our framework can achieve competitive results with previous systems and outperform the baseline by 28\% in terms of exact matching of relevant sentences on the HotpotQA dataset. 3 authors · Sep 21, 2021
- Query Rewriting for Retrieval-Augmented Large Language Models Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline, making remarkable progress in knowledge-intensive tasks. This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs from the perspective of the query rewriting. Unlike prior studies focusing on adapting either the retriever or the reader, our approach pays attention to the adaptation of the search query itself, for there is inevitably a gap between the input text and the needed knowledge in retrieval. We first prompt an LLM to generate the query, then use a web search engine to retrieve contexts. Furthermore, to better align the query to the frozen modules, we propose a trainable scheme for our pipeline. A small language model is adopted as a trainable rewriter to cater to the black-box LLM reader. The rewriter is trained using the feedback of the LLM reader by reinforcement learning. Evaluation is conducted on downstream tasks, open-domain QA and multiple-choice QA. Experiments results show consistent performance improvement, indicating that our framework is proven effective and scalable, and brings a new framework for retrieval-augmented LLM. 5 authors · May 23, 2023
- Open-Domain Question Answering Goes Conversational via Question Rewriting We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement. 6 authors · Oct 10, 2020
- MultiReQA: A Cross-Domain Evaluation for Retrieval Question Answering Models Retrieval question answering (ReQA) is the task of retrieving a sentence-level answer to a question from an open corpus (Ahmad et al.,2019).This paper presents MultiReQA, anew multi-domain ReQA evaluation suite com-posed of eight retrieval QA tasks drawn from publicly available QA datasets. We provide the first systematic retrieval based evaluation over these datasets using two supervised neural models, based on fine-tuning BERT andUSE-QA models respectively, as well as a surprisingly strong information retrieval baseline,BM25. Five of these tasks contain both train-ing and test data, while three contain test data only. Performance on the five tasks with train-ing data shows that while a general model covering all domains is achievable, the best performance is often obtained by training exclusively on in-domain data. 5 authors · May 5, 2020
- Pre-training Transformer Models with Sentence-Level Objectives for Answer Sentence Selection An important task for designing QA systems is answer sentence selection (AS2): selecting the sentence containing (or constituting) the answer to a question from a set of retrieved relevant documents. In this paper, we propose three novel sentence-level transformer pre-training objectives that incorporate paragraph-level semantics within and across documents, to improve the performance of transformers for AS2, and mitigate the requirement of large labeled datasets. Specifically, the model is tasked to predict whether: (i) two sentences are extracted from the same paragraph, (ii) a given sentence is extracted from a given paragraph, and (iii) two paragraphs are extracted from the same document. Our experiments on three public and one industrial AS2 datasets demonstrate the empirical superiority of our pre-trained transformers over baseline models such as RoBERTa and ELECTRA for AS2. 4 authors · May 20, 2022
- Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering We present a new kind of question answering dataset, OpenBookQA, modeled after open book exams for assessing human understanding of a subject. The open book that comes with our questions is a set of 1329 elementary level science facts. Roughly 6000 questions probe an understanding of these facts and their application to novel situations. This requires combining an open book fact (e.g., metals conduct electricity) with broad common knowledge (e.g., a suit of armor is made of metal) obtained from other sources. While existing QA datasets over documents or knowledge bases, being generally self-contained, focus on linguistic understanding, OpenBookQA probes a deeper understanding of both the topic---in the context of common knowledge---and the language it is expressed in. Human performance on OpenBookQA is close to 92%, but many state-of-the-art pre-trained QA methods perform surprisingly poorly, worse than several simple neural baselines we develop. Our oracle experiments designed to circumvent the knowledge retrieval bottleneck demonstrate the value of both the open book and additional facts. We leave it as a challenge to solve the retrieval problem in this multi-hop setting and to close the large gap to human performance. 4 authors · Sep 8, 2018
- CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task We present the joint contribution of IST and Unbabel to the WMT 2022 Shared Task on Quality Estimation (QE). Our team participated on all three subtasks: (i) Sentence and Word-level Quality Prediction; (ii) Explainable QE; and (iii) Critical Error Detection. For all tasks we build on top of the COMET framework, connecting it with the predictor-estimator architecture of OpenKiwi, and equipping it with a word-level sequence tagger and an explanation extractor. Our results suggest that incorporating references during pretraining improves performance across several language pairs on downstream tasks, and that jointly training with sentence and word-level objectives yields a further boost. Furthermore, combining attention and gradient information proved to be the top strategy for extracting good explanations of sentence-level QE models. Overall, our submissions achieved the best results for all three tasks for almost all language pairs by a considerable margin. 12 authors · Sep 13, 2022
2 Unbabel's Participation in the WMT20 Metrics Shared Task We present the contribution of the Unbabel team to the WMT 2020 Shared Task on Metrics. We intend to participate on the segment-level, document-level and system-level tracks on all language pairs, as well as the 'QE as a Metric' track. Accordingly, we illustrate results of our models in these tracks with reference to test sets from the previous year. Our submissions build upon the recently proposed COMET framework: We train several estimator models to regress on different human-generated quality scores and a novel ranking model trained on relative ranks obtained from Direct Assessments. We also propose a simple technique for converting segment-level predictions into a document-level score. Overall, our systems achieve strong results for all language pairs on previous test sets and in many cases set a new state-of-the-art. 4 authors · Oct 29, 2020
1 Reading Wikipedia to Answer Open-Domain Questions This paper proposes to tackle open- domain question answering using Wikipedia as the unique knowledge source: the answer to any factoid question is a text span in a Wikipedia article. This task of machine reading at scale combines the challenges of document retrieval (finding the relevant articles) with that of machine comprehension of text (identifying the answer spans from those articles). Our approach combines a search component based on bigram hashing and TF-IDF matching with a multi-layer recurrent neural network model trained to detect answers in Wikipedia paragraphs. Our experiments on multiple existing QA datasets indicate that (1) both modules are highly competitive with respect to existing counterparts and (2) multitask learning using distant supervision on their combination is an effective complete system on this challenging task. 4 authors · Mar 31, 2017
- Telco-DPR: A Hybrid Dataset for Evaluating Retrieval Models of 3GPP Technical Specifications This paper proposes a Question-Answering (QA) system for the telecom domain using 3rd Generation Partnership Project (3GPP) technical documents. Alongside, a hybrid dataset, Telco-DPR, which consists of a curated 3GPP corpus in a hybrid format, combining text and tables, is presented. Additionally, the dataset includes a set of synthetic question/answer pairs designed to evaluate the retrieval performance of QA systems on this type of data. The retrieval models, including the sparse model, Best Matching 25 (BM25), as well as dense models, such as Dense Passage Retriever (DPR) and Dense Hierarchical Retrieval (DHR), are evaluated and compared using top-K accuracy and Mean Reciprocal Rank (MRR). The results show that DHR, a retriever model utilising hierarchical passage selection through fine-tuning at both the document and passage levels, outperforms traditional methods in retrieving relevant technical information, achieving a Top-10 accuracy of 86.2%. Additionally, the Retriever-Augmented Generation (RAG) technique, used in the proposed QA system, is evaluated to demonstrate the benefits of using the hybrid dataset and the DHR. The proposed QA system, using the developed RAG model and the Generative Pretrained Transformer (GPT)-4, achieves a 14% improvement in answer accuracy, when compared to a previous benchmark on the same dataset. 4 authors · Oct 15, 2024
1 A Compare-Aggregate Model with Latent Clustering for Answer Selection In this paper, we propose a novel method for a sentence-level answer-selection task that is a fundamental problem in natural language processing. First, we explore the effect of additional information by adopting a pretrained language model to compute the vector representation of the input text and by applying transfer learning from a large-scale corpus. Second, we enhance the compare-aggregate model by proposing a novel latent clustering method to compute additional information within the target corpus and by changing the objective function from listwise to pointwise. To evaluate the performance of the proposed approaches, experiments are performed with the WikiQA and TREC-QA datasets. The empirical results demonstrate the superiority of our proposed approach, which achieve state-of-the-art performance for both datasets. 5 authors · May 30, 2019
- GermanQuAD and GermanDPR: Improving Non-English Question Answering and Passage Retrieval A major challenge of research on non-English machine reading for question answering (QA) is the lack of annotated datasets. In this paper, we present GermanQuAD, a dataset of 13,722 extractive question/answer pairs. To improve the reproducibility of the dataset creation approach and foster QA research on other languages, we summarize lessons learned and evaluate reformulation of question/answer pairs as a way to speed up the annotation process. An extractive QA model trained on GermanQuAD significantly outperforms multilingual models and also shows that machine-translated training data cannot fully substitute hand-annotated training data in the target language. Finally, we demonstrate the wide range of applications of GermanQuAD by adapting it to GermanDPR, a training dataset for dense passage retrieval (DPR), and train and evaluate the first non-English DPR model. 3 authors · Apr 26, 2021
- InstUPR : Instruction-based Unsupervised Passage Reranking with Large Language Models This paper introduces InstUPR, an unsupervised passage reranking method based on large language models (LLMs). Different from existing approaches that rely on extensive training with query-document pairs or retrieval-specific instructions, our method leverages the instruction-following capabilities of instruction-tuned LLMs for passage reranking without any additional fine-tuning. To achieve this, we introduce a soft score aggregation technique and employ pairwise reranking for unsupervised passage reranking. Experiments on the BEIR benchmark demonstrate that InstUPR outperforms unsupervised baselines as well as an instruction-tuned reranker, highlighting its effectiveness and superiority. Source code to reproduce all experiments is open-sourced at https://github.com/MiuLab/InstUPR 2 authors · Mar 25, 2024
- SciDQA: A Deep Reading Comprehension Dataset over Scientific Papers Scientific literature is typically dense, requiring significant background knowledge and deep comprehension for effective engagement. We introduce SciDQA, a new dataset for reading comprehension that challenges LLMs for a deep understanding of scientific articles, consisting of 2,937 QA pairs. Unlike other scientific QA datasets, SciDQA sources questions from peer reviews by domain experts and answers by paper authors, ensuring a thorough examination of the literature. We enhance the dataset's quality through a process that carefully filters out lower quality questions, decontextualizes the content, tracks the source document across different versions, and incorporates a bibliography for multi-document question-answering. Questions in SciDQA necessitate reasoning across figures, tables, equations, appendices, and supplementary materials, and require multi-document reasoning. We evaluate several open-source and proprietary LLMs across various configurations to explore their capabilities in generating relevant and factual responses. Our comprehensive evaluation, based on metrics for surface-level similarity and LLM judgements, highlights notable performance discrepancies. SciDQA represents a rigorously curated, naturally derived scientific QA dataset, designed to facilitate research on complex scientific text understanding. 3 authors · Nov 8, 2024
3 Never Lost in the Middle: Improving Large Language Models via Attention Strengthening Question Answering While large language models (LLMs) are equipped with longer text input capabilities than before, they are struggling to seek correct information in long contexts. The "lost in the middle" problem challenges most LLMs, referring to the dramatic decline in accuracy when correct information is located in the middle. To overcome this crucial issue, this paper proposes to enhance the information searching and reflection ability of LLMs in long contexts via specially designed tasks called Attention Strengthening Multi-doc QA (ASM QA). Following these tasks, our model excels in focusing more precisely on the desired information. Experimental results show substantial improvement in Multi-doc QA and other benchmarks, superior to state-of-the-art models by 13.7% absolute gain in shuffled settings, by 21.5% in passage retrieval task. We release our model, Ziya-Reader to promote related research in the community. 11 authors · Nov 15, 2023
- PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them Open-domain Question Answering models which directly leverage question-answer (QA) pairs, such as closed-book QA (CBQA) models and QA-pair retrievers, show promise in terms of speed and memory compared to conventional models which retrieve and read from text corpora. QA-pair retrievers also offer interpretable answers, a high degree of control, and are trivial to update at test time with new knowledge. However, these models lack the accuracy of retrieve-and-read systems, as substantially less knowledge is covered by the available QA-pairs relative to text corpora like Wikipedia. To facilitate improved QA-pair models, we introduce Probably Asked Questions (PAQ), a very large resource of 65M automatically-generated QA-pairs. We introduce a new QA-pair retriever, RePAQ, to complement PAQ. We find that PAQ preempts and caches test questions, enabling RePAQ to match the accuracy of recent retrieve-and-read models, whilst being significantly faster. Using PAQ, we train CBQA models which outperform comparable baselines by 5%, but trail RePAQ by over 15%, indicating the effectiveness of explicit retrieval. RePAQ can be configured for size (under 500MB) or speed (over 1K questions per second) whilst retaining high accuracy. Lastly, we demonstrate RePAQ's strength at selective QA, abstaining from answering when it is likely to be incorrect. This enables RePAQ to ``back-off" to a more expensive state-of-the-art model, leading to a combined system which is both more accurate and 2x faster than the state-of-the-art model alone. 8 authors · Feb 13, 2021
- Vietnamese Legal Information Retrieval in Question-Answering System In the modern era of rapidly increasing data volumes, accurately retrieving and recommending relevant documents has become crucial in enhancing the reliability of Question Answering (QA) systems. Recently, Retrieval Augmented Generation (RAG) has gained significant recognition for enhancing the capabilities of large language models (LLMs) by mitigating hallucination issues in QA systems, which is particularly beneficial in the legal domain. Various methods, such as semantic search using dense vector embeddings or a combination of multiple techniques to improve results before feeding them to LLMs, have been proposed. However, these methods often fall short when applied to the Vietnamese language due to several challenges, namely inefficient Vietnamese data processing leading to excessive token length or overly simplistic ensemble techniques that lead to instability and limited improvement. Moreover, a critical issue often overlooked is the ordering of final relevant documents which are used as reference to ensure the accuracy of the answers provided by LLMs. In this report, we introduce our three main modifications taken to address these challenges. First, we explore various practical approaches to data processing to overcome the limitations of the embedding model. Additionally, we enhance Reciprocal Rank Fusion by normalizing order to combine results from keyword and vector searches effectively. We also meticulously re-rank the source pieces of information used by LLMs with Active Retrieval to improve user experience when refining the information generated. In our opinion, this technique can also be considered as a new re-ranking method that might be used in place of the traditional cross encoder. Finally, we integrate these techniques into a comprehensive QA system, significantly improving its performance and reliability 4 authors · Sep 4, 2024
1 SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine We publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind CNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article and generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google. Following this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering. 6 authors · Apr 17, 2017
- Scaling up COMETKIWI: Unbabel-IST 2023 Submission for the Quality Estimation Shared Task We present the joint contribution of Unbabel and Instituto Superior T\'ecnico to the WMT 2023 Shared Task on Quality Estimation (QE). Our team participated on all tasks: sentence- and word-level quality prediction (task 1) and fine-grained error span detection (task 2). For all tasks, we build on the COMETKIWI-22 model (Rei et al., 2022b). Our multilingual approaches are ranked first for all tasks, reaching state-of-the-art performance for quality estimation at word-, span- and sentence-level granularity. Compared to the previous state-of-the-art COMETKIWI-22, we show large improvements in correlation with human judgements (up to 10 Spearman points). Moreover, we surpass the second-best multilingual submission to the shared-task with up to 3.8 absolute points. 8 authors · Sep 21, 2023
- Cascaded Information Disclosure for Generalized Evaluation of Problem Solving Capabilities While question-answering~(QA) benchmark performance is an automatic and scalable method to compare LLMs, it is an indirect method of evaluating their underlying problem-solving capabilities. Therefore, we propose a holistic and generalizable framework based on cascaded question disclosure that provides a more accurate estimate of the models' problem-solving capabilities while maintaining the scalability and automation. This approach collects model responses in a stagewise manner with each stage revealing partial information about the question designed to elicit generalized reasoning in LLMs. We find that our approach not only provides a better comparison between LLMs, but also induces better intermediate traces in models compared to the standard QA paradigm. We empirically verify this behavior on diverse reasoning and knowledge-heavy QA datasets by comparing LLMs of varying sizes and families. Our approach narrows the performance gap observed in the standard QA evaluation settings, indicating that the prevalent indirect QA paradigm of evaluation overestimates the differences in performance between models. We further validate our findings by extensive ablation studies. 3 authors · Jul 31
1 PANDA (Pedantic ANswer-correctness Determination and Adjudication):Improving Automatic Evaluation for Question Answering and Text Generation Question answering (QA) can only make progress if we know if an answer is correct, but for many of the most challenging and interesting QA examples, current answer correctness (AC) metrics do not align with human judgments, particularly verbose, free form answers from large language models (LLM). There are two challenges: a lack of data and that models are too big. LLM based scorers correlate better with humans, but this expensive task has only been tested on limited QA datasets. We rectify these issues by providing clear guidelines for evaluating machine QA adopted from human QA contests. We also introduce Precise ANswer correctness Determination and Adjudication (PANDA), a small, efficient, deterministic AC classifier (812 KB) that more accurately evaluates answer correctness. 5 authors · Feb 16, 2024
- TransEvalnia: Reasoning-based Evaluation and Ranking of Translations We present TransEvalnia, a prompting-based translation evaluation and ranking system that uses reasoning in performing its evaluations and ranking. This system presents fine-grained evaluations based on a subset of the Multidimensional Quality Metrics (https://themqm.org/), returns an assessment of which translation it deems the best, and provides numerical scores for the various dimensions and for the overall translation. We show that TransEvalnia performs as well as or better than the state-of-the-art MT-Ranker (Moosa et al. 2024) on our own English-Japanese data as well as several language pairs from various WMT shared tasks. Using Anthropic's Claude-3.5-Sonnet and Qwen-2.5-72B-Instruct as the evaluation LLMs, we show that the evaluations returned are deemed highly acceptable to human raters, and that the scores assigned to the translations by Sonnet, as well as other LLMs, correlate well with scores assigned by the human raters. We also note the sensitivity of our system -- as well as MT-Ranker -- to the order in which the translations are presented, and we propose methods to address this position bias. All data, including the system's evaluation and reasoning, human assessments, as well as code is released. 3 authors · Jul 16
1 RealTime QA: What's the Answer Right Now? We introduce REALTIME QA, a dynamic question answering (QA) platform that announces questions and evaluates systems on a regular basis (weekly in this version). REALTIME QA inquires about the current world, and QA systems need to answer questions about novel events or information. It therefore challenges static, conventional assumptions in open-domain QA datasets and pursues instantaneous applications. We build strong baseline models upon large pretrained language models, including GPT-3 and T5. Our benchmark is an ongoing effort, and this paper presents real-time evaluation results over the past year. Our experimental results show that GPT-3 can often properly update its generation results, based on newly-retrieved documents, highlighting the importance of up-to-date information retrieval. Nonetheless, we find that GPT-3 tends to return outdated answers when retrieved documents do not provide sufficient information to find an answer. This suggests an important avenue for future research: can an open-domain QA system identify such unanswerable cases and communicate with the user or even the retrieval module to modify the retrieval results? We hope that REALTIME QA will spur progress in instantaneous applications of question answering and beyond. 10 authors · Jul 27, 2022
- Unify word-level and span-level tasks: NJUNLP's Participation for the WMT2023 Quality Estimation Shared Task We introduce the submissions of the NJUNLP team to the WMT 2023 Quality Estimation (QE) shared task. Our team submitted predictions for the English-German language pair on all two sub-tasks: (i) sentence- and word-level quality prediction; and (ii) fine-grained error span detection. This year, we further explore pseudo data methods for QE based on NJUQE framework (https://github.com/NJUNLP/njuqe). We generate pseudo MQM data using parallel data from the WMT translation task. We pre-train the XLMR large model on pseudo QE data, then fine-tune it on real QE data. At both stages, we jointly learn sentence-level scores and word-level tags. Empirically, we conduct experiments to find the key hyper-parameters that improve the performance. Technically, we propose a simple method that covert the word-level outputs to fine-grained error span results. Overall, our models achieved the best results in English-German for both word-level and fine-grained error span detection sub-tasks by a considerable margin. 7 authors · Sep 22, 2023
2 LiteraryQA: Towards Effective Evaluation of Long-document Narrative QA Question Answering (QA) on narrative text poses a unique challenge to current systems, requiring a deep understanding of long, complex documents. However, the reliability of NarrativeQA, the most widely used benchmark in this domain, is hindered by noisy documents and flawed QA pairs. In this work, we introduce LiteraryQA, a high-quality subset of NarrativeQA focused on literary works. Using a human- and LLM-validated pipeline, we identify and correct low-quality QA samples while removing extraneous text from source documents. We then carry out a meta-evaluation of automatic metrics to clarify how systems should be evaluated on LiteraryQA. This analysis reveals that all n-gram-based metrics have a low system-level correlation to human judgment, while LLM-as-a-Judge evaluations, even with small open-weight models, can strongly agree with the ranking identified by humans. Finally, we benchmark a set of long-context LLMs on LiteraryQA. We release our code and data at https://github.com/SapienzaNLP/LiteraryQA. 3 authors · Oct 15
- Fine-tuning Strategies for Domain Specific Question Answering under Low Annotation Budget Constraints The progress introduced by pre-trained language models and their fine-tuning has resulted in significant improvements in most downstream NLP tasks. The unsupervised training of a language model combined with further target task fine-tuning has become the standard QA fine-tuning procedure. In this work, we demonstrate that this strategy is sub-optimal for fine-tuning QA models, especially under a low QA annotation budget, which is a usual setting in practice due to the extractive QA labeling cost. We draw our conclusions by conducting an exhaustive analysis of the performance of the alternatives of the sequential fine-tuning strategy on different QA datasets. Based on the experiments performed, we observed that the best strategy to fine-tune the QA model in low-budget settings is taking a pre-trained language model (PLM) and then fine-tuning PLM with a dataset composed of the target dataset and SQuAD dataset. With zero extra annotation effort, the best strategy outperforms the standard strategy by 2.28% to 6.48%. Our experiments provide one of the first investigations on how to best fine-tune a QA system under a low budget and are therefore of the utmost practical interest to the QA practitioners. 4 authors · Jan 17, 2024
- ExpertGenQA: Open-ended QA generation in Specialized Domains Generating high-quality question-answer pairs for specialized technical domains remains challenging, with existing approaches facing a tradeoff between leveraging expert examples and achieving topical diversity. We present ExpertGenQA, a protocol that combines few-shot learning with structured topic and style categorization to generate comprehensive domain-specific QA pairs. Using U.S. Federal Railroad Administration documents as a test bed, we demonstrate that ExpertGenQA achieves twice the efficiency of baseline few-shot approaches while maintaining 94.4% topic coverage. Through systematic evaluation, we show that current LLM-based judges and reward models exhibit strong bias toward superficial writing styles rather than content quality. Our analysis using Bloom's Taxonomy reveals that ExpertGenQA better preserves the cognitive complexity distribution of expert-written questions compared to template-based approaches. When used to train retrieval models, our generated queries improve top-1 accuracy by 13.02% over baseline performance, demonstrating their effectiveness for downstream applications in technical domains. 5 authors · Mar 4
- TWEAC: Transformer with Extendable QA Agent Classifiers Question answering systems should help users to access knowledge on a broad range of topics and to answer a wide array of different questions. Most systems fall short of this expectation as they are only specialized in one particular setting, e.g., answering factual questions with Wikipedia data. To overcome this limitation, we propose composing multiple QA agents within a meta-QA system. We argue that there exist a wide range of specialized QA agents in literature. Thus, we address the central research question of how to effectively and efficiently identify suitable QA agents for any given question. We study both supervised and unsupervised approaches to address this challenge, showing that TWEAC -- Transformer with Extendable Agent Classifiers -- achieves the best performance overall with 94% accuracy. We provide extensive insights on the scalability of TWEAC, demonstrating that it scales robustly to over 100 QA agents with each providing just 1000 examples of questions they can answer. Our code and data is available: https://github.com/UKPLab/TWEAC-qa-agent-selection 4 authors · Apr 14, 2021
1 Are Large Language Models Good at Utility Judgments? Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments. 6 authors · Mar 28, 2024
- Toward Human Centered Interactive Clinical Question Answering System Unstructured clinical notes contain essential patient information but are challenging for physicians to search and interpret efficiently. Although large language models (LLMs) have shown promise in question answering (QA), most existing systems lack transparency, usability, and alignment with clinical workflows. This work introduces an interactive QA system that enables physicians to query clinical notes via text or voice and receive extractive answers highlighted directly in the note for traceability. The system was built using OpenAI models with zero-shot prompting and evaluated across multiple metrics, including exact string match, word overlap, SentenceTransformer similarity, and BERTScore. Results show that while exact match scores ranged from 47 to 62 percent, semantic similarity scores exceeded 87 percent, indicating strong contextual alignment even when wording varied. To assess usability, the system was also evaluated using simulated clinical personas. Seven diverse physician and nurse personas interacted with the system across scenario-based tasks and provided structured feedback. The evaluations highlighted strengths in intuitive design and answer accessibility, alongside opportunities for enhancing explanation clarity. 1 authors · May 24
- PDF Retrieval Augmented Question Answering This paper presents an advancement in Question-Answering (QA) systems using a Retrieval Augmented Generation (RAG) framework to enhance information extraction from PDF files. Recognizing the richness and diversity of data within PDFs--including text, images, vector diagrams, graphs, and tables--poses unique challenges for existing QA systems primarily designed for textual content. We seek to develop a comprehensive RAG-based QA system that will effectively address complex multimodal questions, where several data types are combined in the query. This is mainly achieved by refining approaches to processing and integrating non-textual elements in PDFs into the RAG framework to derive precise and relevant answers, as well as fine-tuning large language models to better adapt to our system. We provide an in-depth experimental evaluation of our solution, demonstrating its capability to extract accurate information that can be applied to different types of content across PDFs. This work not only pushes the boundaries of retrieval-augmented QA systems but also lays a foundation for further research in multimodal data integration and processing. 2 authors · Jun 22
3 ResearchQA: Evaluating Scholarly Question Answering at Scale Across 75 Fields with Survey-Mined Questions and Rubrics Evaluating long-form responses to research queries heavily relies on expert annotators, restricting attention to areas like AI where researchers can conveniently enlist colleagues. Yet, research expertise is widespread: survey articles synthesize knowledge distributed across the literature. We introduce ResearchQA, a resource for evaluating LLM systems by distilling survey articles from 75 research fields into 21K queries and 160K rubric items. Each rubric, derived jointly with queries from survey sections, lists query-specific answer evaluation criteria, i.e., citing papers, making explanations, and describing limitations. Assessments by 31 Ph.D. annotators in 8 fields indicate 96% of queries support Ph.D. information needs and 87% of rubric items should be addressed in system responses by a sentence or more. Using our rubrics, we are able to construct an automatic pairwise judge obtaining 74% agreement with expert judgments. We leverage ResearchQA to analyze competency gaps in 18 systems in over 7.6K pairwise evaluations. No parametric or retrieval-augmented system we evaluate exceeds 70% on covering rubric items, and the highest-ranking agentic system shows 75% coverage. Error analysis reveals that the highest-ranking system fully addresses less than 11% of citation rubric items, 48% of limitation items, and 49% of comparison items. We release our data to facilitate more comprehensive multi-field evaluations. 4 authors · Aug 30
3 SynDARin: Synthesising Datasets for Automated Reasoning in Low-Resource Languages Question Answering (QA) datasets have been instrumental in developing and evaluating Large Language Model (LLM) capabilities. However, such datasets are scarce for languages other than English due to the cost and difficulties of collection and manual annotation. This means that producing novel models and measuring the performance of multilingual LLMs in low-resource languages is challenging. To mitigate this, we propose SynDARin, a method for generating and validating QA datasets for low-resource languages. We utilize parallel content mining to obtain human-curated paragraphs between English and the target language. We use the English data as context to generate synthetic multiple-choice (MC) question-answer pairs, which are automatically translated and further validated for quality. Combining these with their designated non-English human-curated paragraphs form the final QA dataset. The method allows to maintain the content quality, reduces the likelihood of factual errors, and circumvents the need for costly annotation. To test the method, we created a QA dataset with 1.2K samples for the Armenian language. The human evaluation shows that 98% of the generated English data maintains quality and diversity in the question types and topics, while the translation validation pipeline can filter out sim70% of data with poor quality. We use the dataset to benchmark state-of-the-art LLMs, showing their inability to achieve human accuracy with some model performances closer to random chance. This shows that the generated dataset is non-trivial and can be used to evaluate reasoning capabilities in low-resource language. 4 authors · Jun 20, 2024
- BERGEN: A Benchmarking Library for Retrieval-Augmented Generation Retrieval-Augmented Generation allows to enhance Large Language Models with external knowledge. In response to the recent popularity of generative LLMs, many RAG approaches have been proposed, which involve an intricate number of different configurations such as evaluation datasets, collections, metrics, retrievers, and LLMs. Inconsistent benchmarking poses a major challenge in comparing approaches and understanding the impact of each component in the pipeline. In this work, we study best practices that lay the groundwork for a systematic evaluation of RAG and present BERGEN, an end-to-end library for reproducible research standardizing RAG experiments. In an extensive study focusing on QA, we benchmark different state-of-the-art retrievers, rerankers, and LLMs. Additionally, we analyze existing RAG metrics and datasets. Our open-source library BERGEN is available under https://github.com/naver/bergen. 7 authors · Jul 1, 2024
- QASem Parsing: Text-to-text Modeling of QA-based Semantics Several recent works have suggested to represent semantic relations with questions and answers, decomposing textual information into separate interrogative natural language statements. In this paper, we consider three QA-based semantic tasks - namely, QA-SRL, QANom and QADiscourse, each targeting a certain type of predication - and propose to regard them as jointly providing a comprehensive representation of textual information. To promote this goal, we investigate how to best utilize the power of sequence-to-sequence (seq2seq) pre-trained language models, within the unique setup of semi-structured outputs, consisting of an unordered set of question-answer pairs. We examine different input and output linearization strategies, and assess the effect of multitask learning and of simple data augmentation techniques in the setting of imbalanced training data. Consequently, we release the first unified QASem parsing tool, practical for downstream applications who can benefit from an explicit, QA-based account of information units in a text. 6 authors · May 23, 2022
3 HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We introduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems' ability to extract relevant facts and perform necessary comparison. We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions. 7 authors · Sep 25, 2018
- Rethinking Evaluation Metrics for Grammatical Error Correction: Why Use a Different Evaluation Process than Human? One of the goals of automatic evaluation metrics in grammatical error correction (GEC) is to rank GEC systems such that it matches human preferences. However, current automatic evaluations are based on procedures that diverge from human evaluation. Specifically, human evaluation derives rankings by aggregating sentence-level relative evaluation results, e.g., pairwise comparisons, using a rating algorithm, whereas automatic evaluation averages sentence-level absolute scores to obtain corpus-level scores, which are then sorted to determine rankings. In this study, we propose an aggregation method for existing automatic evaluation metrics which aligns with human evaluation methods to bridge this gap. We conducted experiments using various metrics, including edit-based metrics, n-gram based metrics, and sentence-level metrics, and show that resolving the gap improves results for the most of metrics on the SEEDA benchmark. We also found that even BERT-based metrics sometimes outperform the metrics of GPT-4. The proposed ranking method is integrated gec-metrics. 3 authors · Feb 13
1 Hybrid and Collaborative Passage Reranking In passage retrieval system, the initial passage retrieval results may be unsatisfactory, which can be refined by a reranking scheme. Existing solutions to passage reranking focus on enriching the interaction between query and each passage separately, neglecting the context among the top-ranked passages in the initial retrieval list. To tackle this problem, we propose a Hybrid and Collaborative Passage Reranking (HybRank) method, which leverages the substantial similarity measurements of upstream retrievers for passage collaboration and incorporates the lexical and semantic properties of sparse and dense retrievers for reranking. Besides, built on off-the-shelf retriever features, HybRank is a plug-in reranker capable of enhancing arbitrary passage lists including previously reranked ones. Extensive experiments demonstrate the stable improvements of performance over prevalent retrieval and reranking methods, and verify the effectiveness of the core components of HybRank. 4 authors · May 16, 2023
2 CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation Building high-quality datasets for specialized tasks is a time-consuming and resource-intensive process that often requires specialized domain knowledge. We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets, given a small number of user-written few-shots that demonstrate the task to be performed. Given the few-shot examples, we use large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents. Lastly, instruction-tuned large language models (LLMs) augment the retrieved documents into custom-formatted task samples, which then can be used for fine-tuning. We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks: biology question-answering (QA), medicine QA and commonsense QA as well as summarization. Our experiments show that CRAFT-based models outperform or achieve comparable performance to general LLMs for QA tasks, while CRAFT-based summarization models outperform models trained on human-curated data by 46 preference points. 4 authors · Sep 3, 2024
- MLQA: Evaluating Cross-lingual Extractive Question Answering Question answering (QA) models have shown rapid progress enabled by the availability of large, high-quality benchmark datasets. Such annotated datasets are difficult and costly to collect, and rarely exist in languages other than English, making training QA systems in other languages challenging. An alternative to building large monolingual training datasets is to develop cross-lingual systems which can transfer to a target language without requiring training data in that language. In order to develop such systems, it is crucial to invest in high quality multilingual evaluation benchmarks to measure progress. We present MLQA, a multi-way aligned extractive QA evaluation benchmark intended to spur research in this area. MLQA contains QA instances in 7 languages, namely English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. It consists of over 12K QA instances in English and 5K in each other language, with each QA instance being parallel between 4 languages on average. MLQA is built using a novel alignment context strategy on Wikipedia articles, and serves as a cross-lingual extension to existing extractive QA datasets. We evaluate current state-of-the-art cross-lingual representations on MLQA, and also provide machine-translation-based baselines. In all cases, transfer results are shown to be significantly behind training-language performance. 5 authors · Oct 16, 2019
- SUNAR: Semantic Uncertainty based Neighborhood Aware Retrieval for Complex QA Complex question-answering (QA) systems face significant challenges in retrieving and reasoning over information that addresses multi-faceted queries. While large language models (LLMs) have advanced the reasoning capabilities of these systems, the bounded-recall problem persists, where procuring all relevant documents in first-stage retrieval remains a challenge. Missing pertinent documents at this stage leads to performance degradation that cannot be remedied in later stages, especially given the limited context windows of LLMs which necessitate high recall at smaller retrieval depths. In this paper, we introduce SUNAR, a novel approach that leverages LLMs to guide a Neighborhood Aware Retrieval process. SUNAR iteratively explores a neighborhood graph of documents, dynamically promoting or penalizing documents based on uncertainty estimates from interim LLM-generated answer candidates. We validate our approach through extensive experiments on two complex QA datasets. Our results show that SUNAR significantly outperforms existing retrieve-and-reason baselines, achieving up to a 31.84% improvement in performance over existing state-of-the-art methods for complex QA. 3 authors · Mar 23
- Researchy Questions: A Dataset of Multi-Perspective, Decompositional Questions for LLM Web Agents Existing question answering (QA) datasets are no longer challenging to most powerful Large Language Models (LLMs). Traditional QA benchmarks like TriviaQA, NaturalQuestions, ELI5 and HotpotQA mainly study ``known unknowns'' with clear indications of both what information is missing, and how to find it to answer the question. Hence, good performance on these benchmarks provides a false sense of security. A yet unmet need of the NLP community is a bank of non-factoid, multi-perspective questions involving a great deal of unclear information needs, i.e. ``unknown uknowns''. We claim we can find such questions in search engine logs, which is surprising because most question-intent queries are indeed factoid. We present Researchy Questions, a dataset of search engine queries tediously filtered to be non-factoid, ``decompositional'' and multi-perspective. We show that users spend a lot of ``effort'' on these questions in terms of signals like clicks and session length, and that they are also challenging for GPT-4. We also show that ``slow thinking'' answering techniques, like decomposition into sub-questions shows benefit over answering directly. We release sim 100k Researchy Questions, along with the Clueweb22 URLs that were clicked. 8 authors · Feb 27, 2024
- WikiSQE: A Large-Scale Dataset for Sentence Quality Estimation in Wikipedia Wikipedia can be edited by anyone and thus contains various quality sentences. Therefore, Wikipedia includes some poor-quality edits, which are often marked up by other editors. While editors' reviews enhance the credibility of Wikipedia, it is hard to check all edited text. Assisting in this process is very important, but a large and comprehensive dataset for studying it does not currently exist. Here, we propose WikiSQE, the first large-scale dataset for sentence quality estimation in Wikipedia. Each sentence is extracted from the entire revision history of English Wikipedia, and the target quality labels were carefully investigated and selected. WikiSQE has about 3.4 M sentences with 153 quality labels. In the experiment with automatic classification using competitive machine learning models, sentences that had problems with citation, syntax/semantics, or propositions were found to be more difficult to detect. In addition, by performing human annotation, we found that the model we developed performed better than the crowdsourced workers. WikiSQE is expected to be a valuable resource for other tasks in NLP. 3 authors · May 10, 2023
- Passage Re-ranking with BERT Recently, neural models pretrained on a language modeling task, such as ELMo (Peters et al., 2017), OpenAI GPT (Radford et al., 2018), and BERT (Devlin et al., 2018), have achieved impressive results on various natural language processing tasks such as question-answering and natural language inference. In this paper, we describe a simple re-implementation of BERT for query-based passage re-ranking. Our system is the state of the art on the TREC-CAR dataset and the top entry in the leaderboard of the MS MARCO passage retrieval task, outperforming the previous state of the art by 27% (relative) in MRR@10. The code to reproduce our results is available at https://github.com/nyu-dl/dl4marco-bert 2 authors · Jan 13, 2019
- Attributed Question Answering: Evaluation and Modeling for Attributed Large Language Models Large language models (LLMs) have shown impressive results while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial in this setting. We formulate and study Attributed QA as a key first step in the development of attributed LLMs. We propose a reproducible evaluation framework for the task and benchmark a broad set of architectures. We take human annotations as a gold standard and show that a correlated automatic metric is suitable for development. Our experimental work gives concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third (How to build LLMs with attribution?). 22 authors · Dec 15, 2022
1 Retrieval Augmented Generation for Domain-specific Question Answering Question answering (QA) has become an important application in the advanced development of large language models. General pre-trained large language models for question-answering are not trained to properly understand the knowledge or terminology for a specific domain, such as finance, healthcare, education, and customer service for a product. To better cater to domain-specific understanding, we build an in-house question-answering system for Adobe products. We propose a novel framework to compile a large question-answer database and develop the approach for retrieval-aware finetuning of a Large Language model. We showcase that fine-tuning the retriever leads to major improvements in the final generation. Our overall approach reduces hallucinations during generation while keeping in context the latest retrieval information for contextual grounding. 8 authors · Apr 23, 2024
- WixQA: A Multi-Dataset Benchmark for Enterprise Retrieval-Augmented Generation Retrieval-Augmented Generation (RAG) is a cornerstone of modern question answering (QA) systems, enabling grounded answers based on external knowledge. Although recent progress has been driven by open-domain datasets, enterprise QA systems need datasets that mirror the concrete, domain-specific issues users raise in day-to-day support scenarios. Critically, evaluating end-to-end RAG systems requires benchmarks comprising not only question--answer pairs but also the specific knowledge base (KB) snapshot from which answers were derived. To address this need, we introduce WixQA, a benchmark suite featuring QA datasets precisely grounded in the released KB corpus, enabling holistic evaluation of retrieval and generation components. WixQA includes three distinct QA datasets derived from Wix.com customer support interactions and grounded in a snapshot of the public Wix Help Center KB: (i) WixQA-ExpertWritten, 200 real user queries with expert-authored, multi-step answers; (ii) WixQA-Simulated, 200 expert-validated QA pairs distilled from user dialogues; and (iii) WixQA-Synthetic, 6,222 LLM-generated QA pairs, with one pair systematically derived from each article in the knowledge base. We release the KB snapshot alongside the datasets under MIT license and provide comprehensive baseline results, forming a unique benchmark for evaluating enterprise RAG systems in realistic enterprise environments. 7 authors · May 13
3 PeerQA: A Scientific Question Answering Dataset from Peer Reviews We present PeerQA, a real-world, scientific, document-level Question Answering (QA) dataset. PeerQA questions have been sourced from peer reviews, which contain questions that reviewers raised while thoroughly examining the scientific article. Answers have been annotated by the original authors of each paper. The dataset contains 579 QA pairs from 208 academic articles, with a majority from ML and NLP, as well as a subset of other scientific communities like Geoscience and Public Health. PeerQA supports three critical tasks for developing practical QA systems: Evidence retrieval, unanswerable question classification, and answer generation. We provide a detailed analysis of the collected dataset and conduct experiments establishing baseline systems for all three tasks. Our experiments and analyses reveal the need for decontextualization in document-level retrieval, where we find that even simple decontextualization approaches consistently improve retrieval performance across architectures. On answer generation, PeerQA serves as a challenging benchmark for long-context modeling, as the papers have an average size of 12k tokens. Our code and data is available at https://github.com/UKPLab/peerqa. 3 authors · Feb 19 1
8 ARR: Question Answering with Large Language Models via Analyzing, Retrieving, and Reasoning Large language models (LLMs) achieve remarkable performance on challenging benchmarks that are often structured as multiple-choice question-answering (QA) tasks. Zero-shot Chain-of-Thought (CoT) prompting enhances reasoning in LLMs but provides only vague and generic guidance ("think step by step"). This paper introduces ARR, an intuitive and effective zero-shot prompting method that explicitly incorporates three key steps in QA solving: analyzing the intent of the question, retrieving relevant information, and reasoning step by step. Comprehensive experiments across diverse and challenging QA tasks demonstrate that ARR consistently improves the Baseline (without ARR prompting) and outperforms CoT. Ablation and case studies further validate the positive contributions of each component: analyzing, retrieving, and reasoning. Notably, intent analysis plays a vital role in ARR. Additionally, extensive evaluations across various model sizes, LLM series, and generation settings solidify the effectiveness, robustness, and generalizability of ARR. University of British Columbia · Feb 7 3
- On Monotonic Aggregation for Open-domain QA Question answering (QA) is a critical task for speech-based retrieval from knowledge sources, by sifting only the answers without requiring to read supporting documents. Specifically, open-domain QA aims to answer user questions on unrestricted knowledge sources. Ideally, adding a source should not decrease the accuracy, but we find this property (denoted as "monotonicity") does not hold for current state-of-the-art methods. We identify the cause, and based on that we propose Judge-Specialist framework. Our framework consists of (1) specialist retrievers/readers to cover individual sources, and (2) judge, a dedicated language model to select the final answer. Our experiments show that our framework not only ensures monotonicity, but also outperforms state-of-the-art multi-source QA methods on Natural Questions. Additionally, we show that our models robustly preserve the monotonicity against noise from speech recognition. We publicly release our code and setting. 4 authors · Aug 8, 2023
- Quizbowl: The Case for Incremental Question Answering Scholastic trivia competitions test knowledge and intelligence through mastery of question answering. Modern question answering benchmarks are one variant of the Turing test. Specifically, answering a set of questions as well as a human is a minimum bar towards demonstrating human-like intelligence. This paper makes the case that the format of one competition -- where participants can answer in the middle of hearing a question (incremental) -- better differentiates the skill between (human or machine) players. Additionally, merging a sequential decision-making sub-task with question answering (QA) provides a good setting for research in model calibration and opponent modeling. Thus, embedded in this task are three machine learning challenges: (1) factoid QA over thousands of Wikipedia-like answers, (2) calibration of the QA model's confidence scores, and (3) sequential decision-making that incorporates knowledge of the QA model, its calibration, and what the opponent may do. We make two contributions: (1) collecting and curating a large factoid QA dataset and an accompanying gameplay dataset, and (2) developing a model that addresses these three machine learning challenges. In addition to offline evaluation, we pitted our model against some of the most accomplished trivia players in the world in a series of exhibition matches spanning several years. Throughout this paper, we show that collaborations with the vibrant trivia community have contributed to the quality of our dataset, spawned new research directions, and doubled as an exciting way to engage the public with research in machine learning and natural language processing. 5 authors · Apr 9, 2019
- Training Curricula for Open Domain Answer Re-Ranking In precision-oriented tasks like answer ranking, it is more important to rank many relevant answers highly than to retrieve all relevant answers. It follows that a good ranking strategy would be to learn how to identify the easiest correct answers first (i.e., assign a high ranking score to answers that have characteristics that usually indicate relevance, and a low ranking score to those with characteristics that do not), before incorporating more complex logic to handle difficult cases (e.g., semantic matching or reasoning). In this work, we apply this idea to the training of neural answer rankers using curriculum learning. We propose several heuristics to estimate the difficulty of a given training sample. We show that the proposed heuristics can be used to build a training curriculum that down-weights difficult samples early in the training process. As the training process progresses, our approach gradually shifts to weighting all samples equally, regardless of difficulty. We present a comprehensive evaluation of our proposed idea on three answer ranking datasets. Results show that our approach leads to superior performance of two leading neural ranking architectures, namely BERT and ConvKNRM, using both pointwise and pairwise losses. When applied to a BERT-based ranker, our method yields up to a 4% improvement in MRR and a 9% improvement in P@1 (compared to the model trained without a curriculum). This results in models that can achieve comparable performance to more expensive state-of-the-art techniques. 6 authors · Apr 29, 2020
2 Select and Summarize: Scene Saliency for Movie Script Summarization Abstractive summarization for long-form narrative texts such as movie scripts is challenging due to the computational and memory constraints of current language models. A movie script typically comprises a large number of scenes; however, only a fraction of these scenes are salient, i.e., important for understanding the overall narrative. The salience of a scene can be operationalized by considering it as salient if it is mentioned in the summary. Automatically identifying salient scenes is difficult due to the lack of suitable datasets. In this work, we introduce a scene saliency dataset that consists of human-annotated salient scenes for 100 movies. We propose a two-stage abstractive summarization approach which first identifies the salient scenes in script and then generates a summary using only those scenes. Using QA-based evaluation, we show that our model outperforms previous state-of-the-art summarization methods and reflects the information content of a movie more accurately than a model that takes the whole movie script as input. 2 authors · Apr 4, 2024 1
1 DocHop-QA: Towards Multi-Hop Reasoning over Multimodal Document Collections Despite recent advances in large language models (LLMs), most QA benchmarks are still confined to single-paragraph or single-document settings, failing to capture the complexity of real-world information-seeking tasks. Practical QA often requires multi-hop reasoning over information distributed across multiple documents, modalities, and structural formats. Although prior datasets made progress in this area, they rely heavily on Wikipedia-based content and unimodal plain text, with shallow reasoning paths that typically produce brief phrase-level or single-sentence answers, thus limiting their realism and generalizability. We propose DocHop-QA, a large-scale benchmark comprising 11,379 QA instances for multimodal, multi-document, multi-hop question answering. Constructed from publicly available scientific documents sourced from PubMed, DocHop-QA is domain-agnostic and incorporates diverse information formats, including textual passages, tables, and structural layout cues. Unlike existing datasets, DocHop-QA does not rely on explicitly hyperlinked documents; instead, it supports open-ended reasoning through semantic similarity and layout-aware evidence synthesis. To scale realistic QA construction, we designed an LLM-driven pipeline grounded in 11 high-frequency scientific question concepts. We evaluated DocHop-QA through four tasks spanning structured index prediction, generative answering, and multimodal integration, reflecting both discriminative and generative paradigms. These tasks demonstrate DocHop-QA's capacity to support complex, multimodal reasoning across multiple documents. 6 authors · Aug 20
- QuestEval: Summarization Asks for Fact-based Evaluation Summarization evaluation remains an open research problem: current metrics such as ROUGE are known to be limited and to correlate poorly with human judgments. To alleviate this issue, recent work has proposed evaluation metrics which rely on question answering models to assess whether a summary contains all the relevant information in its source document. Though promising, the proposed approaches have so far failed to correlate better than ROUGE with human judgments. In this paper, we extend previous approaches and propose a unified framework, named QuestEval. In contrast to established metrics such as ROUGE or BERTScore, QuestEval does not require any ground-truth reference. Nonetheless, QuestEval substantially improves the correlation with human judgments over four evaluation dimensions (consistency, coherence, fluency, and relevance), as shown in the extensive experiments we report. 7 authors · Mar 23, 2021
21 Spectrum Projection Score: Aligning Retrieved Summaries with Reader Models in Retrieval-Augmented Generation Large Language Models (LLMs) have shown improved generation performance through retrieval-augmented generation (RAG) following the retriever-reader paradigm, which supplements model inputs with externally retrieved knowledge. However, prior work often evaluates RAG holistically, assessing the retriever and reader jointly, making it difficult to isolate the true contribution of retrieval, particularly given the prompt sensitivity of LLMs used as readers. We introduce Spectrum Projection Score (SPS), a lightweight, supervision-free metric that allows the reader to gauge the semantic alignment of a retrieved summary with its hidden representation by comparing the area formed by generated tokens from the summary, and the principal directions of subspace in the reader and to measure the relevance. Building on SPS we present xCompress, an inference time controller framework that dynamically samples, ranks, and compresses retrieval summary candidates. Extensive experiments on five QA benchmarks with four open source LLMs show that SPS not only enhances performance across a range of tasks but also provides a principled perspective on the interaction between retrieval and generation. 6 authors · Aug 7 2
1 MAUPQA: Massive Automatically-created Polish Question Answering Dataset Recently, open-domain question answering systems have begun to rely heavily on annotated datasets to train neural passage retrievers. However, manually annotating such datasets is both difficult and time-consuming, which limits their availability for less popular languages. In this work, we experiment with several methods for automatically collecting weakly labeled datasets and show how they affect the performance of the neural passage retrieval models. As a result of our work, we publish the MAUPQA dataset, consisting of nearly 400,000 question-passage pairs for Polish, as well as the HerBERT-QA neural retriever. 1 authors · May 9, 2023
35 Evaluating D-MERIT of Partial-annotation on Information Retrieval Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval. 7 authors · Jun 23, 2024 2
- A Reasoning-Focused Legal Retrieval Benchmark As the legal community increasingly examines the use of large language models (LLMs) for various legal applications, legal AI developers have turned to retrieval-augmented LLMs ("RAG" systems) to improve system performance and robustness. An obstacle to the development of specialized RAG systems is the lack of realistic legal RAG benchmarks which capture the complexity of both legal retrieval and downstream legal question-answering. To address this, we introduce two novel legal RAG benchmarks: Bar Exam QA and Housing Statute QA. Our tasks correspond to real-world legal research tasks, and were produced through annotation processes which resemble legal research. We describe the construction of these benchmarks and the performance of existing retriever pipelines. Our results suggest that legal RAG remains a challenging application, thus motivating future research. 8 authors · May 6
- A Multi-Source Retrieval Question Answering Framework Based on RAG With the rapid development of large-scale language models, Retrieval-Augmented Generation (RAG) has been widely adopted. However, existing RAG paradigms are inevitably influenced by erroneous retrieval information, thereby reducing the reliability and correctness of generated results. Therefore, to improve the relevance of retrieval information, this study proposes a method that replaces traditional retrievers with GPT-3.5, leveraging its vast corpus knowledge to generate retrieval information. We also propose a web retrieval based method to implement fine-grained knowledge retrieval, Utilizing the powerful reasoning capability of GPT-3.5 to realize semantic partitioning of problem.In order to mitigate the illusion of GPT retrieval and reduce noise in Web retrieval,we proposes a multi-source retrieval framework, named MSRAG, which combines GPT retrieval with web retrieval. Experiments on multiple knowledge-intensive QA datasets demonstrate that the proposed framework in this study performs better than existing RAG framework in enhancing the overall efficiency and accuracy of QA systems. 6 authors · May 29, 2024
1 Retrieval-Generation Synergy Augmented Large Language Models Large language models augmented with task-relevant documents have demonstrated impressive performance on knowledge-intensive tasks. However, regarding how to obtain effective documents, the existing methods are mainly divided into two categories. One is to retrieve from an external knowledge base, and the other is to utilize large language models to generate documents. We propose an iterative retrieval-generation collaborative framework. It is not only able to leverage both parametric and non-parametric knowledge, but also helps to find the correct reasoning path through retrieval-generation interactions, which is very important for tasks that require multi-step reasoning. We conduct experiments on four question answering datasets, including single-hop QA and multi-hop QA tasks. Empirical results show that our method significantly improves the reasoning ability of large language models and outperforms previous baselines. 5 authors · Oct 8, 2023
- TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension We present TriviaQA, a challenging reading comprehension dataset containing over 650K question-answer-evidence triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts and independently gathered evidence documents, six per question on average, that provide high quality distant supervision for answering the questions. We show that, in comparison to other recently introduced large-scale datasets, TriviaQA (1) has relatively complex, compositional questions, (2) has considerable syntactic and lexical variability between questions and corresponding answer-evidence sentences, and (3) requires more cross sentence reasoning to find answers. We also present two baseline algorithms: a feature-based classifier and a state-of-the-art neural network, that performs well on SQuAD reading comprehension. Neither approach comes close to human performance (23% and 40% vs. 80%), suggesting that TriviaQA is a challenging testbed that is worth significant future study. Data and code available at -- http://nlp.cs.washington.edu/triviaqa/ 4 authors · May 9, 2017
1 RealMedQA: A pilot biomedical question answering dataset containing realistic clinical questions Clinical question answering systems have the potential to provide clinicians with relevant and timely answers to their questions. Nonetheless, despite the advances that have been made, adoption of these systems in clinical settings has been slow. One issue is a lack of question-answering datasets which reflect the real-world needs of health professionals. In this work, we present RealMedQA, a dataset of realistic clinical questions generated by humans and an LLM. We describe the process for generating and verifying the QA pairs and assess several QA models on BioASQ and RealMedQA to assess the relative difficulty of matching answers to questions. We show that the LLM is more cost-efficient for generating "ideal" QA pairs. Additionally, we achieve a lower lexical similarity between questions and answers than BioASQ which provides an additional challenge to the top two QA models, as per the results. We release our code and our dataset publicly to encourage further research. 11 authors · Aug 16, 2024
- Question-Answering Model for Schizophrenia Symptoms and Their Impact on Daily Life using Mental Health Forums Data In recent years, there is strong emphasis on mining medical data using machine learning techniques. A common problem is to obtain a noiseless set of textual documents, with a relevant content for the research question, and developing a Question Answering (QA) model for a specific medical field. The purpose of this paper is to present a new methodology for building a medical dataset and obtain a QA model for analysis of symptoms and impact on daily life for a specific disease domain. The ``Mental Health'' forum was used, a forum dedicated to people suffering from schizophrenia and different mental disorders. Relevant posts of active users, who regularly participate, were extrapolated providing a new method of obtaining low-bias content and without privacy issues. Furthermore, it is shown how to pre-process the dataset to convert it into a QA dataset. The Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, RoBERTa, and BioBERT models were fine-tuned and evaluated via F1-Score, Exact Match, Precision and Recall. Accurate empirical experiments demonstrated the effectiveness of the proposed method for obtaining an accurate dataset for QA model implementation. By fine-tuning the BioBERT QA model, we achieved an F1 score of 0.885, showing a considerable improvement and outperforming the state-of-the-art model for mental disorders domain. 2 authors · Sep 30, 2023
1 KazQAD: Kazakh Open-Domain Question Answering Dataset We introduce KazQAD -- a Kazakh open-domain question answering (ODQA) dataset -- that can be used in both reading comprehension and full ODQA settings, as well as for information retrieval experiments. KazQAD contains just under 6,000 unique questions with extracted short answers and nearly 12,000 passage-level relevance judgements. We use a combination of machine translation, Wikipedia search, and in-house manual annotation to ensure annotation efficiency and data quality. The questions come from two sources: translated items from the Natural Questions (NQ) dataset (only for training) and the original Kazakh Unified National Testing (UNT) exam (for development and testing). The accompanying text corpus contains more than 800,000 passages from the Kazakh Wikipedia. As a supplementary dataset, we release around 61,000 question-passage-answer triples from the NQ dataset that have been machine-translated into Kazakh. We develop baseline retrievers and readers that achieve reasonable scores in retrieval (NDCG@10 = 0.389 MRR = 0.382), reading comprehension (EM = 38.5 F1 = 54.2), and full ODQA (EM = 17.8 F1 = 28.7) settings. Nevertheless, these results are substantially lower than state-of-the-art results for English QA collections, and we think that there should still be ample room for improvement. We also show that the current OpenAI's ChatGPTv3.5 is not able to answer KazQAD test questions in the closed-book setting with acceptable quality. The dataset is freely available under the Creative Commons licence (CC BY-SA) at https://github.com/IS2AI/KazQAD. 5 authors · Apr 5, 2024
13 Narrowing the Knowledge Evaluation Gap: Open-Domain Question Answering with Multi-Granularity Answers Factual questions typically can be answered correctly at different levels of granularity. For example, both ``August 4, 1961'' and ``1961'' are correct answers to the question ``When was Barack Obama born?''. Standard question answering (QA) evaluation protocols, however, do not explicitly take this into account and compare a predicted answer against answers of a single granularity level. In this work, we propose GRANOLA QA, a novel evaluation setting where a predicted answer is evaluated in terms of accuracy and informativeness against a set of multi-granularity answers. We present a simple methodology for enriching existing datasets with multi-granularity answers, and create GRANOLA-EQ, a multi-granularity version of the EntityQuestions dataset. We evaluate a range of decoding methods on GRANOLA-EQ, including a new algorithm, called Decoding with Response Aggregation (DRAG), that is geared towards aligning the response granularity with the model's uncertainty. Our experiments show that large language models with standard decoding tend to generate specific answers, which are often incorrect. In contrast, when evaluated on multi-granularity answers, DRAG yields a nearly 20 point increase in accuracy on average, which further increases for rare entities. Overall, this reveals that standard evaluation and decoding schemes may significantly underestimate the knowledge encapsulated in LMs. 3 authors · Jan 9, 2024
1 Hierarchical Retrieval-Augmented Generation Model with Rethink for Multi-hop Question Answering Multi-hop Question Answering (QA) necessitates complex reasoning by integrating multiple pieces of information to resolve intricate questions. However, existing QA systems encounter challenges such as outdated information, context window length limitations, and an accuracy-quantity trade-off. To address these issues, we propose a novel framework, the Hierarchical Retrieval-Augmented Generation Model with Rethink (HiRAG), comprising Decomposer, Definer, Retriever, Filter, and Summarizer five key modules. We introduce a new hierarchical retrieval strategy that incorporates both sparse retrieval at the document level and dense retrieval at the chunk level, effectively integrating their strengths. Additionally, we propose a single-candidate retrieval method to mitigate the limitations of multi-candidate retrieval. We also construct two new corpora, Indexed Wikicorpus and Profile Wikicorpus, to address the issues of outdated and insufficient knowledge. Our experimental results on four datasets demonstrate that HiRAG outperforms state-of-the-art models across most metrics, and our Indexed Wikicorpus is effective. The code for HiRAG is available at https://github.com/2282588541a/HiRAG 6 authors · Aug 20, 2024
10 CritiQ: Mining Data Quality Criteria from Human Preferences Language model heavily depends on high-quality data for optimal performance. Existing approaches rely on manually designed heuristics, the perplexity of existing models, training classifiers, or careful prompt engineering, which require significant expert experience and human annotation effort while introduce biases. We introduce CritiQ, a novel data selection method that automatically mines criteria from human preferences for data quality with only sim30 human-annotated pairs and performs efficient data selection. The main component, CritiQ Flow, employs a manager agent to evolve quality criteria and worker agents to make pairwise judgments. We build a knowledge base that extracts quality criteria from previous work to boost CritiQ Flow. Compared to perplexity- and classifier- based methods, verbal criteria are more interpretable and possess reusable value. After deriving the criteria, we train the CritiQ Scorer to give quality scores and perform efficient data selection. We demonstrate the effectiveness of our method in the code, math, and logic domains, achieving high accuracy on human-annotated test sets. To validate the quality of the selected data, we continually train Llama 3.1 models and observe improved performance on downstream tasks compared to uniform sampling. Ablation studies validate the benefits of the knowledge base and the reflection process. We analyze how criteria evolve and the effectiveness of majority voting. 11 authors · Feb 26 2
- TWEETQA: A Social Media Focused Question Answering Dataset With social media becoming increasingly pop-ular on which lots of news and real-time eventsare reported, developing automated questionanswering systems is critical to the effective-ness of many applications that rely on real-time knowledge. While previous datasets haveconcentrated on question answering (QA) forformal text like news and Wikipedia, wepresent the first large-scale dataset for QA oversocial media data. To ensure that the tweetswe collected are useful, we only gather tweetsused by journalists to write news articles. Wethen ask human annotators to write questionsand answers upon these tweets. Unlike otherQA datasets like SQuAD in which the answersare extractive, we allow the answers to be ab-stractive. We show that two recently proposedneural models that perform well on formaltexts are limited in their performance when ap-plied to our dataset. In addition, even the fine-tuned BERT model is still lagging behind hu-man performance with a large margin. Our re-sults thus point to the need of improved QAsystems targeting social media text. 8 authors · Jul 14, 2019
- CoReQA: Uncovering Potentials of Language Models in Code Repository Question Answering Large language models that enhance software development tasks, such as code generation, code completion, and code question answering (QA), have been extensively studied in both academia and the industry. The models are integrated into popular intelligent IDEs like JetBrains and Cursor. Current benchmarks for evaluating models' code comprehension capabilities primarily focus on code generation or completion, often neglecting QA, which is a crucial aspect of understanding code. Existing code QA benchmarks are derived from code comments with predefined patterns (e.g., CodeQA) or focus on specific domains, such as education (e.g., CS1QA). These benchmarks fail to capture the real-world complexity of software engineering and user requirements for understanding code repositories. To address this gap, we introduce CoReQA, a benchmark for Code Repository-level question answering, constructed from GitHub issues and comments from 176 popular repositories across four programming languages. Since questions and answers may include both natural language and code snippets, traditional evaluation metrics such as BLEU are inadequate for assessing repository-level QA performance. Thus, we provide an LLM-as-a-judge framework to evaluate QA performance from five aspects. Based on CoReQA, we evaluate the performance of three baselines, including two short-context models using generic retrieval strategies and one long-context model that utilizes the entire repository context. Evaluation results show that state-of-the-art proprietary and long-context models struggle to address repository-level questions effectively. Our analysis highlights the limitations of language models in assisting developers in understanding repositories and suggests future directions for improving repository comprehension systems through effective context retrieval methodologies. 9 authors · Jan 6
- Neural Passage Quality Estimation for Static Pruning Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods. 4 authors · Jul 16, 2024
14 LLM-Independent Adaptive RAG: Let the Question Speak for Itself Large Language Models~(LLMs) are prone to hallucinations, and Retrieval-Augmented Generation (RAG) helps mitigate this, but at a high computational cost while risking misinformation. Adaptive retrieval aims to retrieve only when necessary, but existing approaches rely on LLM-based uncertainty estimation, which remain inefficient and impractical. In this study, we introduce lightweight LLM-independent adaptive retrieval methods based on external information. We investigated 27 features, organized into 7 groups, and their hybrid combinations. We evaluated these methods on 6 QA datasets, assessing the QA performance and efficiency. The results show that our approach matches the performance of complex LLM-based methods while achieving significant efficiency gains, demonstrating the potential of external information for adaptive retrieval. 9 authors · May 7 1
7 Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity Retrieval-Augmented Large Language Models (LLMs), which incorporate the non-parametric knowledge from external knowledge bases into LLMs, have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA). However, even though there are various approaches dealing with queries of different complexities, they either handle simple queries with unnecessary computational overhead or fail to adequately address complex multi-step queries; yet, not all user requests fall into only one of the simple or complex categories. In this work, we propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs from the simplest to the most sophisticated ones based on the query complexity. Also, this selection process is operationalized with a classifier, which is a smaller LM trained to predict the complexity level of incoming queries with automatically collected labels, obtained from actual predicted outcomes of models and inherent inductive biases in datasets. This approach offers a balanced strategy, seamlessly adapting between the iterative and single-step retrieval-augmented LLMs, as well as the no-retrieval methods, in response to a range of query complexities. We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems, compared to relevant baselines including the adaptive retrieval approaches. Code is available at: https://github.com/starsuzi/Adaptive-RAG. 5 authors · Mar 21, 2024 1
- Tomayto, Tomahto. Beyond Token-level Answer Equivalence for Question Answering Evaluation The predictions of question answering (QA)systems are typically evaluated against manually annotated finite sets of one or more answers. This leads to a coverage limitation that results in underestimating the true performance of systems, and is typically addressed by extending over exact match (EM) with pre-defined rules or with the token-level F1 measure. In this paper, we present the first systematic conceptual and data-driven analysis to examine the shortcomings of token-level equivalence measures. To this end, we define the asymmetric notion of answer equivalence (AE), accepting answers that are equivalent to or improve over the reference, and publish over 23k human judgments for candidates produced by multiple QA systems on SQuAD. Through a careful analysis of this data, we reveal and quantify several concrete limitations of the F1 measure, such as a false impression of graduality, or missing dependence on the question. Since collecting AE annotations for each evaluated model is expensive, we learn a BERT matching (BEM) measure to approximate this task. Being a simpler task than QA, we find BEM to provide significantly better AE approximations than F1, and to more accurately reflect the performance of systems. Finally, we demonstrate the practical utility of AE and BEM on the concrete application of minimal accurate prediction sets, reducing the number of required answers by up to x2.6. 5 authors · Feb 15, 2022
- Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies A key limitation in current datasets for multi-hop reasoning is that the required steps for answering the question are mentioned in it explicitly. In this work, we introduce StrategyQA, a question answering (QA) benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. A fundamental challenge in this setup is how to elicit such creative questions from crowdsourcing workers, while covering a broad range of potential strategies. We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts. Moreover, we annotate each question with (1) a decomposition into reasoning steps for answering it, and (2) Wikipedia paragraphs that contain the answers to each step. Overall, StrategyQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Analysis shows that questions in StrategyQA are short, topic-diverse, and cover a wide range of strategies. Empirically, we show that humans perform well (87%) on this task, while our best baseline reaches an accuracy of sim66%. 6 authors · Jan 6, 2021
2 Using Interactive Feedback to Improve the Accuracy and Explainability of Question Answering Systems Post-Deployment Most research on question answering focuses on the pre-deployment stage; i.e., building an accurate model for deployment. In this paper, we ask the question: Can we improve QA systems further post-deployment based on user interactions? We focus on two kinds of improvements: 1) improving the QA system's performance itself, and 2) providing the model with the ability to explain the correctness or incorrectness of an answer. We collect a retrieval-based QA dataset, FeedbackQA, which contains interactive feedback from users. We collect this dataset by deploying a base QA system to crowdworkers who then engage with the system and provide feedback on the quality of its answers. The feedback contains both structured ratings and unstructured natural language explanations. We train a neural model with this feedback data that can generate explanations and re-score answer candidates. We show that feedback data not only improves the accuracy of the deployed QA system but also other stronger non-deployed systems. The generated explanations also help users make informed decisions about the correctness of answers. Project page: https://mcgill-nlp.github.io/feedbackqa/ 5 authors · Apr 6, 2022
- EXAMS: A Multi-Subject High School Examinations Dataset for Cross-Lingual and Multilingual Question Answering We propose EXAMS -- a new benchmark dataset for cross-lingual and multilingual question answering for high school examinations. We collected more than 24,000 high-quality high school exam questions in 16 languages, covering 8 language families and 24 school subjects from Natural Sciences and Social Sciences, among others. EXAMS offers a fine-grained evaluation framework across multiple languages and subjects, which allows precise analysis and comparison of various models. We perform various experiments with existing top-performing multilingual pre-trained models and we show that EXAMS offers multiple challenges that require multilingual knowledge and reasoning in multiple domains. We hope that EXAMS will enable researchers to explore challenging reasoning and knowledge transfer methods and pre-trained models for school question answering in various languages which was not possible before. The data, code, pre-trained models, and evaluation are available at https://github.com/mhardalov/exams-qa. 6 authors · Nov 5, 2020
- Latent Retrieval for Weakly Supervised Open Domain Question Answering Recent work on open domain question answering (QA) assumes strong supervision of the supporting evidence and/or assumes a blackbox information retrieval (IR) system to retrieve evidence candidates. We argue that both are suboptimal, since gold evidence is not always available, and QA is fundamentally different from IR. We show for the first time that it is possible to jointly learn the retriever and reader from question-answer string pairs and without any IR system. In this setting, evidence retrieval from all of Wikipedia is treated as a latent variable. Since this is impractical to learn from scratch, we pre-train the retriever with an Inverse Cloze Task. We evaluate on open versions of five QA datasets. On datasets where the questioner already knows the answer, a traditional IR system such as BM25 is sufficient. On datasets where a user is genuinely seeking an answer, we show that learned retrieval is crucial, outperforming BM25 by up to 19 points in exact match. 3 authors · Jun 1, 2019
- ASQA: Factoid Questions Meet Long-Form Answers An abundance of datasets and availability of reliable evaluation metrics have resulted in strong progress in factoid question answering (QA). This progress, however, does not easily transfer to the task of long-form QA, where the goal is to answer questions that require in-depth explanations. The hurdles include (i) a lack of high-quality data, and (ii) the absence of a well-defined notion of the answer's quality. In this work, we address these problems by (i) releasing a novel dataset and a task that we call ASQA (Answer Summaries for Questions which are Ambiguous); and (ii) proposing a reliable metric for measuring performance on ASQA. Our task focuses on factoid questions that are ambiguous, that is, have different correct answers depending on interpretation. Answers to ambiguous questions should synthesize factual information from multiple sources into a long-form summary that resolves the ambiguity. In contrast to existing long-form QA tasks (such as ELI5), ASQA admits a clear notion of correctness: a user faced with a good summary should be able to answer different interpretations of the original ambiguous question. We use this notion of correctness to define an automated metric of performance for ASQA. Our analysis demonstrates an agreement between this metric and human judgments, and reveals a considerable gap between human performance and strong baselines. 4 authors · Apr 12, 2022
- What Does My QA Model Know? Devising Controlled Probes using Expert Knowledge Open-domain question answering (QA) is known to involve several underlying knowledge and reasoning challenges, but are models actually learning such knowledge when trained on benchmark tasks? To investigate this, we introduce several new challenge tasks that probe whether state-of-the-art QA models have general knowledge about word definitions and general taxonomic reasoning, both of which are fundamental to more complex forms of reasoning and are widespread in benchmark datasets. As an alternative to expensive crowd-sourcing, we introduce a methodology for automatically building datasets from various types of expert knowledge (e.g., knowledge graphs and lexical taxonomies), allowing for systematic control over the resulting probes and for a more comprehensive evaluation. We find automatically constructing probes to be vulnerable to annotation artifacts, which we carefully control for. Our evaluation confirms that transformer-based QA models are already predisposed to recognize certain types of structural lexical knowledge. However, it also reveals a more nuanced picture: their performance degrades substantially with even a slight increase in the number of hops in the underlying taxonomic hierarchy, or as more challenging distractor candidate answers are introduced. Further, even when these models succeed at the standard instance-level evaluation, they leave much room for improvement when assessed at the level of clusters of semantically connected probes (e.g., all Isa questions about a concept). 2 authors · Dec 31, 2019
2 TimelineQA: A Benchmark for Question Answering over Timelines Lifelogs are descriptions of experiences that a person had during their life. Lifelogs are created by fusing data from the multitude of digital services, such as online photos, maps, shopping and content streaming services. Question answering over lifelogs can offer personal assistants a critical resource when they try to provide advice in context. However, obtaining answers to questions over lifelogs is beyond the current state of the art of question answering techniques for a variety of reasons, the most pronounced of which is that lifelogs combine free text with some degree of structure such as temporal and geographical information. We create and publicly release TimelineQA1, a benchmark for accelerating progress on querying lifelogs. TimelineQA generates lifelogs of imaginary people. The episodes in the lifelog range from major life episodes such as high school graduation to those that occur on a daily basis such as going for a run. We describe a set of experiments on TimelineQA with several state-of-the-art QA models. Our experiments reveal that for atomic queries, an extractive QA system significantly out-performs a state-of-the-art retrieval-augmented QA system. For multi-hop queries involving aggregates, we show that the best result is obtained with a state-of-the-art table QA technique, assuming the ground truth set of episodes for deriving the answer is available. 7 authors · Jun 1, 2023
- Improving Document Representations by Generating Pseudo Query Embeddings for Dense Retrieval Recently, the retrieval models based on dense representations have been gradually applied in the first stage of the document retrieval tasks, showing better performance than traditional sparse vector space models. To obtain high efficiency, the basic structure of these models is Bi-encoder in most cases. However, this simple structure may cause serious information loss during the encoding of documents since the queries are agnostic. To address this problem, we design a method to mimic the queries on each of the documents by an iterative clustering process and represent the documents by multiple pseudo queries (i.e., the cluster centroids). To boost the retrieval process using approximate nearest neighbor search library, we also optimize the matching function with a two-step score calculation procedure. Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results. 6 authors · May 8, 2021