new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Generative Regression Based Watch Time Prediction for Short-Video Recommendation

Watch time prediction (WTP) has emerged as a pivotal task in short video recommendation systems, designed to quantify user engagement through continuous interaction modeling. Predicting users' watch times on videos often encounters fundamental challenges, including wide value ranges and imbalanced data distributions, which can lead to significant estimation bias when directly applying regression techniques. Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task. While these methods demonstrate partial effectiveness, they exhibit notable limitations: (1) the discretization process frequently relies on bucket partitioning, inherently reducing prediction flexibility and accuracy and (2) the interdependencies among different partition intervals remain underutilized, missing opportunities for effective error correction. Inspired by language modeling paradigms, we propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task. Our approach employs structural discretization to enable nearly lossless value reconstruction while maintaining prediction fidelity. Through carefully designed vocabulary construction and label encoding schemes, each watch time is bijectively mapped to a token sequence. To mitigate the training-inference discrepancy caused by teacher-forcing, we introduce a curriculum learning with embedding mixup strategy that gradually transitions from guided to free-generation modes. We evaluate our method against state-of-the-art approaches on two public datasets and one industrial dataset. We also perform online A/B testing on the Kuaishou App to confirm the real-world effectiveness. The results conclusively show that GR outperforms existing techniques significantly.

  • 9 authors
·
Dec 28, 2024

Multimodal Optimal Transport-based Co-Attention Transformer with Global Structure Consistency for Survival Prediction

Survival prediction is a complicated ordinal regression task that aims to predict the ranking risk of death, which generally benefits from the integration of histology and genomic data. Despite the progress in joint learning from pathology and genomics, existing methods still suffer from challenging issues: 1) Due to the large size of pathological images, it is difficult to effectively represent the gigapixel whole slide images (WSIs). 2) Interactions within tumor microenvironment (TME) in histology are essential for survival analysis. Although current approaches attempt to model these interactions via co-attention between histology and genomic data, they focus on only dense local similarity across modalities, which fails to capture global consistency between potential structures, i.e. TME-related interactions of histology and co-expression of genomic data. To address these challenges, we propose a Multimodal Optimal Transport-based Co-Attention Transformer framework with global structure consistency, in which optimal transport (OT) is applied to match patches of a WSI and genes embeddings for selecting informative patches to represent the gigapixel WSI. More importantly, OT-based co-attention provides a global awareness to effectively capture structural interactions within TME for survival prediction. To overcome high computational complexity of OT, we propose a robust and efficient implementation over micro-batch of WSI patches by approximating the original OT with unbalanced mini-batch OT. Extensive experiments show the superiority of our method on five benchmark datasets compared to the state-of-the-art methods. The code is released.

  • 2 authors
·
Jun 14, 2023

Predicting Rare Events by Shrinking Towards Proportional Odds

Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.

  • 2 authors
·
May 29, 2023

Embed Progressive Implicit Preference in Unified Space for Deep Collaborative Filtering

Embedding-based collaborative filtering, often coupled with nearest neighbor search, is widely deployed in large-scale recommender systems for personalized content selection. Modern systems leverage multiple implicit feedback signals (e.g., clicks, add to cart, purchases) to model user preferences comprehensively. However, prevailing approaches adopt a feedback-wise modeling paradigm, which (1) fails to capture the structured progression of user engagement entailed among different feedback and (2) embeds feedback-specific information into disjoint spaces, making representations incommensurable, increasing system complexity, and leading to suboptimal retrieval performance. A promising alternative is Ordinal Logistic Regression (OLR), which explicitly models discrete ordered relations. However, existing OLR-based recommendation models mainly focus on explicit feedback (e.g., movie ratings) and struggle with implicit, correlated feedback, where ordering is vague and non-linear. Moreover, standard OLR lacks flexibility in handling feedback-dependent covariates, resulting in suboptimal performance in real-world systems. To address these limitations, we propose Generalized Neural Ordinal Logistic Regression (GNOLR), which encodes multiple feature-feedback dependencies into a unified, structured embedding space and enforces feedback-specific dependency learning through a nested optimization framework. Thus, GNOLR enhances predictive accuracy, captures the progression of user engagement, and simplifies the retrieval process. We establish a theoretical comparison with existing paradigms, demonstrating how GNOLR avoids disjoint spaces while maintaining effectiveness. Extensive experiments on ten real-world datasets show that GNOLR significantly outperforms state-of-the-art methods in efficiency and adaptability.

  • 8 authors
·
May 27, 2025