new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Bayesian-LoRA: LoRA based Parameter Efficient Fine-Tuning using Optimal Quantization levels and Rank Values trough Differentiable Bayesian Gates

It is a common practice in natural language processing to pre-train a single model on a general domain and then fine-tune it for downstream tasks. However, when it comes to Large Language Models, fine-tuning the entire model can be computationally expensive, resulting in very intensive energy consumption. As a result, several Parameter Efficient Fine-Tuning (PEFT) approaches were recently proposed. One of the most popular approaches is low-rank adaptation (LoRA), where the key insight is decomposing the update weights of the pre-trained model into two low-rank matrices. However, the proposed approaches either use the same rank value across all different weight matrices, which has been shown to be a sub-optimal choice, or do not use any quantization technique, one of the most important factors when it comes to a model's energy consumption. In this work, we propose Bayesian-LoRA which approaches low-rank adaptation and quantization from a Bayesian perspective by employing a prior distribution on both quantization levels and rank values. As a result, B-LoRA is able to fine-tune a pre-trained model on a specific downstream task, finding the optimal rank values and quantization levels for every low-rank matrix. We validate the proposed model by fine-tuning a pre-trained DeBERTaV3 on the GLUE benchmark. Moreover, we compare it to relevant baselines and present both qualitative and quantitative results, showing how the proposed approach is able to learn optimal-rank quantized matrices. B-LoRA performs on par with or better than the baselines while reducing the total number of bit operations by roughly 70% compared to the baseline methods.

  • 4 authors
·
Jun 18, 2024

SynthBA: Reliable Brain Age Estimation Across Multiple MRI Sequences and Resolutions

Brain age is a critical measure that reflects the biological ageing process of the brain. The gap between brain age and chronological age, referred to as brain PAD (Predicted Age Difference), has been utilized to investigate neurodegenerative conditions. Brain age can be predicted using MRIs and machine learning techniques. However, existing methods are often sensitive to acquisition-related variabilities, such as differences in acquisition protocols, scanners, MRI sequences, and resolutions, significantly limiting their application in highly heterogeneous clinical settings. In this study, we introduce Synthetic Brain Age (SynthBA), a robust deep-learning model designed for predicting brain age. SynthBA utilizes an advanced domain randomization technique, ensuring effective operation across a wide array of acquisition-related variabilities. To assess the effectiveness and robustness of SynthBA, we evaluate its predictive capabilities on internal and external datasets, encompassing various MRI sequences and resolutions, and compare it with state-of-the-art techniques. Additionally, we calculate the brain PAD in a large cohort of subjects with Alzheimer's Disease (AD), demonstrating a significant correlation with AD-related measures of cognitive dysfunction. SynthBA holds the potential to facilitate the broader adoption of brain age prediction in clinical settings, where re-training or fine-tuning is often unfeasible. The SynthBA source code and pre-trained models are publicly available at https://github.com/LemuelPuglisi/SynthBA.

  • 6 authors
·
Jun 1, 2024

Dynamical Model of $J/Ψ$ photo-production on the nucleon

A dynamical model based on a phenomenological charm quark-nucleon(c-N) potential v_{cN} and the Pomeron-exchange mechanism is constructed to investigate the J/Psi photo-production on the nucleon from threshold to invariant mass W=300 GeV. The J/Psi-N potential,V_{J/Psi N}(r),is constructed by folding v_{cN} into the wavefunction Phi_{J/Psi}(cc) of J/Psi within a Constituent Quark Model(CQM) of Ref.[43]. A photo-production amplitude is also generated by v_{cN} by a cc-loop integration over the gammarightarrow cc vertex function and Phi_{J/Psi}(cc). No commonly used Vector Meson Dominance assumption is used to define this photo-production amplitude which is needed to describe the data near the threshold. The potential v_{cN}(r) is parameterized in a form such that the predicted V_{J/Psi N}(r) at large distances has the same Yukawa potential form extracted from a Lattice QCD(LQCD) calculation of Ref.[18]. The parameters of v_{cN} are determined by fitting the total cross section data of JLab by performing calculations that include J/Psi-N final state interactions(FSI). The resulting differential cross sections are found in good agreements with the data. It is shown that the FSI effects dominate the cross section in the very near threshold region, allowing for sensitive testing of the predicted J/Psi-N scattering amplitudes. By imposing the constraints of J/Psi-N potential extracted from the LQCD calculation, we have obtained three J/Psi-N potentials which fit the JLab data equally well. The resulting J/Psi-N scattering lengths are in the range of a=(-0.05 fm sim -0.25 fm). With the determined v_{cN}(r) and the wavefunctions generated from the same CQM, the constructed model is used to predict the cross sections of photo-production of eta_c(1S) and Psi(2S) mesons for future experimental tests.

  • 3 authors
·
Mar 4, 2024