new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed Multi-Agent Reinforcement Learning

Navigating safely and efficiently in dense and heterogeneous traffic scenarios is challenging for autonomous vehicles (AVs) due to their inability to infer the behaviors or intentions of nearby drivers. In this work, we introduce a distributed multi-agent reinforcement learning (MARL) algorithm that can predict trajectories and intents in dense and heterogeneous traffic scenarios. Our approach for intent-aware planning, iPLAN, allows agents to infer nearby drivers' intents solely from their local observations. We model two distinct incentives for agents' strategies: Behavioral Incentive for high-level decision-making based on their driving behavior or personality and Instant Incentive for motion planning for collision avoidance based on the current traffic state. Our approach enables agents to infer their opponents' behavior incentives and integrate this inferred information into their decision-making and motion-planning processes. We perform experiments on two simulation environments, Non-Cooperative Navigation and Heterogeneous Highway. In Heterogeneous Highway, results show that, compared with centralized training decentralized execution (CTDE) MARL baselines such as QMIX and MAPPO, our method yields a 4.3% and 38.4% higher episodic reward in mild and chaotic traffic, with 48.1% higher success rate and 80.6% longer survival time in chaotic traffic. We also compare with a decentralized training decentralized execution (DTDE) baseline IPPO and demonstrate a higher episodic reward of 12.7% and 6.3% in mild traffic and chaotic traffic, 25.3% higher success rate, and 13.7% longer survival time.

  • 5 authors
·
Jun 9, 2023

Harmonia: A Multi-Agent Reinforcement Learning Approach to Data Placement and Migration in Hybrid Storage Systems

Hybrid storage systems (HSS) integrate multiple storage devices with diverse characteristics to deliver high performance and capacity at low cost. The performance of an HSS highly depends on the effectiveness of two key policies: (1) the data-placement policy, which determines the best-fit storage device for incoming data, and (2) the data-migration policy, which dynamically rearranges stored data (i.e., prefetches hot data and evicts cold data) across the devices to sustain high HSS performance. Prior works optimize either data placement or data migration in isolation, which leads to suboptimal HSS performance. Unfortunately, no prior work tries to optimize both policies together. Our goal is to design a holistic data-management technique that optimizes both data-placement and data-migration policies to fully exploit the potential of an HSS, and thus significantly improve system performance. We propose Harmonia, a multi-agent reinforcement learning (RL)-based data-management technique that employs two lightweight autonomous RL agents, a data-placement agent and a data-migration agent, that adapt their policies for the current workload and HSS configuration while coordinating with each other to improve overall HSS performance. We evaluate Harmonia on real HSS configurations with up to four heterogeneous storage devices and seventeen data-intensive workloads. On performance-optimized (cost-optimized) HSS with two storage devices, Harmonia outperforms the best-performing prior approach by 49.5% (31.7%) on average. On an HSS with three (four) devices, Harmonia outperforms the best-performing prior work by 37.0% (42.0%) on average. Harmonia's performance benefits come with low latency (240ns for inference) and storage overheads (206 KiB in DRAM for both RL agents combined). We will open-source Harmonia's implementation to aid future research on HSS.

  • 9 authors
·
Mar 26, 2025

Decentralized Aerial Manipulation of a Cable-Suspended Load using Multi-Agent Reinforcement Learning

This paper presents the first decentralized method to enable real-world 6-DoF manipulation of a cable-suspended load using a team of Micro-Aerial Vehicles (MAVs). Our method leverages multi-agent reinforcement learning (MARL) to train an outer-loop control policy for each MAV. Unlike state-of-the-art controllers that utilize a centralized scheme, our policy does not require global states, inter-MAV communications, nor neighboring MAV information. Instead, agents communicate implicitly through load pose observations alone, which enables high scalability and flexibility. It also significantly reduces computing costs during inference time, enabling onboard deployment of the policy. In addition, we introduce a new action space design for the MAVs using linear acceleration and body rates. This choice, combined with a robust low-level controller, enables reliable sim-to-real transfer despite significant uncertainties caused by cable tension during dynamic 3D motion. We validate our method in various real-world experiments, including full-pose control under load model uncertainties, showing setpoint tracking performance comparable to the state-of-the-art centralized method. We also demonstrate cooperation amongst agents with heterogeneous control policies, and robustness to the complete in-flight loss of one MAV. Videos of experiments: https://autonomousrobots.nl/paper_websites/aerial-manipulation-marl

  • 5 authors
·
Aug 2, 2025 2

Off-the-Grid MARL: Datasets with Baselines for Offline Multi-Agent Reinforcement Learning

Being able to harness the power of large datasets for developing cooperative multi-agent controllers promises to unlock enormous value for real-world applications. Many important industrial systems are multi-agent in nature and are difficult to model using bespoke simulators. However, in industry, distributed processes can often be recorded during operation, and large quantities of demonstrative data stored. Offline multi-agent reinforcement learning (MARL) provides a promising paradigm for building effective decentralised controllers from such datasets. However, offline MARL is still in its infancy and therefore lacks standardised benchmark datasets and baselines typically found in more mature subfields of reinforcement learning (RL). These deficiencies make it difficult for the community to sensibly measure progress. In this work, we aim to fill this gap by releasing off-the-grid MARL (OG-MARL): a growing repository of high-quality datasets with baselines for cooperative offline MARL research. Our datasets provide settings that are characteristic of real-world systems, including complex environment dynamics, heterogeneous agents, non-stationarity, many agents, partial observability, suboptimality, sparse rewards and demonstrated coordination. For each setting, we provide a range of different dataset types (e.g. Good, Medium, Poor, and Replay) and profile the composition of experiences for each dataset. We hope that OG-MARL will serve the community as a reliable source of datasets and help drive progress, while also providing an accessible entry point for researchers new to the field.

  • 4 authors
·
Feb 1, 2023

VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning

Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.

  • 9 authors
·
Jun 10, 2025 2

Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining

A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA

  • 8 authors
·
Oct 1, 2024

Fathom-DeepResearch: Unlocking Long Horizon Information Retrieval and Synthesis for SLMs

Tool-integrated reasoning has emerged as a key focus for enabling agentic applications. Among these, DeepResearch Agents have gained significant attention for their strong performance on complex, open-ended information-seeking tasks. We introduce Fathom-DeepResearch, an agentic system composed of two specialized models. The first is Fathom-Search-4B, a DeepSearch model trained from Qwen3-4B and optimized for evidence-based investigation through live web search and targeted webpage querying. Its training combines three advances: (i) DUETQA, a 5K-sample dataset generated via multi-agent self-play that enforces strict web-search dependence and heterogeneous source grounding; (ii) RAPO, a zero-overhead extension of GRPO that stabilizes multi-turn Reinforcement Learning with Verifiable Rewards through curriculum pruning, reward-aware advantage scaling, and per-prompt replay buffers; and (iii) a steerable step-level reward that classifies each tool call by cognitive behavior and marginal utility, enabling explicit control over search trajectory breadth, depth, and horizon. These improvements enable reliable extension of tool-calling beyond 20 calls when warranted. The second is Fathom-Synthesizer-4B, trained from Qwen3-4B, which converts multi-turn DeepSearch traces into structured, citation-dense DeepResearch Reports for comprehensive synthesis. Evaluated on DeepSearch benchmarks (SimpleQA, FRAMES, WebWalker, Seal0, MuSiQue) and DeepResearch-Bench, the system achieves state-of-the-art performance in the open-weights category while demonstrating strong generalization to diverse reasoning tasks including HLE, AIME-25, GPQA-Diamond, and MedQA.

FractalAIResearch Fractal AI Research
·
Sep 28, 2025 2

FinWorld: An All-in-One Open-Source Platform for End-to-End Financial AI Research and Deployment

Financial AI holds great promise for transforming modern finance, with the potential to support a wide range of tasks such as market forecasting, portfolio management, quantitative trading, and automated analysis. However, existing platforms remain limited in task coverage, lack robust multimodal data integration, and offer insufficient support for the training and deployment of large language models (LLMs). In response to these limitations, we present FinWorld, an all-in-one open-source platform that provides end-to-end support for the entire financial AI workflow, from data acquisition to experimentation and deployment. FinWorld distinguishes itself through native integration of heterogeneous financial data, unified support for diverse AI paradigms, and advanced agent automation, enabling seamless development and deployment. Leveraging data from 2 representative markets, 4 stock pools, and over 800 million financial data points, we conduct comprehensive experiments on 4 key financial AI tasks. These experiments systematically evaluate deep learning and reinforcement learning algorithms, with particular emphasis on RL-based finetuning for LLMs and LLM Agents. The empirical results demonstrate that FinWorld significantly enhances reproducibility, supports transparent benchmarking, and streamlines deployment, thereby providing a strong foundation for future research and real-world applications. Code is available at Github~https://github.com/DVampire/FinWorld.

  • 5 authors
·
Aug 4, 2025

Stratified GRPO: Handling Structural Heterogeneity in Reinforcement Learning of LLM Search Agents

Large language model (LLM) agents increasingly rely on external tools such as search engines to solve complex, multi-step problems, and reinforcement learning (RL) has become a key paradigm for training them. However, the trajectories of search agents are structurally heterogeneous, where variations in the number, placement, and outcomes of search calls lead to fundamentally different answer directions and reward distributions. Standard policy gradient methods, which use a single global baseline, suffer from what we identify and formalize as cross-stratum bias-an "apples-to-oranges" comparison of heterogeneous trajectories. This cross-stratum bias distorts credit assignment and hinders exploration of complex, multi-step search strategies. To address this, we propose Stratified GRPO, whose central component, Stratified Advantage Normalization (SAN), partitions trajectories into homogeneous strata based on their structural properties and computes advantages locally within each stratum. This ensures that trajectories are evaluated only against their true peers. Our analysis proves that SAN eliminates cross-stratum bias, yields conditionally unbiased unit-variance estimates inside each stratum, and retains the global unbiasedness and unit-variance properties enjoyed by standard normalization, resulting in a more pure and scale-stable learning signal. To improve practical stability under finite-sample regimes, we further linearly blend SAN with the global estimator. Extensive experiments on diverse single-hop and multi-hop question-answering benchmarks demonstrate that Stratified GRPO consistently and substantially outperforms GRPO by up to 11.3 points, achieving higher training rewards, greater training stability, and more effective search policies. These results establish stratification as a principled remedy for structural heterogeneity in RL for LLM search agents.

  • 5 authors
·
Oct 7, 2025