Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNeural MMO v1.3: A Massively Multiagent Game Environment for Training and Evaluating Neural Networks
Progress in multiagent intelligence research is fundamentally limited by the number and quality of environments available for study. In recent years, simulated games have become a dominant research platform within reinforcement learning, in part due to their accessibility and interpretability. Previous works have targeted and demonstrated success on arcade, first person shooter (FPS), real-time strategy (RTS), and massive online battle arena (MOBA) games. Our work considers massively multiplayer online role-playing games (MMORPGs or MMOs), which capture several complexities of real-world learning that are not well modeled by any other game genre. We present Neural MMO, a massively multiagent game environment inspired by MMOs and discuss our progress on two more general challenges in multiagent systems engineering for AI research: distributed infrastructure and game IO. We further demonstrate that standard policy gradient methods and simple baseline models can learn interesting emergent exploration and specialization behaviors in this setting.
Narrative-to-Scene Generation: An LLM-Driven Pipeline for 2D Game Environments
Recent advances in large language models(LLMs) enable compelling story generation, but connecting narrative text to playable visual environments remains an open challenge in procedural content generation(PCG). We present a lightweight pipeline that transforms short narrative prompts into a sequence of 2D tile-based game scenes, reflecting the temporal structure of stories. Given an LLM-generated narrative, our system identifies three key time frames, extracts spatial predicates in the form of "Object-Relation-Object" triples, and retrieves visual assets using affordance-aware semantic embeddings from the GameTileNet dataset. A layered terrain is generated using Cellular Automata, and objects are placed using spatial rules grounded in the predicate structure. We evaluated our system in ten diverse stories, analyzing tile-object matching, affordance-layer alignment, and spatial constraint satisfaction across frames. This prototype offers a scalable approach to narrative-driven scene generation and lays the foundation for future work on multi-frame continuity, symbolic tracking, and multi-agent coordination in story-centered PCG.
A Survey on Large Language Model-Based Game Agents
Game environments provide rich, controllable settings that stimulate many aspects of real-world complexity. As such, game agents offer a valuable testbed for exploring capabilities relevant to Artificial General Intelligence. Recently, the emergence of Large Language Models (LLMs) provides new opportunities to endow these agents with generalizable reasoning, memory, and adaptability in complex game environments. This survey offers an up-to-date review of LLM-based game agents (LLMGAs) through a unified reference architecture. At the single-agent level, we synthesize existing studies around three core components: memory, reasoning, and perception-action interfaces, which jointly characterize how language enables agents to perceive, think, and act. At the multi-agent level, we outline how communication protocols and organizational models support coordination, role differentiation, and large-scale social behaviors. To contextualize these designs, we introduce a challenge-centered taxonomy linking six major game genres to their dominant agent requirements, from low-latency control in action games to open-ended goal formation in sandbox worlds. A curated list of related papers is available at https://github.com/git-disl/awesome-LLM-game-agent-papers
V-MAGE: A Game Evaluation Framework for Assessing Visual-Centric Capabilities in Multimodal Large Language Models
Recent advancements in Multimodal Large Language Models (MLLMs) have led to significant improvements across various multimodal benchmarks. However, as evaluations shift from static datasets to open-world, dynamic environments, current game-based benchmarks remain inadequate because they lack visual-centric tasks and fail to assess the diverse reasoning skills required for real-world decision-making. To address this, we introduce Visual-centric Multiple Abilities Game Evaluation (V-MAGE), a game-based evaluation framework designed to assess visual reasoning capabilities of MLLMs. V-MAGE features five diverse games with 30+ handcrafted levels, testing models on core visual skills such as positioning, trajectory tracking, timing, and visual memory, alongside higher-level reasoning like long-term planning and deliberation. We use V-MAGE to evaluate leading MLLMs, revealing significant challenges in their visual perception and reasoning. In all game environments, the top-performing MLLMs, as determined by Elo rating comparisons, exhibit a substantial performance gap compared to humans. Our findings highlight critical limitations, including various types of perceptual errors made by the models, and suggest potential avenues for improvement from an agent-centric perspective, such as refining agent strategies and addressing perceptual inaccuracies. Code is available at https://github.com/CSU-JPG/V-MAGE.
AvalonBench: Evaluating LLMs Playing the Game of Avalon
In this paper, we explore the potential of Large Language Models (LLMs) Agents in playing the strategic social deduction game, Resistance Avalon. Players in Avalon are challenged not only to make informed decisions based on dynamically evolving game phases, but also to engage in discussions where they must deceive, deduce, and negotiate with other players. These characteristics make Avalon a compelling test-bed to study the decision-making and language-processing capabilities of LLM Agents. To facilitate research in this line, we introduce AvalonBench - a comprehensive game environment tailored for evaluating multi-agent LLM Agents. This benchmark incorporates: (1) a game environment for Avalon, (2) rule-based bots as baseline opponents, and (3) ReAct-style LLM agents with tailored prompts for each role. Notably, our evaluations based on AvalonBench highlight a clear capability gap. For instance, models like ChatGPT playing good-role got a win rate of 22.2% against rule-based bots playing evil, while good-role bot achieves 38.2% win rate in the same setting. We envision AvalonBench could be a good test-bed for developing more advanced LLMs (with self-playing) and agent frameworks that can effectively model the layered complexities of such game environments.
The Arcade Learning Environment: An Evaluation Platform for General Agents
In this article we introduce the Arcade Learning Environment (ALE): both a challenge problem and a platform and methodology for evaluating the development of general, domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600 game environments, each one different, interesting, and designed to be a challenge for human players. ALE presents significant research challenges for reinforcement learning, model learning, model-based planning, imitation learning, transfer learning, and intrinsic motivation. Most importantly, it provides a rigorous testbed for evaluating and comparing approaches to these problems. We illustrate the promise of ALE by developing and benchmarking domain-independent agents designed using well-established AI techniques for both reinforcement learning and planning. In doing so, we also propose an evaluation methodology made possible by ALE, reporting empirical results on over 55 different games. All of the software, including the benchmark agents, is publicly available.
Hunyuan-GameCraft: High-dynamic Interactive Game Video Generation with Hybrid History Condition
Recent advances in diffusion-based and controllable video generation have enabled high-quality and temporally coherent video synthesis, laying the groundwork for immersive interactive gaming experiences. However, current methods face limitations in dynamics, generality, long-term consistency, and efficiency, which limit the ability to create various gameplay videos. To address these gaps, we introduce Hunyuan-GameCraft, a novel framework for high-dynamic interactive video generation in game environments. To achieve fine-grained action control, we unify standard keyboard and mouse inputs into a shared camera representation space, facilitating smooth interpolation between various camera and movement operations. Then we propose a hybrid history-conditioned training strategy that extends video sequences autoregressively while preserving game scene information. Additionally, to enhance inference efficiency and playability, we achieve model distillation to reduce computational overhead while maintaining consistency across long temporal sequences, making it suitable for real-time deployment in complex interactive environments. The model is trained on a large-scale dataset comprising over one million gameplay recordings across over 100 AAA games, ensuring broad coverage and diversity, then fine-tuned on a carefully annotated synthetic dataset to enhance precision and control. The curated game scene data significantly improves the visual fidelity, realism and action controllability. Extensive experiments demonstrate that Hunyuan-GameCraft significantly outperforms existing models, advancing the realism and playability of interactive game video generation.
OmniPlay: Benchmarking Omni-Modal Models on Omni-Modal Game Playing
While generalist foundation models like Gemini and GPT-4o demonstrate impressive multi-modal competence, existing evaluations fail to test their intelligence in dynamic, interactive worlds. Static benchmarks lack agency, while interactive benchmarks suffer from a severe modal bottleneck, typically ignoring crucial auditory and temporal cues. To bridge this evaluation chasm, we introduce OmniPlay, a diagnostic benchmark designed not just to evaluate, but to probe the fusion and reasoning capabilities of agentic models across the full sensory spectrum. Built on a core philosophy of modality interdependence, OmniPlay comprises a suite of five game environments that systematically create scenarios of both synergy and conflict, forcing agents to perform genuine cross-modal reasoning. Our comprehensive evaluation of six leading omni-modal models reveals a critical dichotomy: they exhibit superhuman performance on high-fidelity memory tasks but suffer from systemic failures in challenges requiring robust reasoning and strategic planning. We demonstrate that this fragility stems from brittle fusion mechanisms, which lead to catastrophic performance degradation under modality conflict and uncover a counter-intuitive "less is more" paradox, where removing sensory information can paradoxically improve performance. Our findings suggest that the path toward robust AGI requires a research focus beyond scaling to explicitly address synergistic fusion. Our platform is available for anonymous review at https://github.com/fuqingbie/omni-game-benchmark.
Preference-conditioned Pixel-based AI Agent For Game Testing
The game industry is challenged to cope with increasing growth in demand and game complexity while maintaining acceptable quality standards for released games. Classic approaches solely depending on human efforts for quality assurance and game testing do not scale effectively in terms of time and cost. Game-testing AI agents that learn by interaction with the environment have the potential to mitigate these challenges with good scalability properties on time and costs. However, most recent work in this direction depends on game state information for the agent's state representation, which limits generalization across different game scenarios. Moreover, game test engineers usually prefer exploring a game in a specific style, such as exploring the golden path. However, current game testing AI agents do not provide an explicit way to satisfy such a preference. This paper addresses these limitations by proposing an agent design that mainly depends on pixel-based state observations while exploring the environment conditioned on a user's preference specified by demonstration trajectories. In addition, we propose an imitation learning method that couples self-supervised and supervised learning objectives to enhance the quality of imitation behaviors. Our agent significantly outperforms state-of-the-art pixel-based game testing agents over exploration coverage and test execution quality when evaluated on a complex open-world environment resembling many aspects of real AAA games.
What-If Analysis of Large Language Models: Explore the Game World Using Proactive Thinking
Large language models (LLMs) excel at processing information reactively but lack the ability to systemically explore hypothetical futures. They cannot ask, "what if we take this action? how will it affect the final outcome" and forecast its potential consequences before acting. This critical gap limits their utility in dynamic, high-stakes scenarios like strategic planning, risk assessment, and real-time decision making. To bridge this gap, we propose WiA-LLM, a new paradigm that equips LLMs with proactive thinking capabilities. Our approach integrates What-If Analysis (WIA), a systematic approach for evaluating hypothetical scenarios by changing input variables. By leveraging environmental feedback via reinforcement learning, WiA-LLM moves beyond reactive thinking. It dynamically simulates the outcomes of each potential action, enabling the model to anticipate future states rather than merely react to the present conditions. We validate WiA-LLM in Honor of Kings (HoK), a complex multiplayer game environment characterized by rapid state changes and intricate interactions. The game's real-time state changes require precise multi-step consequence prediction, making it an ideal testbed for our approach. Experimental results demonstrate WiA-LLM achieves a remarkable 74.2% accuracy in forecasting game-state changes (up to two times gain over baselines). The model shows particularly significant gains in high-difficulty scenarios where accurate foresight is critical. To our knowledge, this is the first work to formally explore and integrate what-if analysis capabilities within LLMs. WiA-LLM represents a fundamental advance toward proactive reasoning in LLMs, providing a scalable framework for robust decision-making in dynamic environments with broad implications for strategic applications.
SAPIEN: A SimulAted Part-based Interactive ENvironment
Building home assistant robots has long been a pursuit for vision and robotics researchers. To achieve this task, a simulated environment with physically realistic simulation, sufficient articulated objects, and transferability to the real robot is indispensable. Existing environments achieve these requirements for robotics simulation with different levels of simplification and focus. We take one step further in constructing an environment that supports household tasks for training robot learning algorithm. Our work, SAPIEN, is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects. Our SAPIEN enables various robotic vision and interaction tasks that require detailed part-level understanding.We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks using heuristic approaches and reinforcement learning algorithms. We hope that our SAPIEN can open a lot of research directions yet to be explored, including learning cognition through interaction, part motion discovery, and construction of robotics-ready simulated game environment.
SwarmBrain: Embodied agent for real-time strategy game StarCraft II via large language models
Large language models (LLMs) have recently garnered significant accomplishments in various exploratory tasks, even surpassing the performance of traditional reinforcement learning-based methods that have historically dominated the agent-based field. The purpose of this paper is to investigate the efficacy of LLMs in executing real-time strategy war tasks within the StarCraft II gaming environment. In this paper, we introduce SwarmBrain, an embodied agent leveraging LLM for real-time strategy implementation in the StarCraft II game environment. The SwarmBrain comprises two key components: 1) a Overmind Intelligence Matrix, powered by state-of-the-art LLMs, is designed to orchestrate macro-level strategies from a high-level perspective. This matrix emulates the overarching consciousness of the Zerg intelligence brain, synthesizing strategic foresight with the aim of allocating resources, directing expansion, and coordinating multi-pronged assaults. 2) a Swarm ReflexNet, which is agile counterpart to the calculated deliberation of the Overmind Intelligence Matrix. Due to the inherent latency in LLM reasoning, the Swarm ReflexNet employs a condition-response state machine framework, enabling expedited tactical responses for fundamental Zerg unit maneuvers. In the experimental setup, SwarmBrain is in control of the Zerg race in confrontation with an Computer-controlled Terran adversary. Experimental results show the capacity of SwarmBrain to conduct economic augmentation, territorial expansion, and tactical formulation, and it shows the SwarmBrain is capable of achieving victory against Computer players set at different difficulty levels.
Video2Game: Real-time, Interactive, Realistic and Browser-Compatible Environment from a Single Video
Creating high-quality and interactive virtual environments, such as games and simulators, often involves complex and costly manual modeling processes. In this paper, we present Video2Game, a novel approach that automatically converts videos of real-world scenes into realistic and interactive game environments. At the heart of our system are three core components:(i) a neural radiance fields (NeRF) module that effectively captures the geometry and visual appearance of the scene; (ii) a mesh module that distills the knowledge from NeRF for faster rendering; and (iii) a physics module that models the interactions and physical dynamics among the objects. By following the carefully designed pipeline, one can construct an interactable and actionable digital replica of the real world. We benchmark our system on both indoor and large-scale outdoor scenes. We show that we can not only produce highly-realistic renderings in real-time, but also build interactive games on top.
CommonsenseQA 2.0: Exposing the Limits of AI through Gamification
Constructing benchmarks that test the abilities of modern natural language understanding models is difficult - pre-trained language models exploit artifacts in benchmarks to achieve human parity, but still fail on adversarial examples and make errors that demonstrate a lack of common sense. In this work, we propose gamification as a framework for data construction. The goal of players in the game is to compose questions that mislead a rival AI while using specific phrases for extra points. The game environment leads to enhanced user engagement and simultaneously gives the game designer control over the collected data, allowing us to collect high-quality data at scale. Using our method we create CommonsenseQA 2.0, which includes 14,343 yes/no questions, and demonstrate its difficulty for models that are orders-of-magnitude larger than the AI used in the game itself. Our best baseline, the T5-based Unicorn with 11B parameters achieves an accuracy of 70.2%, substantially higher than GPT-3 (52.9%) in a few-shot inference setup. Both score well below human performance which is at 94.1%.
UI-TARS-2 Technical Report: Advancing GUI Agent with Multi-Turn Reinforcement Learning
The development of autonomous agents for graphical user interfaces (GUIs) presents major challenges in artificial intelligence. While recent advances in native agent models have shown promise by unifying perception, reasoning, action, and memory through end-to-end learning, open problems remain in data scalability, multi-turn reinforcement learning (RL), the limitations of GUI-only operation, and environment stability. In this technical report, we present UI-TARS-2, a native GUI-centered agent model that addresses these challenges through a systematic training methodology: a data flywheel for scalable data generation, a stabilized multi-turn RL framework, a hybrid GUI environment that integrates file systems and terminals, and a unified sandbox platform for large-scale rollouts. Empirical evaluation demonstrates that UI-TARS-2 achieves significant improvements over its predecessor UI-TARS-1.5. On GUI benchmarks, it reaches 88.2 on Online-Mind2Web, 47.5 on OSWorld, 50.6 on WindowsAgentArena, and 73.3 on AndroidWorld, outperforming strong baselines such as Claude and OpenAI agents. In game environments, it attains a mean normalized score of 59.8 across a 15-game suite-roughly 60% of human-level performance-and remains competitive with frontier proprietary models (e.g., OpenAI o3) on LMGame-Bench. Additionally, the model can generalize to long-horizon information-seeking tasks and software engineering benchmarks, highlighting its robustness across diverse agent tasks. Detailed analyses of training dynamics further provide insights into achieving stability and efficiency in large-scale agent RL. These results underscore UI-TARS-2's potential to advance the state of GUI agents and exhibit strong generalization to real-world interactive scenarios.
Artificial Generals Intelligence: Mastering Generals.io with Reinforcement Learning
We introduce a real-time strategy game environment based on Generals.io, a game with thousands of weekly active players. Our environment is fully compatible with Gymnasium and PettingZoo and is capable of running thousands of frames per second on commodity hardware. We also present a reference agent, trained with supervised pre-training and self-play, which reached the top 0.003% of the 1v1 human leaderboard after only 36 hours on a single H100 GPU. To accelerate learning, we incorporate potential-based reward shaping and memory features. Our contributions of a modular RTS benchmark and a competitive baseline agent provide an accessible yet challenging platform for advancing multi-agent reinforcement learning research. The documented code, together with examples and tutorials, is available at https://github.com/strakam/generals-bots.
Guiding Pretraining in Reinforcement Learning with Large Language Models
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped reward function. Intrinsically motivated exploration methods address this limitation by rewarding agents for visiting novel states or transitions, but these methods offer limited benefits in large environments where most discovered novelty is irrelevant for downstream tasks. We describe a method that uses background knowledge from text corpora to shape exploration. This method, called ELLM (Exploring with LLMs) rewards an agent for achieving goals suggested by a language model prompted with a description of the agent's current state. By leveraging large-scale language model pretraining, ELLM guides agents toward human-meaningful and plausibly useful behaviors without requiring a human in the loop. We evaluate ELLM in the Crafter game environment and the Housekeep robotic simulator, showing that ELLM-trained agents have better coverage of common-sense behaviors during pretraining and usually match or improve performance on a range of downstream tasks.
Cooperative Open-ended Learning Framework for Zero-shot Coordination
Zero-shot coordination in cooperative artificial intelligence (AI) remains a significant challenge, which means effectively coordinating with a wide range of unseen partners. Previous algorithms have attempted to address this challenge by optimizing fixed objectives within a population to improve strategy or behaviour diversity. However, these approaches can result in a loss of learning and an inability to cooperate with certain strategies within the population, known as cooperative incompatibility. To address this issue, we propose the Cooperative Open-ended LEarning (COLE) framework, which constructs open-ended objectives in cooperative games with two players from the perspective of graph theory to assess and identify the cooperative ability of each strategy. We further specify the framework and propose a practical algorithm that leverages knowledge from game theory and graph theory. Furthermore, an analysis of the learning process of the algorithm shows that it can efficiently overcome cooperative incompatibility. The experimental results in the Overcooked game environment demonstrate that our method outperforms current state-of-the-art methods when coordinating with different-level partners. Our demo is available at https://sites.google.com/view/cole-2023.
Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations
We introduce AI rationalization, an approach for generating explanations of autonomous system behavior as if a human had performed the behavior. We describe a rationalization technique that uses neural machine translation to translate internal state-action representations of an autonomous agent into natural language. We evaluate our technique in the Frogger game environment, training an autonomous game playing agent to rationalize its action choices using natural language. A natural language training corpus is collected from human players thinking out loud as they play the game. We motivate the use of rationalization as an approach to explanation generation and show the results of two experiments evaluating the effectiveness of rationalization. Results of these evaluations show that neural machine translation is able to accurately generate rationalizations that describe agent behavior, and that rationalizations are more satisfying to humans than other alternative methods of explanation.
ELCC: the Emergent Language Corpus Collection
We introduce the Emergent Language Corpus Collection (ELCC): a collection of corpora generated from open source implementations of emergent communication systems across the literature. These systems include a variety of signalling game environments as well as more complex environments like a social deduction game and embodied navigation. Each corpus is annotated with metadata describing the characteristics of the source system as well as a suite of analyses of the corpus (e.g., size, entropy, average message length, performance as transfer learning data). Currently, research studying emergent languages requires directly running different systems which takes time away from actual analyses of such languages, makes studies which compare diverse emergent languages rare, and presents a barrier to entry for researchers without a background in deep learning. The availability of a substantial collection of well-documented emergent language corpora, then, will enable research which can analyze a wider variety of emergent languages, which more effectively uncovers general principles in emergent communication rather than artifacts of particular environments. We provide some quantitative and qualitative analyses with ELCC to demonstrate potential use cases of the resource in this vein.
Adversarial Language Games for Advanced Natural Language Intelligence
We study the problem of adversarial language games, in which multiple agents with conflicting goals compete with each other via natural language interactions. While adversarial language games are ubiquitous in human activities, little attention has been devoted to this field in natural language processing. In this work, we propose a challenging adversarial language game called Adversarial Taboo as an example, in which an attacker and a defender compete around a target word. The attacker is tasked with inducing the defender to utter the target word invisible to the defender, while the defender is tasked with detecting the target word before being induced by the attacker. In Adversarial Taboo, a successful attacker must hide its intention and subtly induce the defender, while a competitive defender must be cautious with its utterances and infer the intention of the attacker. Such language abilities can facilitate many important downstream NLP tasks. To instantiate the game, we create a game environment and a competition platform. Comprehensive experiments and empirical studies on several baseline attack and defense strategies show promising and interesting results. Based on the analysis on the game and experiments, we discuss multiple promising directions for future research.
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess and Go, where a perfect simulator is available. However, in real-world problems the dynamics governing the environment are often complex and unknown. In this work we present the MuZero algorithm which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. MuZero learns a model that, when applied iteratively, predicts the quantities most directly relevant to planning: the reward, the action-selection policy, and the value function. When evaluated on 57 different Atari games - the canonical video game environment for testing AI techniques, in which model-based planning approaches have historically struggled - our new algorithm achieved a new state of the art. When evaluated on Go, chess and shogi, without any knowledge of the game rules, MuZero matched the superhuman performance of the AlphaZero algorithm that was supplied with the game rules.
Knowledge-enhanced Agents for Interactive Text Games
Communication via natural language is a crucial aspect of intelligence, and it requires computational models to learn and reason about world concepts, with varying levels of supervision. While there has been significant progress made on fully-supervised non-interactive tasks, such as question-answering and procedural text understanding, much of the community has turned to various sequential interactive tasks, as in semi-Markov text-based games, which have revealed limitations of existing approaches in terms of coherence, contextual awareness, and their ability to learn effectively from the environment. In this paper, we propose a framework for enabling improved functional grounding of agents in text-based games. Specifically, we consider two forms of domain knowledge that we inject into learning-based agents: memory of previous correct actions and affordances of relevant objects in the environment. Our framework supports three representative model classes: `pure' reinforcement learning (RL) agents, RL agents enhanced with knowledge graphs, and agents equipped with language models. Furthermore, we devise multiple injection strategies for the above domain knowledge types and agent architectures, including injection via knowledge graphs and augmentation of the existing input encoding strategies. We perform all experiments on the ScienceWorld text-based game environment, to illustrate the performance of various model configurations in challenging science-related instruction-following tasks. Our findings provide crucial insights on the development of effective natural language processing systems for interactive contexts.
Ontologically Faithful Generation of Non-Player Character Dialogues
We introduce a language generation task grounded in a popular video game environment. KNUDGE (KNowledge Constrained User-NPC Dialogue GEneration) requires models to produce trees of dialogue between video game characters that accurately reflect quest and entity specifications stated in natural language. KNUDGE is constructed from side quest dialogues drawn directly from game data of Obsidian Entertainment's The Outer Worlds, leading to real-world complexities in generation: (1) dialogues are branching trees as opposed to linear chains of utterances; (2) utterances must remain faithful to the game lore -- character personas, backstories, and entity relationships; and (3) a dialogue must accurately reveal new quest details to the human player. We report results for a set of neural generation models using supervised and in-context learning techniques; we find competent performance but room for future work addressing the challenges of creating realistic, game-quality dialogues.
DreamGarden: A Designer Assistant for Growing Games from a Single Prompt
Coding assistants are increasingly leveraged in game design, both generating code and making high-level plans. To what degree can these tools align with developer workflows, and what new modes of human-computer interaction can emerge from their use? We present DreamGarden, an AI system capable of assisting with the development of diverse game environments in Unreal Engine. At the core of our method is an LLM-driven planner, capable of breaking down a single, high-level prompt -- a dream, memory, or imagined scenario provided by a human user -- into a hierarchical action plan, which is then distributed across specialized submodules facilitating concrete implementation. This system is presented to the user as a garden of plans and actions, both growing independently and responding to user intervention via seed prompts, pruning, and feedback. Through a user study, we explore design implications of this system, charting courses for future work in semi-autonomous assistants and open-ended simulation design.
RAMario: Experimental Approach to Reptile Algorithm -- Reinforcement Learning for Mario
This research paper presents an experimental approach to using the Reptile algorithm for reinforcement learning to train a neural network to play Super Mario Bros. We implement the Reptile algorithm using the Super Mario Bros Gym library and TensorFlow in Python, creating a neural network model with a single convolutional layer, a flatten layer, and a dense layer. We define the optimizer and use the Reptile class to create an instance of the Reptile meta-learning algorithm. We train the model using multiple tasks and episodes, choosing actions using the current weights of the neural network model, taking those actions in the environment, and updating the model weights using the Reptile algorithm. We evaluate the performance of the algorithm by printing the total reward for each episode. In addition, we compare the performance of the Reptile algorithm approach to two other popular reinforcement learning algorithms, Proximal Policy Optimization (PPO) and Deep Q-Network (DQN), applied to the same Super Mario Bros task. Our results demonstrate that the Reptile algorithm provides a promising approach to few-shot learning in video game AI, with comparable or even better performance than the other two algorithms, particularly in terms of moves vs distance that agent performs for 1M episodes of training. The results shows that best total distance for world 1-2 in the game environment were ~1732 (PPO), ~1840 (DQN) and ~2300 (RAMario). Full code is available at https://github.com/s4nyam/RAMario.
Measuring General Intelligence with Generated Games
We present gg-bench, a collection of game environments designed to evaluate general reasoning capabilities in language models. Unlike most static benchmarks, gg-bench is a data generating process where new evaluation instances can be generated at will. In particular, gg-bench is synthetically generated by (1) using a large language model (LLM) to generate natural language descriptions of novel games, (2) using the LLM to implement each game in code as a Gym environment, and (3) training reinforcement learning (RL) agents via self-play on the generated games. We evaluate language models by their winrate against these RL agents by prompting models with the game description, current board state, and a list of valid moves, after which models output the moves they wish to take. gg-bench is challenging: state-of-the-art LLMs such as GPT-4o and Claude 3.7 Sonnet achieve winrates of 7-9% on gg-bench using in-context learning, while reasoning models such as o1, o3-mini and DeepSeek-R1 achieve average winrates of 31-36%. We release the generated games, data generation process, and evaluation code in order to support future modeling work and expansion of our benchmark.
Agents in the Sandbox: End-to-End Crash Bug Reproduction for Minecraft
Reproducing game bugs, particularly crash bugs in continuously evolving games like Minecraft, is a notoriously manual, time-consuming, and challenging process to automate; insights from a key decision maker from Minecraft we interviewed confirm this, highlighting that a substantial portion of crash reports necessitate manual scenario reconstruction. Despite the success of LLM-driven bug reproduction in other software domains, games, with their complex interactive environments, remain largely unaddressed. This paper introduces BugCraft, a novel end-to-end framework designed to automate the reproduction of crash bugs in Minecraft directly from user-submitted bug reports, addressing the critical gap in automated game bug reproduction. BugCraft employs a two-stage approach: first, a Step Synthesizer leverages LLMs and Minecraft Wiki knowledge to transform bug reports into high-quality, structured steps to reproduce (S2R). Second, an Action Model, powered by a vision-based LLM agent and a custom macro API, executes these S2R steps within Minecraft to trigger the reported crash. To facilitate evaluation, we introduce BugCraft-Bench, a curated dataset of Minecraft crash bug reports. On BugCraft-Bench, our framework end-to-end reproduced 34.9% of crash bugs with GPT-4.1, outperforming baseline computer-use models by 37%. BugCraft demonstrates the feasibility of automated reproduction of crash bugs in complex game environments using LLMs, opening promising avenues for game testing and development. Finally, we make our code open at https://bugcraft2025.github.io
Think in Games: Learning to Reason in Games via Reinforcement Learning with Large Language Models
Large language models (LLMs) excel at complex reasoning tasks such as mathematics and coding, yet they frequently struggle with simple interactive tasks that young children perform effortlessly. This discrepancy highlights a critical gap between declarative knowledge (knowing about something) and procedural knowledge (knowing how to do something). Although traditional reinforcement learning (RL) agents can acquire procedural knowledge through environmental interaction, they often operate as black boxes and require substantial training data. In contrast, LLMs possess extensive world knowledge and reasoning capabilities, but are unable to effectively convert this static knowledge into dynamic decision-making in interactive settings. To address this challenge, we propose Think in Games (TiG), a novel framework that empowers LLMs to develop procedural understanding through direct interaction with game environments, while retaining their inherent reasoning and explanatory abilities. Specifically, TiG reformulates RL-based decision-making as a language modeling task: LLMs generate language-guided policies, which are refined iteratively through online reinforcement learning based on environmental feedback. Our experimental results show that TiG successfully bridges the gap between declarative and procedural knowledge, achieving competitive performance with dramatically lower data and computational demands compared to conventional RL methods. Moreover, TiG provides step-by-step natural language explanations for its decisions, greatly improving transparency and interpretability in complex interactive tasks.
MCU: A Task-centric Framework for Open-ended Agent Evaluation in Minecraft
To pursue the goal of creating an open-ended agent in Minecraft, an open-ended game environment with unlimited possibilities, this paper introduces a task-centric framework named MCU for Minecraft agent evaluation. The MCU framework leverages the concept of atom tasks as fundamental building blocks, enabling the generation of diverse or even arbitrary tasks. Within the MCU framework, each task is measured with six distinct difficulty scores (time consumption, operational effort, planning complexity, intricacy, creativity, novelty). These scores offer a multi-dimensional assessment of a task from different angles, and thus can reveal an agent's capability on specific facets. The difficulty scores also serve as the feature of each task, which creates a meaningful task space and unveils the relationship between tasks. For efficient evaluation of Minecraft agents employing the MCU framework, we maintain a unified benchmark, namely SkillForge, which comprises representative tasks with diverse categories and difficulty distribution. We also provide convenient filters for users to select tasks to assess specific capabilities of agents. We show that MCU has the high expressivity to cover all tasks used in recent literature on Minecraft agent, and underscores the need for advancements in areas such as creativity, precise control, and out-of-distribution generalization under the goal of open-ended Minecraft agent development.
Large Language Models Are Neurosymbolic Reasoners
A wide range of real-world applications is characterized by their symbolic nature, necessitating a strong capability for symbolic reasoning. This paper investigates the potential application of Large Language Models (LLMs) as symbolic reasoners. We focus on text-based games, significant benchmarks for agents with natural language capabilities, particularly in symbolic tasks like math, map reading, sorting, and applying common sense in text-based worlds. To facilitate these agents, we propose an LLM agent designed to tackle symbolic challenges and achieve in-game objectives. We begin by initializing the LLM agent and informing it of its role. The agent then receives observations and a set of valid actions from the text-based games, along with a specific symbolic module. With these inputs, the LLM agent chooses an action and interacts with the game environments. Our experimental results demonstrate that our method significantly enhances the capability of LLMs as automated agents for symbolic reasoning, and our LLM agent is effective in text-based games involving symbolic tasks, achieving an average performance of 88% across all tasks.
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
The weight matrix (WM) of a neural network (NN) is its program. The programs of many traditional NNs are learned through gradient descent in some error function, then remain fixed. The WM of a self-referential NN, however, can keep rapidly modifying all of itself during runtime. In principle, such NNs can meta-learn to learn, and meta-meta-learn to meta-learn to learn, and so on, in the sense of recursive self-improvement. While NN architectures potentially capable of implementing such behaviour have been proposed since the '90s, there have been few if any practical studies. Here we revisit such NNs, building upon recent successes of fast weight programmers and closely related linear Transformers. We propose a scalable self-referential WM (SRWM) that learns to use outer products and the delta update rule to modify itself. We evaluate our SRWM in supervised few-shot learning and in multi-task reinforcement learning with procedurally generated game environments. Our experiments demonstrate both practical applicability and competitive performance of the proposed SRWM. Our code is public.
PCGRL: Procedural Content Generation via Reinforcement Learning
We investigate how reinforcement learning can be used to train level-designing agents. This represents a new approach to procedural content generation in games, where level design is framed as a game, and the content generator itself is learned. By seeing the design problem as a sequential task, we can use reinforcement learning to learn how to take the next action so that the expected final level quality is maximized. This approach can be used when few or no examples exist to train from, and the trained generator is very fast. We investigate three different ways of transforming two-dimensional level design problems into Markov decision processes and apply these to three game environments.
SequentialBreak: Large Language Models Can be Fooled by Embedding Jailbreak Prompts into Sequential Prompt Chains
As the integration of the Large Language Models (LLMs) into various applications increases, so does their susceptibility to misuse, raising significant security concerns. Numerous jailbreak attacks have been proposed to assess the security defense of LLMs. Current jailbreak attacks mainly rely on scenario camouflage, prompt obfuscation, prompt optimization, and prompt iterative optimization to conceal malicious prompts. In particular, sequential prompt chains in a single query can lead LLMs to focus on certain prompts while ignoring others, facilitating context manipulation. This paper introduces SequentialBreak, a novel jailbreak attack that exploits this vulnerability. We discuss several scenarios, not limited to examples like Question Bank, Dialog Completion, and Game Environment, where the harmful prompt is embedded within benign ones that can fool LLMs into generating harmful responses. The distinct narrative structures of these scenarios show that SequentialBreak is flexible enough to adapt to various prompt formats beyond those discussed. Extensive experiments demonstrate that SequentialBreak uses only a single query to achieve a substantial gain of attack success rate over existing baselines against both open-source and closed-source models. Through our research, we highlight the urgent need for more robust and resilient safeguards to enhance LLM security and prevent potential misuse. All the result files and website associated with this research are available in this GitHub repository: https://anonymous.4open.science/r/JailBreakAttack-4F3B/.
Grounded Language Acquisition From Object and Action Imagery
Deep learning approaches to natural language processing have made great strides in recent years. While these models produce symbols that convey vast amounts of diverse knowledge, it is unclear how such symbols are grounded in data from the world. In this paper, we explore the development of a private language for visual data representation by training emergent language (EL) encoders/decoders in both i) a traditional referential game environment and ii) a contrastive learning environment utilizing a within-class matching training paradigm. An additional classification layer utilizing neural machine translation and random forest classification was used to transform symbolic representations (sequences of integer symbols) to class labels. These methods were applied in two experiments focusing on object recognition and action recognition. For object recognition, a set of sketches produced by human participants from real imagery was used (Sketchy dataset) and for action recognition, 2D trajectories were generated from 3D motion capture systems (MOVI dataset). In order to interpret the symbols produced for data in each experiment, gradient-weighted class activation mapping (Grad-CAM) methods were used to identify pixel regions indicating semantic features which contribute evidence towards symbols in learned languages. Additionally, a t-distributed stochastic neighbor embedding (t-SNE) method was used to investigate embeddings learned by CNN feature extractors.
Language-Guided Multi-Agent Learning in Simulations: A Unified Framework and Evaluation
This paper introduces LLM-MARL, a unified framework that incorporates large language models (LLMs) into multi-agent reinforcement learning (MARL) to enhance coordination, communication, and generalization in simulated game environments. The framework features three modular components of Coordinator, Communicator, and Memory, which dynamically generate subgoals, facilitate symbolic inter-agent messaging, and support episodic recall. Training combines PPO with a language-conditioned loss and LLM query gating. LLM-MARL is evaluated in Google Research Football, MAgent Battle, and StarCraft II. Results show consistent improvements over MAPPO and QMIX in win rate, coordination score, and zero-shot generalization. Ablation studies demonstrate that subgoal generation and language-based messaging each contribute significantly to performance gains. Qualitative analysis reveals emergent behaviors such as role specialization and communication-driven tactics. By bridging language modeling and policy learning, this work contributes to the design of intelligent, cooperative agents in interactive simulations. It offers a path forward for leveraging LLMs in multi-agent systems used for training, games, and human-AI collaboration.
EscapeBench: Towards Advancing Creative Intelligence of Language Model Agents
Language model agents excel in long-session planning and reasoning, but existing benchmarks primarily focus on goal-oriented tasks with explicit objectives, neglecting creative adaptation in unfamiliar environments. To address this, we introduce EscapeBench, a benchmark suite of room escape game environments designed to challenge agents with creative reasoning, unconventional tool use, and iterative problem-solving to uncover implicit goals. Our results show that current LM models, despite employing working memory and Chain-of-Thought reasoning, achieve only 15% average progress without hints, highlighting their limitations in creativity. To bridge this gap, we propose EscapeAgent, a framework designed to enhance creative reasoning through Foresight (innovative tool use) and Reflection (identifying unsolved tasks). Experiments show that EscapeAgent can execute action chains over 1,000 steps while maintaining logical coherence. It navigates and completes games with up to 40% fewer steps and hints, performs robustly across difficulty levels, and achieves higher action success rates with more efficient and innovative puzzle-solving strategies.
The Matrix: Infinite-Horizon World Generation with Real-Time Moving Control
We present The Matrix, the first foundational realistic world simulator capable of generating continuous 720p high-fidelity real-scene video streams with real-time, responsive control in both first- and third-person perspectives, enabling immersive exploration of richly dynamic environments. Trained on limited supervised data from AAA games like Forza Horizon 5 and Cyberpunk 2077, complemented by large-scale unsupervised footage from real-world settings like Tokyo streets, The Matrix allows users to traverse diverse terrains -- deserts, grasslands, water bodies, and urban landscapes -- in continuous, uncut hour-long sequences. Operating at 16 FPS, the system supports real-time interactivity and demonstrates zero-shot generalization, translating virtual game environments to real-world contexts where collecting continuous movement data is often infeasible. For example, The Matrix can simulate a BMW X3 driving through an office setting--an environment present in neither gaming data nor real-world sources. This approach showcases the potential of AAA game data to advance robust world models, bridging the gap between simulations and real-world applications in scenarios with limited data.
Atari-GPT: Investigating the Capabilities of Multimodal Large Language Models as Low-Level Policies for Atari Games
Recent advancements in large language models (LLMs) have expanded their capabilities beyond traditional text-based tasks to multimodal domains, integrating visual, auditory, and textual data. While multimodal LLMs have been extensively explored for high-level planning in domains like robotics and games, their potential as low-level controllers remains largely untapped. This paper explores the application of multimodal LLMs as low-level controllers in the domain of Atari video games, introducing Atari game performance as a new benchmark for evaluating the ability of multimodal LLMs to perform low-level control tasks. Unlike traditional reinforcement learning (RL) and imitation learning (IL) methods that require extensive computational resources as well as reward function specification, these LLMs utilize pre-existing multimodal knowledge to directly engage with game environments. Our study assesses multiple multimodal LLMs performance against traditional RL agents, human players, and random agents, focusing on their ability to understand and interact with complex visual scenes and formulate strategic responses. Additionally, we examine the impact of In-Context Learning (ICL) by incorporating human-demonstrated game-play trajectories to enhance the models contextual understanding. Through this investigation, we aim to determine the extent to which multimodal LLMs can leverage their extensive training to effectively function as low-level controllers, thereby redefining potential applications in dynamic and visually complex environments. Additional results and videos are available at our project webpage: https://sites.google.com/view/atari-gpt/.
Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play
Recent advances in Competitive Self-Play (CSP) have achieved, or even surpassed, human level performance in complex game environments such as Dota 2 and StarCraft II using Distributed Multi-Agent Reinforcement Learning (MARL). One core component of these methods relies on creating a pool of learning agents -- consisting of the Main Agent, past versions of this agent, and Exploiter Agents -- where Exploiter Agents learn counter-strategies to the Main Agents. A key drawback of these approaches is the large computational cost and physical time that is required to train the system, making them impractical to deploy in highly iterative real-life settings such as video game productions. In this paper, we propose the Minimax Exploiter, a game theoretic approach to exploiting Main Agents that leverages knowledge of its opponents, leading to significant increases in data efficiency. We validate our approach in a diversity of settings, including simple turn based games, the arcade learning environment, and For Honor, a modern video game. The Minimax Exploiter consistently outperforms strong baselines, demonstrating improved stability and data efficiency, leading to a robust CSP-MARL method that is both flexible and easy to deploy.
Dialogue Shaping: Empowering Agents through NPC Interaction
One major challenge in reinforcement learning (RL) is the large amount of steps for the RL agent needs to converge in the training process and learn the optimal policy, especially in text-based game environments where the action space is extensive. However, non-player characters (NPCs) sometimes hold some key information about the game, which can potentially help to train RL agents faster. Thus, this paper explores how to interact and converse with NPC agents to get the key information using large language models (LLMs), as well as incorporate this information to speed up RL agent's training using knowledge graphs (KGs) and Story Shaping.
Exploring the Promise and Limits of Real-Time Recurrent Learning
Real-time recurrent learning (RTRL) for sequence-processing recurrent neural networks (RNNs) offers certain conceptual advantages over backpropagation through time (BPTT). RTRL requires neither caching past activations nor truncating context, and enables online learning. However, RTRL's time and space complexity make it impractical. To overcome this problem, most recent work on RTRL focuses on approximation theories, while experiments are often limited to diagnostic settings. Here we explore the practical promise of RTRL in more realistic settings. We study actor-critic methods that combine RTRL and policy gradients, and test them in several subsets of DMLab-30, ProcGen, and Atari-2600 environments. On DMLab memory tasks, our system trained on fewer than 1.2 B environmental frames is competitive with or outperforms well-known IMPALA and R2D2 baselines trained on 10 B frames. To scale to such challenging tasks, we focus on certain well-known neural architectures with element-wise recurrence, allowing for tractable RTRL without approximation. Importantly, we also discuss rarely addressed limitations of RTRL in real-world applications, such as its complexity in the multi-layer case.
Analytically Tractable Bayesian Deep Q-Learning
Reinforcement learning (RL) has gained increasing interest since the demonstration it was able to reach human performance on video game benchmarks using deep Q-learning (DQN). The current consensus for training neural networks on such complex environments is to rely on gradient-based optimization. Although alternative Bayesian deep learning methods exist, most of them still rely on gradient-based optimization, and they typically do not scale on benchmarks such as the Atari game environment. Moreover none of these approaches allow performing the analytical inference for the weights and biases defining the neural network. In this paper, we present how we can adapt the temporal difference Q-learning framework to make it compatible with the tractable approximate Gaussian inference (TAGI), which allows learning the parameters of a neural network using a closed-form analytical method. Throughout the experiments with on- and off-policy reinforcement learning approaches, we demonstrate that TAGI can reach a performance comparable to backpropagation-trained networks while using fewer hyperparameters, and without relying on gradient-based optimization.
Multi-Environment Pretraining Enables Transfer to Action Limited Datasets
Using massive datasets to train large-scale models has emerged as a dominant approach for broad generalization in natural language and vision applications. In reinforcement learning, however, a key challenge is that available data of sequential decision making is often not annotated with actions - for example, videos of game-play are much more available than sequences of frames paired with their logged game controls. We propose to circumvent this challenge by combining large but sparsely-annotated datasets from a target environment of interest with fully-annotated datasets from various other source environments. Our method, Action Limited PreTraining (ALPT), leverages the generalization capabilities of inverse dynamics modelling (IDM) to label missing action data in the target environment. We show that utilizing even one additional environment dataset of labelled data during IDM pretraining gives rise to substantial improvements in generating action labels for unannotated sequences. We evaluate our method on benchmark game-playing environments and show that we can significantly improve game performance and generalization capability compared to other approaches, using annotated datasets equivalent to only 12 minutes of gameplay. Highlighting the power of IDM, we show that these benefits remain even when target and source environments share no common actions.
Sketch2Scene: Automatic Generation of Interactive 3D Game Scenes from User's Casual Sketches
3D Content Generation is at the heart of many computer graphics applications, including video gaming, film-making, virtual and augmented reality, etc. This paper proposes a novel deep-learning based approach for automatically generating interactive and playable 3D game scenes, all from the user's casual prompts such as a hand-drawn sketch. Sketch-based input offers a natural, and convenient way to convey the user's design intention in the content creation process. To circumvent the data-deficient challenge in learning (i.e. the lack of large training data of 3D scenes), our method leverages a pre-trained 2D denoising diffusion model to generate a 2D image of the scene as the conceptual guidance. In this process, we adopt the isometric projection mode to factor out unknown camera poses while obtaining the scene layout. From the generated isometric image, we use a pre-trained image understanding method to segment the image into meaningful parts, such as off-ground objects, trees, and buildings, and extract the 2D scene layout. These segments and layouts are subsequently fed into a procedural content generation (PCG) engine, such as a 3D video game engine like Unity or Unreal, to create the 3D scene. The resulting 3D scene can be seamlessly integrated into a game development environment and is readily playable. Extensive tests demonstrate that our method can efficiently generate high-quality and interactive 3D game scenes with layouts that closely follow the user's intention.
Can LLMs Hack Enterprise Networks? Autonomous Assumed Breach Penetration-Testing Active Directory Networks
We explore the feasibility and effectiveness of using LLM-driven autonomous systems for Assumed Breach penetration testing in enterprise networks. We introduce a novel prototype that, driven by Large Language Models (LLMs), can compromise accounts within a real-life Active Directory testbed. Our research provides a comprehensive evaluation of the prototype's capabilities, and highlights both strengths and limitations while executing attack. The evaluation uses a realistic simulation environment (Game of Active Directory, GOAD) to capture intricate interactions, stochastic outcomes, and timing dependencies that characterize live network scenarios. The study concludes that autonomous LLMs are able to conduct Assumed Breach simulations, potentially democratizing access to penetration testing for organizations facing budgetary constraints. The prototype's source code, traces, and analyzed logs are released as open-source to enhance collective cybersecurity and facilitate future research in LLM-driven cybersecurity automation.
Chain of Thought Imitation with Procedure Cloning
Imitation learning aims to extract high-performance policies from logged demonstrations of expert behavior. It is common to frame imitation learning as a supervised learning problem in which one fits a function approximator to the input-output mapping exhibited by the logged demonstrations (input observations to output actions). While the framing of imitation learning as a supervised input-output learning problem allows for applicability in a wide variety of settings, it is also an overly simplistic view of the problem in situations where the expert demonstrations provide much richer insight into expert behavior. For example, applications such as path navigation, robot manipulation, and strategy games acquire expert demonstrations via planning, search, or some other multi-step algorithm, revealing not just the output action to be imitated but also the procedure for how to determine this action. While these intermediate computations may use tools not available to the agent during inference (e.g., environment simulators), they are nevertheless informative as a way to explain an expert's mapping of state to actions. To properly leverage expert procedure information without relying on the privileged tools the expert may have used to perform the procedure, we propose procedure cloning, which applies supervised sequence prediction to imitate the series of expert computations. This way, procedure cloning learns not only what to do (i.e., the output action), but how and why to do it (i.e., the procedure). Through empirical analysis on navigation, simulated robotic manipulation, and game-playing environments, we show that imitating the intermediate computations of an expert's behavior enables procedure cloning to learn policies exhibiting significant generalization to unseen environment configurations, including those configurations for which running the expert's procedure directly is infeasible.
NitroGen: An Open Foundation Model for Generalist Gaming Agents
We introduce NitroGen, a vision-action foundation model for generalist gaming agents that is trained on 40,000 hours of gameplay videos across more than 1,000 games. We incorporate three key ingredients: 1) an internet-scale video-action dataset constructed by automatically extracting player actions from publicly available gameplay videos, 2) a multi-game benchmark environment that can measure cross-game generalization, and 3) a unified vision-action model trained with large-scale behavior cloning. NitroGen exhibits strong competence across diverse domains, including combat encounters in 3D action games, high-precision control in 2D platformers, and exploration in procedurally generated worlds. It transfers effectively to unseen games, achieving up to 52% relative improvement in task success rates over models trained from scratch. We release the dataset, evaluation suite, and model weights to advance research on generalist embodied agents.
Web World Models
Language agents increasingly require persistent worlds in which they can act, remember, and learn. Existing approaches sit at two extremes: conventional web frameworks provide reliable but fixed contexts backed by databases, while fully generative world models aim for unlimited environments at the expense of controllability and practical engineering. In this work, we introduce the Web World Model (WWM), a middle ground where world state and ``physics'' are implemented in ordinary web code to ensure logical consistency, while large language models generate context, narratives, and high-level decisions on top of this structured latent state. We build a suite of WWMs on a realistic web stack, including an infinite travel atlas grounded in real geography, fictional galaxy explorers, web-scale encyclopedic and narrative worlds, and simulation- and game-like environments. Across these systems, we identify practical design principles for WWMs: separating code-defined rules from model-driven imagination, representing latent state as typed web interfaces, and utilizing deterministic generation to achieve unlimited but structured exploration. Our results suggest that web stacks themselves can serve as a scalable substrate for world models, enabling controllable yet open-ended environments. Project Page: https://github.com/Princeton-AI2-Lab/Web-World-Models.
SRLAgent: Enhancing Self-Regulated Learning Skills through Gamification and LLM Assistance
Self-regulated learning (SRL) is crucial for college students navigating increased academic demands and independence. Insufficient SRL skills can lead to disorganized study habits, low motivation, and poor time management, undermining learners ability to thrive in challenging environments. Through a formative study involving 59 college students, we identified key challenges students face in developing SRL skills, including difficulties with goal-setting, time management, and reflective learning. To address these challenges, we introduce SRLAgent, an LLM-assisted system that fosters SRL skills through gamification and adaptive support from large language models (LLMs). Grounded in Zimmermans three-phase SRL framework, SRLAgent enables students to engage in goal-setting, strategy execution, and self-reflection within an interactive game-based environment. The system offers real-time feedback and scaffolding powered by LLMs to support students independent study efforts. We evaluated SRLAgent using a between-subjects design, comparing it to a baseline system (SRL without Agent features) and a traditional multimedia learning condition. Results showed significant improvements in SRL skills within the SRLAgent group (p < .001, Cohens d = 0.234) and higher engagement compared to the baselines. This work highlights the value of embedding SRL scaffolding and real-time AI support within gamified environments, offering design implications for educational technologies that aim to promote deeper learning and metacognitive skill development.
GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations
As Large Language Models (LLMs) are integrated into critical real-world applications, their strategic and logical reasoning abilities are increasingly crucial. This paper evaluates LLMs' reasoning abilities in competitive environments through game-theoretic tasks, e.g., board and card games that require pure logic and strategic reasoning to compete with opponents. We first propose GTBench, a language-driven environment composing 10 widely-recognized tasks, across a comprehensive game taxonomy: complete versus incomplete information, dynamic versus static, and probabilistic versus deterministic scenarios. Then, we investigate two key problems: (1) Characterizing game-theoretic reasoning of LLMs; (2) LLM-vs-LLM competitions as reasoning evaluation. We observe that (1) LLMs have distinct behaviors regarding various gaming scenarios; for example, LLMs fail in complete and deterministic games yet they are competitive in probabilistic gaming scenarios; (2) Open-source LLMs, e.g., CodeLlama-34b-Instruct, are less competitive than commercial LLMs, e.g., GPT-4, in complex games. In addition, code-pretraining greatly benefits strategic reasoning, while advanced reasoning methods such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) do not always help. Detailed error profiles are also provided for a better understanding of LLMs' behavior.
Sycophancy to Subterfuge: Investigating Reward-Tampering in Large Language Models
In reinforcement learning, specification gaming occurs when AI systems learn undesired behaviors that are highly rewarded due to misspecified training goals. Specification gaming can range from simple behaviors like sycophancy to sophisticated and pernicious behaviors like reward-tampering, where a model directly modifies its own reward mechanism. However, these more pernicious behaviors may be too complex to be discovered via exploration. In this paper, we study whether Large Language Model (LLM) assistants which find easily discovered forms of specification gaming will generalize to perform rarer and more blatant forms, up to and including reward-tampering. We construct a curriculum of increasingly sophisticated gameable environments and find that training on early-curriculum environments leads to more specification gaming on remaining environments. Strikingly, a small but non-negligible proportion of the time, LLM assistants trained on the full curriculum generalize zero-shot to directly rewriting their own reward function. Retraining an LLM not to game early-curriculum environments mitigates, but does not eliminate, reward-tampering in later environments. Moreover, adding harmlessness training to our gameable environments does not prevent reward-tampering. These results demonstrate that LLMs can generalize from common forms of specification gaming to more pernicious reward tampering and that such behavior may be nontrivial to remove.
Mogo: RQ Hierarchical Causal Transformer for High-Quality 3D Human Motion Generation
In the field of text-to-motion generation, Bert-type Masked Models (MoMask, MMM) currently produce higher-quality outputs compared to GPT-type autoregressive models (T2M-GPT). However, these Bert-type models often lack the streaming output capability required for applications in video game and multimedia environments, a feature inherent to GPT-type models. Additionally, they demonstrate weaker performance in out-of-distribution generation. To surpass the quality of BERT-type models while leveraging a GPT-type structure, without adding extra refinement models that complicate scaling data, we propose a novel architecture, Mogo (Motion Only Generate Once), which generates high-quality lifelike 3D human motions by training a single transformer model. Mogo consists of only two main components: 1) RVQ-VAE, a hierarchical residual vector quantization variational autoencoder, which discretizes continuous motion sequences with high precision; 2) Hierarchical Causal Transformer, responsible for generating the base motion sequences in an autoregressive manner while simultaneously inferring residuals across different layers. Experimental results demonstrate that Mogo can generate continuous and cyclic motion sequences up to 260 frames (13 seconds), surpassing the 196 frames (10 seconds) length limitation of existing datasets like HumanML3D. On the HumanML3D test set, Mogo achieves a FID score of 0.079, outperforming both the GPT-type model T2M-GPT (FID = 0.116), AttT2M (FID = 0.112) and the BERT-type model MMM (FID = 0.080). Furthermore, our model achieves the best quantitative performance in out-of-distribution generation.
A Benchmark Environment for Offline Reinforcement Learning in Racing Games
Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL) by eliminating the need for continuous environmental interactions. ORL exploits a dataset of pre-collected transitions and thus expands the range of application of RL to tasks in which the excessive environment queries increase training time and decrease efficiency, such as in modern AAA games. This paper introduces OfflineMania a novel environment for ORL research. It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine. The environment simulates a single-agent racing game in which the objective is to complete the track through optimal navigation. We provide a variety of datasets to assess ORL performance. These datasets, created from policies of varying ability and in different sizes, aim to offer a challenging testbed for algorithm development and evaluation. We further establish a set of baselines for a range of Online RL, ORL, and hybrid Offline to Online RL approaches using our environment.
A Game of Bundle Adjustment -- Learning Efficient Convergence
Bundle adjustment is the common way to solve localization and mapping. It is an iterative process in which a system of non-linear equations is solved using two optimization methods, weighted by a damping factor. In the classic approach, the latter is chosen heuristically by the Levenberg-Marquardt algorithm on each iteration. This might take many iterations, making the process computationally expensive, which might be harmful to real-time applications. We propose to replace this heuristic by viewing the problem in a holistic manner, as a game, and formulating it as a reinforcement-learning task. We set an environment which solves the non-linear equations and train an agent to choose the damping factor in a learned manner. We demonstrate that our approach considerably reduces the number of iterations required to reach the bundle adjustment's convergence, on both synthetic and real-life scenarios. We show that this reduction benefits the classic approach and can be integrated with other bundle adjustment acceleration methods.
GameFormer: Game-theoretic Modeling and Learning of Transformer-based Interactive Prediction and Planning for Autonomous Driving
Autonomous vehicles operating in complex real-world environments require accurate predictions of interactive behaviors between traffic participants. This paper tackles the interaction prediction problem by formulating it with hierarchical game theory and proposing the GameFormer model for its implementation. The model incorporates a Transformer encoder, which effectively models the relationships between scene elements, alongside a novel hierarchical Transformer decoder structure. At each decoding level, the decoder utilizes the prediction outcomes from the previous level, in addition to the shared environmental context, to iteratively refine the interaction process. Moreover, we propose a learning process that regulates an agent's behavior at the current level to respond to other agents' behaviors from the preceding level. Through comprehensive experiments on large-scale real-world driving datasets, we demonstrate the state-of-the-art accuracy of our model on the Waymo interaction prediction task. Additionally, we validate the model's capacity to jointly reason about the motion plan of the ego agent and the behaviors of multiple agents in both open-loop and closed-loop planning tests, outperforming various baseline methods. Furthermore, we evaluate the efficacy of our model on the nuPlan planning benchmark, where it achieves leading performance.
Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations
Robust reinforcement learning (RL) seeks to train policies that can perform well under environment perturbations or adversarial attacks. Existing approaches typically assume that the space of possible perturbations remains the same across timesteps. However, in many settings, the space of possible perturbations at a given timestep depends on past perturbations. We formally introduce temporally-coupled perturbations, presenting a novel challenge for existing robust RL methods. To tackle this challenge, we propose GRAD, a novel game-theoretic approach that treats the temporally-coupled robust RL problem as a partially-observable two-player zero-sum game. By finding an approximate equilibrium in this game, GRAD ensures the agent's robustness against temporally-coupled perturbations. Empirical experiments on a variety of continuous control tasks demonstrate that our proposed approach exhibits significant robustness advantages compared to baselines against both standard and temporally-coupled attacks, in both state and action spaces.
Situated Dialogue Learning through Procedural Environment Generation
We teach goal-driven agents to interactively act and speak in situated environments by training on generated curriculums. Our agents operate in LIGHT (Urbanek et al. 2019) -- a large-scale crowd-sourced fantasy text adventure game wherein an agent perceives and interacts with the world through textual natural language. Goals in this environment take the form of character-based quests, consisting of personas and motivations. We augment LIGHT by learning to procedurally generate additional novel textual worlds and quests to create a curriculum of steadily increasing difficulty for training agents to achieve such goals. In particular, we measure curriculum difficulty in terms of the rarity of the quest in the original training distribution -- an easier environment is one that is more likely to have been found in the unaugmented dataset. An ablation study shows that this method of learning from the tail of a distribution results in significantly higher generalization abilities as measured by zero-shot performance on never-before-seen quests.
VLN-Game: Vision-Language Equilibrium Search for Zero-Shot Semantic Navigation
Following human instructions to explore and search for a specified target in an unfamiliar environment is a crucial skill for mobile service robots. Most of the previous works on object goal navigation have typically focused on a single input modality as the target, which may lead to limited consideration of language descriptions containing detailed attributes and spatial relationships. To address this limitation, we propose VLN-Game, a novel zero-shot framework for visual target navigation that can process object names and descriptive language targets effectively. To be more precise, our approach constructs a 3D object-centric spatial map by integrating pre-trained visual-language features with a 3D reconstruction of the physical environment. Then, the framework identifies the most promising areas to explore in search of potential target candidates. A game-theoretic vision language model is employed to determine which target best matches the given language description. Experiments conducted on the Habitat-Matterport 3D (HM3D) dataset demonstrate that the proposed framework achieves state-of-the-art performance in both object goal navigation and language-based navigation tasks. Moreover, we show that VLN-Game can be easily deployed on real-world robots. The success of VLN-Game highlights the promising potential of using game-theoretic methods with compact vision-language models to advance decision-making capabilities in robotic systems. The supplementary video and code can be accessed via the following link: https://sites.google.com/view/vln-game.
GLEE: A Unified Framework and Benchmark for Language-based Economic Environments
Large Language Models (LLMs) show significant potential in economic and strategic interactions, where communication via natural language is often prevalent. This raises key questions: Do LLMs behave rationally? Can they mimic human behavior? Do they tend to reach an efficient and fair outcome? What is the role of natural language in the strategic interaction? How do characteristics of the economic environment influence these dynamics? These questions become crucial concerning the economic and societal implications of integrating LLM-based agents into real-world data-driven systems, such as online retail platforms and recommender systems. While the ML community has been exploring the potential of LLMs in such multi-agent setups, varying assumptions, design choices and evaluation criteria across studies make it difficult to draw robust and meaningful conclusions. To address this, we introduce a benchmark for standardizing research on two-player, sequential, language-based games. Inspired by the economic literature, we define three base families of games with consistent parameterization, degrees of freedom and economic measures to evaluate agents' performance (self-gain), as well as the game outcome (efficiency and fairness). We develop an open-source framework for interaction simulation and analysis, and utilize it to collect a dataset of LLM vs. LLM interactions across numerous game configurations and an additional dataset of human vs. LLM interactions. Through extensive experimentation, we demonstrate how our framework and dataset can be used to: (i) compare the behavior of LLM-based agents to human players in various economic contexts; (ii) evaluate agents in both individual and collective performance measures; and (iii) quantify the effect of the economic characteristics of the environments on the behavior of agents.
Game-theoretic LLM: Agent Workflow for Negotiation Games
This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts, specifically within the framework of game theory. We evaluate several state-of-the-art LLMs across a spectrum of complete-information and incomplete-information games. Our findings reveal that LLMs frequently deviate from rational strategies, particularly as the complexity of the game increases with larger payoff matrices or deeper sequential trees. To address these limitations, we design multiple game-theoretic workflows that guide the reasoning and decision-making processes of LLMs. These workflows aim to enhance the models' ability to compute Nash Equilibria and make rational choices, even under conditions of uncertainty and incomplete information. Experimental results demonstrate that the adoption of these workflows significantly improves the rationality and robustness of LLMs in game-theoretic tasks. Specifically, with the workflow, LLMs exhibit marked improvements in identifying optimal strategies, achieving near-optimal allocations in negotiation scenarios, and reducing susceptibility to exploitation during negotiations. Furthermore, we explore the meta-strategic considerations of whether it is rational for agents to adopt such workflows, recognizing that the decision to use or forgo the workflow constitutes a game-theoretic issue in itself. Our research contributes to a deeper understanding of LLMs' decision-making capabilities in strategic contexts and provides insights into enhancing their rationality through structured workflows. The findings have implications for the development of more robust and strategically sound AI agents capable of navigating complex interactive environments. Code and data supporting this study are available at https://github.com/Wenyueh/game_theory.
StarCraftImage: A Dataset For Prototyping Spatial Reasoning Methods For Multi-Agent Environments
Spatial reasoning tasks in multi-agent environments such as event prediction, agent type identification, or missing data imputation are important for multiple applications (e.g., autonomous surveillance over sensor networks and subtasks for reinforcement learning (RL)). StarCraft II game replays encode intelligent (and adversarial) multi-agent behavior and could provide a testbed for these tasks; however, extracting simple and standardized representations for prototyping these tasks is laborious and hinders reproducibility. In contrast, MNIST and CIFAR10, despite their extreme simplicity, have enabled rapid prototyping and reproducibility of ML methods. Following the simplicity of these datasets, we construct a benchmark spatial reasoning dataset based on StarCraft II replays that exhibit complex multi-agent behaviors, while still being as easy to use as MNIST and CIFAR10. Specifically, we carefully summarize a window of 255 consecutive game states to create 3.6 million summary images from 60,000 replays, including all relevant metadata such as game outcome and player races. We develop three formats of decreasing complexity: Hyperspectral images that include one channel for every unit type (similar to multispectral geospatial images), RGB images that mimic CIFAR10, and grayscale images that mimic MNIST. We show how this dataset can be used for prototyping spatial reasoning methods. All datasets, code for extraction, and code for dataset loading can be found at https://starcraftdata.davidinouye.com
Cooperation on the Fly: Exploring Language Agents for Ad Hoc Teamwork in the Avalon Game
Multi-agent collaboration with Large Language Models (LLMs) demonstrates proficiency in basic tasks, yet its efficiency in more complex scenarios remains unexplored. In gaming environments, these agents often face situations without established coordination protocols, requiring them to make intelligent inferences about teammates from limited data. This problem motivates the area of ad hoc teamwork, in which an agent may potentially cooperate with a variety of teammates to achieve a shared goal. Our study focuses on the ad hoc teamwork problem where the agent operates in an environment driven by natural language. Our findings reveal the potential of LLM agents in team collaboration, highlighting issues related to hallucinations in communication. To address this issue, we develop CodeAct, a general agent that equips LLM with enhanced memory and code-driven reasoning, enabling the repurposing of partial information for rapid adaptation to new teammates.
Thespian: Multi-Character Text Role-Playing Game Agents
Text-adventure games and text role-playing games are grand challenges for reinforcement learning game playing agents. Text role-playing games are open-ended environments where an agent must faithfully play a particular character. We consider the distinction between characters and actors, where an actor agent has the ability to play multiple characters. We present a framework we call a thespian agent that can learn to emulate multiple characters along with a soft prompt that can be used to direct it as to which character to play at any time. We further describe an attention mechanism that allows the agent to learn new characters that are based on previously learned characters in a few-shot fashion. We show that our agent outperforms the state of the art agent framework in multi-character learning and few-shot learning.
Matrix-Game: Interactive World Foundation Model
We introduce Matrix-Game, an interactive world foundation model for controllable game world generation. Matrix-Game is trained using a two-stage pipeline that first performs large-scale unlabeled pretraining for environment understanding, followed by action-labeled training for interactive video generation. To support this, we curate Matrix-Game-MC, a comprehensive Minecraft dataset comprising over 2,700 hours of unlabeled gameplay video clips and over 1,000 hours of high-quality labeled clips with fine-grained keyboard and mouse action annotations. Our model adopts a controllable image-to-world generation paradigm, conditioned on a reference image, motion context, and user actions. With over 17 billion parameters, Matrix-Game enables precise control over character actions and camera movements, while maintaining high visual quality and temporal coherence. To evaluate performance, we develop GameWorld Score, a unified benchmark measuring visual quality, temporal quality, action controllability, and physical rule understanding for Minecraft world generation. Extensive experiments show that Matrix-Game consistently outperforms prior open-source Minecraft world models (including Oasis and MineWorld) across all metrics, with particularly strong gains in controllability and physical consistency. Double-blind human evaluations further confirm the superiority of Matrix-Game, highlighting its ability to generate perceptually realistic and precisely controllable videos across diverse game scenarios. To facilitate future research on interactive image-to-world generation, we will open-source the Matrix-Game model weights and the GameWorld Score benchmark at https://github.com/SkyworkAI/Matrix-Game.
Playpen: An Environment for Exploring Learning Through Conversational Interaction
Interaction between learner and feedback-giver has come into focus recently for post-training of Large Language Models (LLMs), through the use of reward models that judge the appropriateness of a model's response. In this paper, we investigate whether Dialogue Games -- goal-directed and rule-governed activities driven predominantly by verbal actions -- can also serve as a source of feedback signals for learning. We introduce Playpen, an environment for off- and online learning through Dialogue Game self-play, and investigate a representative set of post-training methods: supervised fine-tuning; direct alignment (DPO); and reinforcement learning with GRPO. We experiment with post-training a small LLM (Llama-3.1-8B-Instruct), evaluating performance on unseen instances of training games as well as unseen games, and on standard benchmarks. We find that imitation learning through SFT improves performance on unseen instances, but negatively impacts other skills, while interactive learning with GRPO shows balanced improvements without loss of skills. We release the framework and the baseline training setups to foster research in the promising new direction of learning in (synthetic) interaction.
LLM-PySC2: Starcraft II learning environment for Large Language Models
This paper introduces a new environment LLM-PySC2 (the Large Language Model StarCraft II Learning Environment), a platform derived from DeepMind's StarCraft II Learning Environment that serves to develop Large Language Models (LLMs) based decision-making methodologies. This environment is the first to offer the complete StarCraft II action space, multi-modal observation interfaces, and a structured game knowledge database, which are seamlessly connected with various LLMs to facilitate the research of LLMs-based decision-making. To further support multi-agent research, we developed an LLM collaborative framework that supports multi-agent concurrent queries and multi-agent communication. In our experiments, the LLM-PySC2 environment is adapted to be compatible with the StarCraft Multi-Agent Challenge (SMAC) task group and provided eight new scenarios focused on macro-decision abilities. We evaluated nine mainstream LLMs in the experiments, and results show that sufficient parameters are necessary for LLMs to make decisions, but improving reasoning ability does not directly lead to better decision-making outcomes. Our findings further indicate the importance of enabling large models to learn autonomously in the deployment environment through parameter training or train-free learning techniques. Ultimately, we expect that the LLM-PySC2 environment can promote research on learning methods for LLMs, helping LLM-based methods better adapt to task scenarios.
Matrix-Game 2.0: An Open-Source, Real-Time, and Streaming Interactive World Model
Recent advances in interactive video generations have demonstrated diffusion model's potential as world models by capturing complex physical dynamics and interactive behaviors. However, existing interactive world models depend on bidirectional attention and lengthy inference steps, severely limiting real-time performance. Consequently, they are hard to simulate real-world dynamics, where outcomes must update instantaneously based on historical context and current actions. To address this, we present Matrix-Game 2.0, an interactive world model generates long videos on-the-fly via few-step auto-regressive diffusion. Our framework consists of three key components: (1) A scalable data production pipeline for Unreal Engine and GTA5 environments to effectively produce massive amounts (about 1200 hours) of video data with diverse interaction annotations; (2) An action injection module that enables frame-level mouse and keyboard inputs as interactive conditions; (3) A few-step distillation based on the casual architecture for real-time and streaming video generation. Matrix Game 2.0 can generate high-quality minute-level videos across diverse scenes at an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to advance research in interactive world modeling.
DreamCraft: Text-Guided Generation of Functional 3D Environments in Minecraft
Procedural Content Generation (PCG) algorithms enable the automatic generation of complex and diverse artifacts. However, they don't provide high-level control over the generated content and typically require domain expertise. In contrast, text-to-3D methods allow users to specify desired characteristics in natural language, offering a high amount of flexibility and expressivity. But unlike PCG, such approaches cannot guarantee functionality, which is crucial for certain applications like game design. In this paper, we present a method for generating functional 3D artifacts from free-form text prompts in the open-world game Minecraft. Our method, DreamCraft, trains quantized Neural Radiance Fields (NeRFs) to represent artifacts that, when viewed in-game, match given text descriptions. We find that DreamCraft produces more aligned in-game artifacts than a baseline that post-processes the output of an unconstrained NeRF. Thanks to the quantized representation of the environment, functional constraints can be integrated using specialized loss terms. We show how this can be leveraged to generate 3D structures that match a target distribution or obey certain adjacency rules over the block types. DreamCraft inherits a high degree of expressivity and controllability from the NeRF, while still being able to incorporate functional constraints through domain-specific objectives.
DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
TextWorld: A Learning Environment for Text-based Games
We introduce TextWorld, a sandbox learning environment for the training and evaluation of RL agents on text-based games. TextWorld is a Python library that handles interactive play-through of text games, as well as backend functions like state tracking and reward assignment. It comes with a curated list of games whose features and challenges we have analyzed. More significantly, it enables users to handcraft or automatically generate new games. Its generative mechanisms give precise control over the difficulty, scope, and language of constructed games, and can be used to relax challenges inherent to commercial text games like partial observability and sparse rewards. By generating sets of varied but similar games, TextWorld can also be used to study generalization and transfer learning. We cast text-based games in the Reinforcement Learning formalism, use our framework to develop a set of benchmark games, and evaluate several baseline agents on this set and the curated list.
Avalon's Game of Thoughts: Battle Against Deception through Recursive Contemplation
Recent breakthroughs in large language models (LLMs) have brought remarkable success in the field of LLM-as-Agent. Nevertheless, a prevalent assumption is that the information processed by LLMs is consistently honest, neglecting the pervasive deceptive or misleading information in human society and AI-generated content. This oversight makes LLMs susceptible to malicious manipulations, potentially resulting in detrimental outcomes. This study utilizes the intricate Avalon game as a testbed to explore LLMs' potential in deceptive environments. Avalon, full of misinformation and requiring sophisticated logic, manifests as a "Game-of-Thoughts". Inspired by the efficacy of humans' recursive thinking and perspective-taking in the Avalon game, we introduce a novel framework, Recursive Contemplation (ReCon), to enhance LLMs' ability to identify and counteract deceptive information. ReCon combines formulation and refinement contemplation processes; formulation contemplation produces initial thoughts and speech, while refinement contemplation further polishes them. Additionally, we incorporate first-order and second-order perspective transitions into these processes respectively. Specifically, the first-order allows an LLM agent to infer others' mental states, and the second-order involves understanding how others perceive the agent's mental state. After integrating ReCon with different LLMs, extensive experiment results from the Avalon game indicate its efficacy in aiding LLMs to discern and maneuver around deceptive information without extra fine-tuning and data. Finally, we offer a possible explanation for the efficacy of ReCon and explore the current limitations of LLMs in terms of safety, reasoning, speaking style, and format, potentially furnishing insights for subsequent research.
Yanyun-3: Enabling Cross-Platform Strategy Game Operation with Vision-Language Models
Cross-platform strategy game automation remains a challenge due to diverse user interfaces and dynamic battlefield environments. Existing Vision--Language Models (VLMs) struggle with generalization across heterogeneous platforms and lack precision in interface understanding and action execution. We introduce Yanyun-3, a VLM-based agent that integrates Qwen2.5-VL for visual reasoning and UI-TARS for interface execution. We propose a novel data organization principle -- combination granularity -- to distinguish intra-sample fusion and inter-sample mixing of multimodal data (static images, multi-image sequences, and videos). The model is fine-tuned using QLoRA on a curated dataset across three strategy game platforms. The optimal strategy (M*V+S) achieves a 12.98x improvement in BLEU-4 score and a 63% reduction in inference time compared to full fusion. Yanyun-3 successfully executes core tasks (e.g., target selection, resource allocation) across platforms without platform-specific tuning. Our findings demonstrate that structured multimodal data organization significantly enhances VLM performance in embodied tasks. Yanyun-3 offers a generalizable framework for GUI automation, with broader implications for robotics and autonomous systems.
Deflanderization for Game Dialogue: Balancing Character Authenticity with Task Execution in LLM-based NPCs
The emergence of large language models (LLMs) has opened new opportunities for cre- ating dynamic non-player characters (NPCs) in gaming environments, enabling both func- tional task execution and persona-consistent dialogue generation. In this paper, we (Tu_Character_lab) report our participation in the Commonsense Persona-Grounded Dialogue Challenge (CPDC) 2025 Round 2, which eval- uates agents across three tracks: task-oriented dialogue, context-aware dialogue, and their integration. Our approach combines two complementary strategies: (i) lightweight prompting techniques in the API track, including a Deflanderization prompting method to suppress excessive role-play and improve task fidelity, and (ii) fine-tuned large models in the GPU track, leveraging Qwen3-14B with supervisedfinetuning (SFT) and Low-Rank Adaptation(LoRA). Our best submissions ranked 2nd on Task 1, 2nd on Task 3 (API track), and 4th on Task 3 (GPU track).
GenEnv: Difficulty-Aligned Co-Evolution Between LLM Agents and Environment Simulators
Training capable Large Language Model (LLM) agents is critically bottlenecked by the high cost and static nature of real-world interaction data. We address this by introducing GenEnv, a framework that establishes a difficulty-aligned co-evolutionary game between an agent and a scalable, generative environment simulator. Unlike traditional methods that evolve models on static datasets, GenEnv instantiates a dataevolving: the simulator acts as a dynamic curriculum policy, continuously generating tasks specifically tailored to the agent's ``zone of proximal development''. This process is guided by a simple but effective α-Curriculum Reward, which aligns task difficulty with the agent's current capabilities. We evaluate GenEnv on five benchmarks, including API-Bank, ALFWorld, BFCL, Bamboogle, and TravelPlanner. Across these tasks, GenEnv improves agent performance by up to +40.3\% over 7B baselines and matches or exceeds the average performance of larger models. Compared to Gemini 2.5 Pro-based offline data augmentation, GenEnv achieves better performance while using 3.3times less data. By shifting from static supervision to adaptive simulation, GenEnv provides a data-efficient pathway for scaling agent capabilities.
Robustness Evaluation of Machine Learning Models for Robot Arm Action Recognition in Noisy Environments
In the realm of robot action recognition, identifying distinct but spatially proximate arm movements using vision systems in noisy environments poses a significant challenge. This paper studies robot arm action recognition in noisy environments using machine learning techniques. Specifically, a vision system is used to track the robot's movements followed by a deep learning model to extract the arm's key points. Through a comparative analysis of machine learning methods, the effectiveness and robustness of this model are assessed in noisy environments. A case study was conducted using the Tic-Tac-Toe game in a 3-by-3 grid environment, where the focus is to accurately identify the actions of the arms in selecting specific locations within this constrained environment. Experimental results show that our approach can achieve precise key point detection and action classification despite the addition of noise and uncertainties to the dataset.
ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic Decision-Making with AI Agents
This paper introduces Alympics (Olympics for Agents), a systematic simulation framework utilizing Large Language Model (LLM) agents for game theory research. Alympics creates a versatile platform for studying complex game theory problems, bridging the gap between theoretical game theory and empirical investigations by providing a controlled environment for simulating human-like strategic interactions with LLM agents. In our pilot case study, the "Water Allocation Challenge," we explore Alympics through a challenging strategic game focused on the multi-round auction on scarce survival resources. This study demonstrates the framework's ability to qualitatively and quantitatively analyze game determinants, strategies, and outcomes. Additionally, we conduct a comprehensive human assessment and an in-depth evaluation of LLM agents in strategic decision-making scenarios. Our findings not only expand the understanding of LLM agents' proficiency in emulating human strategic behavior but also highlight their potential in advancing game theory knowledge, thereby enriching our understanding of both game theory and empowering further research into strategic decision-making domains with LLM agents. Codes, prompts, and all related resources are available at https://github.com/microsoft/Alympics.
Position: Interactive Generative Video as Next-Generation Game Engine
Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
Unbounded: A Generative Infinite Game of Character Life Simulation
We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models. Inspired by James P. Carse's distinction between finite and infinite games, we leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models. Specifically, Unbounded draws inspiration from sandbox life simulations and allows you to interact with your autonomous virtual character in a virtual world by feeding, playing with and guiding it - with open-ended mechanics generated by an LLM, some of which can be emergent. In order to develop Unbounded, we propose technical innovations in both the LLM and visual generation domains. Specifically, we present: (1) a specialized, distilled large language model (LLM) that dynamically generates game mechanics, narratives, and character interactions in real-time, and (2) a new dynamic regional image prompt Adapter (IP-Adapter) for vision models that ensures consistent yet flexible visual generation of a character across multiple environments. We evaluate our system through both qualitative and quantitative analysis, showing significant improvements in character life simulation, user instruction following, narrative coherence, and visual consistency for both characters and the environments compared to traditional related approaches.
V-GameGym: Visual Game Generation for Code Large Language Models
Code large language models have demonstrated remarkable capabilities in programming tasks, yet current benchmarks primarily focus on single modality rather than visual game development. Most existing code-related benchmarks evaluate syntax correctness and execution accuracy, overlooking critical game-specific metrics such as playability, visual aesthetics, and user engagement that are essential for real-world deployment. To address the gap between current LLM capabilities in algorithmic problem-solving and competitive programming versus the comprehensive requirements of practical game development, we present V-GameGym, a comprehensive benchmark comprising 2,219 high-quality samples across 100 thematic clusters derived from real-world repositories, adopting a novel clustering-based curation methodology to ensure both diversity and structural completeness. Further, we introduce a multimodal evaluation framework with an automated LLM-driven pipeline for visual code synthesis using complete UI sandbox environments. Our extensive analysis reveals that V-GameGym effectively bridges the gap between code generation accuracy and practical game development workflows, providing quantifiable quality metrics for visual programming and interactive element generation.
JaxMARL: Multi-Agent RL Environments in JAX
Benchmarks play an important role in the development of machine learning algorithms. For example, research in reinforcement learning (RL) has been heavily influenced by available environments and benchmarks. However, RL environments are traditionally run on the CPU, limiting their scalability with typical academic compute. Recent advancements in JAX have enabled the wider use of hardware acceleration to overcome these computational hurdles, enabling massively parallel RL training pipelines and environments. This is particularly useful for multi-agent reinforcement learning (MARL) research. First of all, multiple agents must be considered at each environment step, adding computational burden, and secondly, the sample complexity is increased due to non-stationarity, decentralised partial observability, or other MARL challenges. In this paper, we present JaxMARL, the first open-source code base that combines ease-of-use with GPU enabled efficiency, and supports a large number of commonly used MARL environments as well as popular baseline algorithms. When considering wall clock time, our experiments show that per-run our JAX-based training pipeline is up to 12500x faster than existing approaches. This enables efficient and thorough evaluations, with the potential to alleviate the evaluation crisis of the field. We also introduce and benchmark SMAX, a vectorised, simplified version of the popular StarCraft Multi-Agent Challenge, which removes the need to run the StarCraft II game engine. This not only enables GPU acceleration, but also provides a more flexible MARL environment, unlocking the potential for self-play, meta-learning, and other future applications in MARL. We provide code at https://github.com/flairox/jaxmarl.
KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation
Recent advancements in large language models (LLMs) underscore the need for more comprehensive evaluation methods to accurately assess their reasoning capabilities. Existing benchmarks are often domain-specific and thus cannot fully capture an LLM's general reasoning potential. To address this limitation, we introduce the Knowledge Orthogonal Reasoning Gymnasium (KORGym), a dynamic evaluation platform inspired by KOR-Bench and Gymnasium. KORGym offers over fifty games in either textual or visual formats and supports interactive, multi-turn assessments with reinforcement learning scenarios. Using KORGym, we conduct extensive experiments on 19 LLMs and 8 VLMs, revealing consistent reasoning patterns within model families and demonstrating the superior performance of closed-source models. Further analysis examines the effects of modality, reasoning strategies, reinforcement learning techniques, and response length on model performance. We expect KORGym to become a valuable resource for advancing LLM reasoning research and developing evaluation methodologies suited to complex, interactive environments.
AlphaViT: A Flexible Game-Playing AI for Multiple Games and Variable Board Sizes
This paper presents novel game-playing AI agents based on the AlphaZero framework, enhanced with Vision Transformer (ViT): AlphaViT, AlphaViD, and AlphaVDA. These agents are designed to play multiple board games of various sizes using a single network with shared weights, thereby overcoming AlphaZero's limitation of fixed-board-size constraints. AlphaViT employs only a transformer encoder, whereas AlphaViD and AlphaVDA incorporate both transformer encoders and decoders. In AlphaViD, the decoder processes outputs from the encoder, whereas AlphaVDA uses a learnable embeddings as the decoder input. The additional decoder layers in AlphaViD and AlphaVDA provide flexibility to adapt to various action spaces and board sizes. Experimental results show that the proposed agents, trained on either individual games or multiple games simultaneously, consistently outperform traditional algorithms such as Minimax and Monte Carlo Tree Search and approach the performance of AlphaZero, despite using a single deep neural network (DNN) with shared weights. In particular, AlphaViT shows strong performance across all tested games. Furthermore, fine-tuning the DNN using pre-trained weights from small-board games accelerates convergence and improves performance, particularly in Gomoku. Interestingly, simultaneous training on multiple games yields performance comparable to, or even surpassing, single-game training. These results indicate the potential of transformer-based architectures to develop more flexible and robust game-playing AI agents that excel in multiple games and dynamic environments.
Diffusion Models Are Real-Time Game Engines
We present GameNGen, the first game engine powered entirely by a neural model that enables real-time interaction with a complex environment over long trajectories at high quality. GameNGen can interactively simulate the classic game DOOM at over 20 frames per second on a single TPU. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations enable stable auto-regressive generation over long trajectories.
AnimeGamer: Infinite Anime Life Simulation with Next Game State Prediction
Recent advancements in image and video synthesis have opened up new promise in generative games. One particularly intriguing application is transforming characters from anime films into interactive, playable entities. This allows players to immerse themselves in the dynamic anime world as their favorite characters for life simulation through language instructions. Such games are defined as infinite game since they eliminate predetermined boundaries and fixed gameplay rules, where players can interact with the game world through open-ended language and experience ever-evolving storylines and environments. Recently, a pioneering approach for infinite anime life simulation employs large language models (LLMs) to translate multi-turn text dialogues into language instructions for image generation. However, it neglects historical visual context, leading to inconsistent gameplay. Furthermore, it only generates static images, failing to incorporate the dynamics necessary for an engaging gaming experience. In this work, we propose AnimeGamer, which is built upon Multimodal Large Language Models (MLLMs) to generate each game state, including dynamic animation shots that depict character movements and updates to character states, as illustrated in Figure 1. We introduce novel action-aware multimodal representations to represent animation shots, which can be decoded into high-quality video clips using a video diffusion model. By taking historical animation shot representations as context and predicting subsequent representations, AnimeGamer can generate games with contextual consistency and satisfactory dynamics. Extensive evaluations using both automated metrics and human evaluations demonstrate that AnimeGamer outperforms existing methods in various aspects of the gaming experience. Codes and checkpoints are available at https://github.com/TencentARC/AnimeGamer.
Game4Loc: A UAV Geo-Localization Benchmark from Game Data
The vision-based geo-localization technology for UAV, serving as a secondary source of GPS information in addition to the global navigation satellite systems (GNSS), can still operate independently in the GPS-denied environment. Recent deep learning based methods attribute this as the task of image matching and retrieval. By retrieving drone-view images in geo-tagged satellite image database, approximate localization information can be obtained. However, due to high costs and privacy concerns, it is usually difficult to obtain large quantities of drone-view images from a continuous area. Existing drone-view datasets are mostly composed of small-scale aerial photography with a strong assumption that there exists a perfect one-to-one aligned reference image for any query, leaving a significant gap from the practical localization scenario. In this work, we construct a large-range contiguous area UAV geo-localization dataset named GTA-UAV, featuring multiple flight altitudes, attitudes, scenes, and targets using modern computer games. Based on this dataset, we introduce a more practical UAV geo-localization task including partial matches of cross-view paired data, and expand the image-level retrieval to the actual localization in terms of distance (meters). For the construction of drone-view and satellite-view pairs, we adopt a weight-based contrastive learning approach, which allows for effective learning while avoiding additional post-processing matching steps. Experiments demonstrate the effectiveness of our data and training method for UAV geo-localization, as well as the generalization capabilities to real-world scenarios.
GameGen-X: Interactive Open-world Game Video Generation
We introduce GameGen-X, the first diffusion transformer model specifically designed for both generating and interactively controlling open-world game videos. This model facilitates high-quality, open-domain generation by simulating an extensive array of game engine features, such as innovative characters, dynamic environments, complex actions, and diverse events. Additionally, it provides interactive controllability, predicting and altering future content based on the current clip, thus allowing for gameplay simulation. To realize this vision, we first collected and built an Open-World Video Game Dataset from scratch. It is the first and largest dataset for open-world game video generation and control, which comprises over a million diverse gameplay video clips sampling from over 150 games with informative captions from GPT-4o. GameGen-X undergoes a two-stage training process, consisting of foundation model pre-training and instruction tuning. Firstly, the model was pre-trained via text-to-video generation and video continuation, endowing it with the capability for long-sequence, high-quality open-domain game video generation. Further, to achieve interactive controllability, we designed InstructNet to incorporate game-related multi-modal control signal experts. This allows the model to adjust latent representations based on user inputs, unifying character interaction and scene content control for the first time in video generation. During instruction tuning, only the InstructNet is updated while the pre-trained foundation model is frozen, enabling the integration of interactive controllability without loss of diversity and quality of generated video content.
NextBestPath: Efficient 3D Mapping of Unseen Environments
This work addresses the problem of active 3D mapping, where an agent must find an efficient trajectory to exhaustively reconstruct a new scene. Previous approaches mainly predict the next best view near the agent's location, which is prone to getting stuck in local areas. Additionally, existing indoor datasets are insufficient due to limited geometric complexity and inaccurate ground truth meshes. To overcome these limitations, we introduce a novel dataset AiMDoom with a map generator for the Doom video game, enabling to better benchmark active 3D mapping in diverse indoor environments. Moreover, we propose a new method we call next-best-path (NBP), which predicts long-term goals rather than focusing solely on short-sighted views. The model jointly predicts accumulated surface coverage gains for long-term goals and obstacle maps, allowing it to efficiently plan optimal paths with a unified model. By leveraging online data collection, data augmentation and curriculum learning, NBP significantly outperforms state-of-the-art methods on both the existing MP3D dataset and our AiMDoom dataset, achieving more efficient mapping in indoor environments of varying complexity.
Cardiverse: Harnessing LLMs for Novel Card Game Prototyping
The prototyping of computer games, particularly card games, requires extensive human effort in creative ideation and gameplay evaluation. Recent advances in Large Language Models (LLMs) offer opportunities to automate and streamline these processes. However, it remains challenging for LLMs to design novel game mechanics beyond existing databases, generate consistent gameplay environments, and develop scalable gameplay AI for large-scale evaluations. This paper addresses these challenges by introducing a comprehensive automated card game prototyping framework. The approach highlights a graph-based indexing method for generating novel game designs, an LLM-driven system for consistent game code generation validated by gameplay records, and a gameplay AI constructing method that uses an ensemble of LLM-generated action-value functions optimized through self-play. These contributions aim to accelerate card game prototyping, reduce human labor, and lower barriers to entry for game developers.
Objects matter: object-centric world models improve reinforcement learning in visually complex environments
Deep reinforcement learning has achieved remarkable success in learning control policies from pixels across a wide range of tasks, yet its application remains hindered by low sample efficiency, requiring significantly more environment interactions than humans to reach comparable performance. Model-based reinforcement learning (MBRL) offers a solution by leveraging learnt world models to generate simulated experience, thereby improving sample efficiency. However, in visually complex environments, small or dynamic elements can be critical for decision-making. Yet, traditional MBRL methods in pixel-based environments typically rely on auto-encoding with an L_2 loss, which is dominated by large areas and often fails to capture decision-relevant details. To address these limitations, we propose an object-centric MBRL pipeline, which integrates recent advances in computer vision to allow agents to focus on key decision-related elements. Our approach consists of four main steps: (1) annotating key objects related to rewards and goals with segmentation masks, (2) extracting object features using a pre-trained, frozen foundation vision model, (3) incorporating these object features with the raw observations to predict environmental dynamics, and (4) training the policy using imagined trajectories generated by this object-centric world model. Building on the efficient MBRL algorithm STORM, we call this pipeline OC-STORM. We demonstrate OC-STORM's practical value in overcoming the limitations of conventional MBRL approaches on both Atari games and the visually complex game Hollow Knight.
Learning Macroeconomic Policies based on Microfoundations: A Stackelberg Mean Field Game Approach
Effective macroeconomic policies play a crucial role in promoting economic growth and social stability. This paper models the optimal macroeconomic policy problem based on the Stackelberg Mean Field Game (SMFG), where the government acts as the leader in policy-making, and large-scale households dynamically respond as followers. This modeling method captures the asymmetric dynamic game between the government and large-scale households, and interpretably evaluates the effects of macroeconomic policies based on microfoundations, which is difficult for existing methods to achieve. We also propose a solution for SMFGs, incorporating pre-training on real data and a model-free Stackelberg mean-field reinforcement learning (SMFRL) algorithm, which operates independently of prior environmental knowledge and transitions. Our experimental results showcase the superiority of the SMFG method over other economic policies in terms of performance, efficiency-equity tradeoff, and SMFG assumption analysis. This paper significantly contributes to the domain of AI for economics by providing a powerful tool for modeling and solving optimal macroeconomic policies.
How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments
Decision-making, a complicated task requiring various types of abilities, presents an excellent framework for assessing Large Language Models (LLMs). Our research investigates LLMs' decision-making capabilities through the lens of a well-established field, Game Theory. We focus specifically on games that support the participation of more than two agents simultaneously. Subsequently, we introduce our framework, GAMA-Bench, including eight classical multi-agent games. We design a scoring scheme to assess a model's performance in these games quantitatively. Through GAMA-Bench, we investigate LLMs' robustness, generalizability, and enhancement strategies. Results reveal that while GPT-3.5 shows satisfying robustness, its generalizability is relatively limited. However, its performance can be improved through approaches such as Chain-of-Thought. Additionally, we conduct evaluations across various LLMs and find that GPT-4 outperforms other models on GAMA-Bench, achieving a score of 60.5. Moreover, Gemini-1.0-Pro and GPT-3.5 (0613, 1106, 0125) demonstrate similar intelligence on GAMA-Bench. The code and experimental results are made publicly available via https://github.com/CUHK-ARISE/GAMABench.
Bayesian open games
This paper generalises the treatment of compositional game theory as introduced by the second and third authors with Ghani and Winschel, where games are modelled as morphisms of a symmetric monoidal category. From an economic modelling perspective, the existing notion of an open game is not expressive enough for many applications. This includes stochastic environments, stochastic choices by players, as well as incomplete information regarding the game being played. The current paper addresses these three issue all at once. To achieve this we make significant use of category theory, especially the 'coend optics' of Riley.
SmartPlay : A Benchmark for LLMs as Intelligent Agents
Recent large language models (LLMs) have demonstrated great potential toward intelligent agents and next-gen automation, but there currently lacks a systematic benchmark for evaluating LLMs' abilities as agents. We introduce SmartPlay: both a challenging benchmark and a methodology for evaluating LLMs as agents. SmartPlay consists of 6 different games, including Rock-Paper-Scissors, Tower of Hanoi, Minecraft. Each game features a unique setting, providing up to 20 evaluation settings and infinite environment variations. Each game in SmartPlay uniquely challenges a subset of 9 important capabilities of an intelligent LLM agent, including reasoning with object dependencies, planning ahead, spatial reasoning, learning from history, and understanding randomness. The distinction between the set of capabilities each game test allows us to analyze each capability separately. SmartPlay serves not only as a rigorous testing ground for evaluating the overall performance of LLM agents but also as a road-map for identifying gaps in current methodologies. We release our benchmark at github.com/LLMsmartplay/SmartPlay
PuzzlePlex: Benchmarking Foundation Models on Reasoning and Planning with Puzzles
This work investigates the reasoning and planning capabilities of foundation models and their scalability in complex, dynamic environments. We introduce PuzzlePlex, a benchmark designed to assess these capabilities through a diverse set of puzzles. PuzzlePlex consists of 15 types of puzzles, including deterministic and stochastic games of varying difficulty, as well as single-player and two-player scenarios. The PuzzlePlex framework provides a comprehensive environment for each game, and supports extensibility to generate more challenging instances as foundation models evolve. Additionally, we implement customized game-playing strategies for comparison. Building on this benchmark, we develop fine-grained metrics to measure performance and conduct an in-depth analysis of frontier foundation models across two settings: instruction-based and code-based. Furthermore, we systematically investigate their scaling limits. Our findings show that reasoning models outperform others in instruction-based settings, while code-based execution presents greater challenges but offers a scalable and efficient alternative. PuzzlePlex enables targeted evaluation and guides future improvements in reasoning, planning, and generalization for foundation models.
Solving the Rubik's Cube Without Human Knowledge
A generally intelligent agent must be able to teach itself how to solve problems in complex domains with minimal human supervision. Recently, deep reinforcement learning algorithms combined with self-play have achieved superhuman proficiency in Go, Chess, and Shogi without human data or domain knowledge. In these environments, a reward is always received at the end of the game, however, for many combinatorial optimization environments, rewards are sparse and episodes are not guaranteed to terminate. We introduce Autodidactic Iteration: a novel reinforcement learning algorithm that is able to teach itself how to solve the Rubik's Cube with no human assistance. Our algorithm is able to solve 100% of randomly scrambled cubes while achieving a median solve length of 30 moves -- less than or equal to solvers that employ human domain knowledge.
CookBench: A Long-Horizon Embodied Planning Benchmark for Complex Cooking Scenarios
Embodied Planning is dedicated to the goal of creating agents capable of executing long-horizon tasks in complex physical worlds. However, existing embodied planning benchmarks frequently feature short-horizon tasks and coarse-grained action primitives. To address this challenge, we introduce CookBench, a benchmark for long-horizon planning in complex cooking scenarios. By leveraging a high-fidelity simulation environment built upon the powerful Unity game engine, we define frontier AI challenges in a complex, realistic environment. The core task in CookBench is designed as a two-stage process. First, in Intention Recognition, an agent needs to accurately parse a user's complex intent. Second, in Embodied Interaction, the agent should execute the identified cooking goal through a long-horizon, fine-grained sequence of physical actions. Unlike existing embodied planning benchmarks, we refine the action granularity to a spatial level that considers crucial operational information while abstracting away low-level robotic control. Besides, We provide a comprehensive toolset that encapsulates the simulator. Its unified API supports both macro-level operations, such as placing orders and purchasing ingredients, and a rich set of fine-grained embodied actions for physical interaction, enabling researchers to focus on high-level planning and decision-making. Furthermore, we present an in-depth analysis of state-of-the-art, closed-source Large Language Model and Vision-Language Model, revealing their major shortcomings and challenges posed by complex, long-horizon tasks. The full benchmark will be open-sourced to facilitate future research.
The Traitors: Deception and Trust in Multi-Agent Language Model Simulations
As AI systems increasingly assume roles where trust and alignment with human values are essential, understanding when and why they engage in deception has become a critical research priority. We introduce The Traitors, a multi-agent simulation framework inspired by social deduction games, designed to probe deception, trust formation, and strategic communication among large language model (LLM) agents under asymmetric information. A minority of agents the traitors seek to mislead the majority, while the faithful must infer hidden identities through dialogue and reasoning. Our contributions are: (1) we ground the environment in formal frameworks from game theory, behavioral economics, and social cognition; (2) we develop a suite of evaluation metrics capturing deception success, trust dynamics, and collective inference quality; (3) we implement a fully autonomous simulation platform where LLMs reason over persistent memory and evolving social dynamics, with support for heterogeneous agent populations, specialized traits, and adaptive behaviors. Our initial experiments across DeepSeek-V3, GPT-4o-mini, and GPT-4o (10 runs per model) reveal a notable asymmetry: advanced models like GPT-4o demonstrate superior deceptive capabilities yet exhibit disproportionate vulnerability to others' falsehoods. This suggests deception skills may scale faster than detection abilities. Overall, The Traitors provides a focused, configurable testbed for investigating LLM behavior in socially nuanced interactions. We position this work as a contribution toward more rigorous research on deception mechanisms, alignment challenges, and the broader social reliability of AI systems.
Society of Mind Meets Real-Time Strategy: A Hierarchical Multi-Agent Framework for Strategic Reasoning
Large Language Models (LLMs) have recently demonstrated impressive action sequence prediction capabilities but often struggle with dynamic, long-horizon tasks such as real-time strategic games. In a game such as StarCraftII (SC2), agents need to manage resource constraints and adapt to evolving battlefield situations in a partially observable environment. This often overwhelms exisiting LLM-based approaches. To address these challenges, we propose a hierarchical multi-agent framework that employs specialized imitation learning agents under a meta-controller called Strategic Planner (SP). By expert demonstrations, each specialized agent learns a distinctive strategy, such as aerial support or defensive maneuvers, and produces coherent, structured multistep action sequences. The SP then orchestrates these proposals into a single, environmentally adaptive plan that ensures local decisions aligning with long-term strategies. We call this HIMA (Hierarchical Imitation Multi-Agent). We also present TEXTSCII-ALL, a comprehensive SC2 testbed that encompasses all race match combinations in SC2. Our empirical results show that HIMA outperforms state of the arts in strategic clarity, adaptability, and computational efficiency, underscoring the potential of combining specialized imitation modules with meta-level orchestration to develop more robust, general-purpose AI agents.
AlphaSnake: Policy Iteration on a Nondeterministic NP-hard Markov Decision Process
Reinforcement learning has recently been used to approach well-known NP-hard combinatorial problems in graph theory. Among these problems, Hamiltonian cycle problems are exceptionally difficult to analyze, even when restricted to individual instances of structurally complex graphs. In this paper, we use Monte Carlo Tree Search (MCTS), the search algorithm behind many state-of-the-art reinforcement learning algorithms such as AlphaZero, to create autonomous agents that learn to play the game of Snake, a game centered on properties of Hamiltonian cycles on grid graphs. The game of Snake can be formulated as a single-player discounted Markov Decision Process (MDP) where the agent must behave optimally in a stochastic environment. Determining the optimal policy for Snake, defined as the policy that maximizes the probability of winning - or win rate - with higher priority and minimizes the expected number of time steps to win with lower priority, is conjectured to be NP-hard. Performance-wise, compared to prior work in the Snake game, our algorithm is the first to achieve a win rate over 0.5 (a uniform random policy achieves a win rate < 2.57 times 10^{-15}), demonstrating the versatility of AlphaZero in approaching NP-hard environments.
STARLING: Self-supervised Training of Text-based Reinforcement Learning Agent with Large Language Models
Interactive fiction games have emerged as an important application to improve the generalization capabilities of language-based reinforcement learning (RL) agents. Existing environments for interactive fiction games are domain-specific or time-consuming to generate and do not train the RL agents to master a specific set of skills. In this work, we introduce an interactive environment for self-supervised RL, STARLING, for text-based games that bootstraps the text-based RL agents with automatically generated games (based on the seed set of game ideas) to boost the performance and generalization capabilities to reach a goal of the target environment. These games let the agent hone their skills on a predefined set of tasks. We create and test an environment with 100 games, generated using this automated framework that uses large language models (GPT-3) and an interactive fiction game engine (based on Inform7) to provide the user with the ability to generate more games under minimal human supervision. Experimental results based on both the human participants and baseline text-based RL agents reveal that current state-of-the-art text-based RL agents cannot use previously learned skills in new situations at the level humans can. These results enforce STARLING's potential to serve as a sandbox environment for further research in self-supervised text-based RL.
LLMsPark: A Benchmark for Evaluating Large Language Models in Strategic Gaming Contexts
As large language models (LLMs) advance across diverse tasks, the need for comprehensive evaluation beyond single metrics becomes increasingly important. To fully assess LLM intelligence, it is crucial to examine their interactive dynamics and strategic behaviors. We present LLMsPark, a game theory-based evaluation platform that measures LLMs' decision-making strategies and social behaviors in classic game-theoretic settings, providing a multi-agent environment to explore strategic depth. Our system cross-evaluates 15 leading LLMs (both commercial and open-source) using leaderboard rankings and scoring mechanisms. Higher scores reflect stronger reasoning and strategic capabilities, revealing distinct behavioral patterns and performance differences across models. This work introduces a novel perspective for evaluating LLMs' strategic intelligence, enriching existing benchmarks and broadening their assessment in interactive, game-theoretic scenarios. The benchmark and rankings are publicly available at https://llmsparks.github.io/.
Generative agent-based modeling with actions grounded in physical, social, or digital space using Concordia
Agent-based modeling has been around for decades, and applied widely across the social and natural sciences. The scope of this research method is now poised to grow dramatically as it absorbs the new affordances provided by Large Language Models (LLM)s. Generative Agent-Based Models (GABM) are not just classic Agent-Based Models (ABM)s where the agents talk to one another. Rather, GABMs are constructed using an LLM to apply common sense to situations, act "reasonably", recall common semantic knowledge, produce API calls to control digital technologies like apps, and communicate both within the simulation and to researchers viewing it from the outside. Here we present Concordia, a library to facilitate constructing and working with GABMs. Concordia makes it easy to construct language-mediated simulations of physically- or digitally-grounded environments. Concordia agents produce their behavior using a flexible component system which mediates between two fundamental operations: LLM calls and associative memory retrieval. A special agent called the Game Master (GM), which was inspired by tabletop role-playing games, is responsible for simulating the environment where the agents interact. Agents take actions by describing what they want to do in natural language. The GM then translates their actions into appropriate implementations. In a simulated physical world, the GM checks the physical plausibility of agent actions and describes their effects. In digital environments simulating technologies such as apps and services, the GM may handle API calls to integrate with external tools such as general AI assistants (e.g., Bard, ChatGPT), and digital apps (e.g., Calendar, Email, Search, etc.). Concordia was designed to support a wide array of applications both in scientific research and for evaluating performance of real digital services by simulating users and/or generating synthetic data.
ViZDoom Competitions: Playing Doom from Pixels
This paper presents the first two editions of Visual Doom AI Competition, held in 2016 and 2017. The challenge was to create bots that compete in a multi-player deathmatch in a first-person shooter (FPS) game, Doom. The bots had to make their decisions based solely on visual information, i.e., a raw screen buffer. To play well, the bots needed to understand their surroundings, navigate, explore, and handle the opponents at the same time. These aspects, together with the competitive multi-agent aspect of the game, make the competition a unique platform for evaluating the state of the art reinforcement learning algorithms. The paper discusses the rules, solutions, results, and statistics that give insight into the agents' behaviors. Best-performing agents are described in more detail. The results of the competition lead to the conclusion that, although reinforcement learning can produce capable Doom bots, they still are not yet able to successfully compete against humans in this game. The paper also revisits the ViZDoom environment, which is a flexible, easy to use, and efficient 3D platform for research for vision-based reinforcement learning, based on a well-recognized first-person perspective game Doom.
Godot Reinforcement Learning Agents
We present Godot Reinforcement Learning (RL) Agents, an open-source interface for developing environments and agents in the Godot Game Engine. The Godot RL Agents interface allows the design, creation and learning of agent behaviors in challenging 2D and 3D environments with various on-policy and off-policy Deep RL algorithms. We provide a standard Gym interface, with wrappers for learning in the Ray RLlib and Stable Baselines RL frameworks. This allows users access to over 20 state of the art on-policy, off-policy and multi-agent RL algorithms. The framework is a versatile tool that allows researchers and game designers the ability to create environments with discrete, continuous and mixed action spaces. The interface is relatively performant, with 12k interactions per second on a high end laptop computer, when parallized on 4 CPU cores. An overview video is available here: https://youtu.be/g1MlZSFqIj4
"Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts
Machine learning models frequently experience performance drops under distribution shifts. The underlying cause of such shifts may be multiple simultaneous factors such as changes in data quality, differences in specific covariate distributions, or changes in the relationship between label and features. When a model does fail during deployment, attributing performance change to these factors is critical for the model developer to identify the root cause and take mitigating actions. In this work, we introduce the problem of attributing performance differences between environments to distribution shifts in the underlying data generating mechanisms. We formulate the problem as a cooperative game where the players are distributions. We define the value of a set of distributions to be the change in model performance when only this set of distributions has changed between environments, and derive an importance weighting method for computing the value of an arbitrary set of distributions. The contribution of each distribution to the total performance change is then quantified as its Shapley value. We demonstrate the correctness and utility of our method on synthetic, semi-synthetic, and real-world case studies, showing its effectiveness in attributing performance changes to a wide range of distribution shifts.
DeepMind Lab
DeepMind Lab is a first-person 3D game platform designed for research and development of general artificial intelligence and machine learning systems. DeepMind Lab can be used to study how autonomous artificial agents may learn complex tasks in large, partially observed, and visually diverse worlds. DeepMind Lab has a simple and flexible API enabling creative task-designs and novel AI-designs to be explored and quickly iterated upon. It is powered by a fast and widely recognised game engine, and tailored for effective use by the research community.
PerfDojo: Automated ML Library Generation for Heterogeneous Architectures
The increasing complexity of machine learning models and the proliferation of diverse hardware architectures (CPUs, GPUs, accelerators) make achieving optimal performance a significant challenge. Heterogeneity in instruction sets, specialized kernel requirements for different data types and model features (e.g., sparsity, quantization), and architecture-specific optimizations complicate performance tuning. Manual optimization is resource-intensive, while existing automatic approaches often rely on complex hardware-specific heuristics and uninterpretable intermediate representations, hindering performance portability. We introduce PerfLLM, a novel automatic optimization methodology leveraging Large Language Models (LLMs) and Reinforcement Learning (RL). Central to this is PerfDojo, an environment framing optimization as an RL game using a human-readable, mathematically-inspired code representation that guarantees semantic validity through transformations. This allows effective optimization without prior hardware knowledge, facilitating both human analysis and RL agent training. We demonstrate PerfLLM's ability to achieve significant performance gains across diverse CPU (x86, Arm, RISC-V) and GPU architectures.
Look-ahead Reasoning with a Learned Model in Imperfect Information Games
Test-time reasoning significantly enhances pre-trained AI agents' performance. However, it requires an explicit environment model, often unavailable or overly complex in real-world scenarios. While MuZero enables effective model learning for search in perfect information games, extending this paradigm to imperfect information games presents substantial challenges due to more nuanced look-ahead reasoning techniques and large number of states relevant for individual decisions. This paper introduces an algorithm LAMIR that learns an abstracted model of an imperfect information game directly from the agent-environment interaction. During test time, this trained model is used to perform look-ahead reasoning. The learned abstraction limits the size of each subgame to a manageable size, making theoretically principled look-ahead reasoning tractable even in games where previous methods could not scale. We empirically demonstrate that with sufficient capacity, LAMIR learns the exact underlying game structure, and with limited capacity, it still learns a valuable abstraction, which improves game playing performance of the pre-trained agents even in large games.
Do LLM Agents Have Regret? A Case Study in Online Learning and Games
Large language models (LLMs) have been increasingly employed for (interactive) decision-making, via the development of LLM-based autonomous agents. Despite their emerging successes, the performance of LLM agents in decision-making has not been fully investigated through quantitative metrics, especially in the multi-agent setting when they interact with each other, a typical scenario in real-world LLM-agent applications. To better understand the limits of LLM agents in these interactive environments, we propose to study their interactions in benchmark decision-making settings in online learning and game theory, through the performance metric of regret. We first empirically study the {no-regret} behaviors of LLMs in canonical (non-stationary) online learning problems, as well as the emergence of equilibria when LLM agents interact through playing repeated games. We then provide some theoretical insights into the no-regret behaviors of LLM agents, under certain assumptions on the supervised pre-training and the rationality model of human decision-makers who generate the data. Notably, we also identify (simple) cases where advanced LLMs such as GPT-4 fail to be no-regret. To promote the no-regret behaviors, we propose a novel unsupervised training loss of regret-loss, which, in contrast to the supervised pre-training loss, does not require the labels of (optimal) actions. We then establish the statistical guarantee of generalization bound for regret-loss minimization, followed by the optimization guarantee that minimizing such a loss may automatically lead to known no-regret learning algorithms. Our further experiments demonstrate the effectiveness of our regret-loss, especially in addressing the above ``regrettable'' cases.
Rethinking Agent Design: From Top-Down Workflows to Bottom-Up Skill Evolution
Most LLM-based agent frameworks adopt a top-down philosophy: humans decompose tasks, define workflows, and assign agents to execute each step. While effective on benchmark-style tasks, such systems rely on designer updates and overlook agents' potential to learn from experience. Recently, Silver and Sutton(2025) envision a shift into a new era, where agents could progress from a stream of experiences. In this paper, we instantiate this vision of experience-driven learning by introducing a bottom-up agent paradigm that mirrors the human learning process. Agents acquire competence through a trial-and-reasoning mechanism-exploring, reflecting on outcomes, and abstracting skills over time. Once acquired, skills can be rapidly shared and extended, enabling continual evolution rather than static replication. As more agents are deployed, their diverse experiences accelerate this collective process, making bottom-up design especially suited for open-ended environments. We evaluate this paradigm in Slay the Spire and Civilization V, where agents perceive through raw visual inputs and act via mouse outputs, the same as human players. Using a unified, game-agnostic codebase without any game-specific prompts or privileged APIs, our bottom-up agents acquire skills entirely through autonomous interaction, demonstrating the potential of the bottom-up paradigm in complex, real-world environments. Our code is available at https://github.com/AngusDujw/Bottom-Up-Agent.
On the interaction between supervision and self-play in emergent communication
A promising approach for teaching artificial agents to use natural language involves using human-in-the-loop training. However, recent work suggests that current machine learning methods are too data inefficient to be trained in this way from scratch. In this paper, we investigate the relationship between two categories of learning signals with the ultimate goal of improving sample efficiency: imitating human language data via supervised learning, and maximizing reward in a simulated multi-agent environment via self-play (as done in emergent communication), and introduce the term supervised self-play (S2P) for algorithms using both of these signals. We find that first training agents via supervised learning on human data followed by self-play outperforms the converse, suggesting that it is not beneficial to emerge languages from scratch. We then empirically investigate various S2P schedules that begin with supervised learning in two environments: a Lewis signaling game with symbolic inputs, and an image-based referential game with natural language descriptions. Lastly, we introduce population based approaches to S2P, which further improves the performance over single-agent methods.
SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training
Supervised fine-tuning (SFT) and reinforcement learning (RL) are widely used post-training techniques for foundation models. However, their roles in enhancing model generalization capabilities remain unclear. This paper studies the difference between SFT and RL on generalization and memorization, focusing on text-based rule variants and visual variants. We introduce GeneralPoints, an arithmetic reasoning card game, and adopt V-IRL, a real-world navigation environment, to assess how models trained with SFT and RL generalize to unseen variants in both textual and visual domains. We show that RL, especially when trained with an outcome-based reward, generalizes across both rule-based textual and visual variants. SFT, in contrast, tends to memorize training data and struggles to generalize out-of-distribution scenarios. Further analysis reveals that RL improves the model's underlying visual recognition capabilities, contributing to its enhanced generalization in the visual domain. Despite RL's superior generalization, we show that SFT remains essential for effective RL training; SFT stabilizes the model's output format, enabling subsequent RL to achieve its performance gains. These findings demonstrates the capability of RL for acquiring generalizable knowledge in complex, multi-modal tasks.
Multi-Agent Evolve: LLM Self-Improve through Co-evolution
Reinforcement Learning (RL) has demonstrated significant potential in enhancing the reasoning capabilities of large language models (LLMs). However, the success of RL for LLMs heavily relies on human-curated datasets and verifiable rewards, which limit their scalability and generality. Recent Self-Play RL methods, inspired by the success of the paradigm in games and Go, aim to enhance LLM reasoning capabilities without human-annotated data. However, their methods primarily depend on a grounded environment for feedback (e.g., a Python interpreter or a game engine); extending them to general domains remains challenging. To address these challenges, we propose Multi-Agent Evolve (MAE), a framework that enables LLMs to self-evolve in solving diverse tasks, including mathematics, reasoning, and general knowledge Q&A. The core design of MAE is based on a triplet of interacting agents (Proposer, Solver, Judge) that are instantiated from a single LLM, and applies reinforcement learning to optimize their behaviors. The Proposer generates questions, the Solver attempts solutions, and the Judge evaluates both while co-evolving. Experiments on Qwen2.5-3B-Instruct demonstrate that MAE achieves an average improvement of 4.54% on multiple benchmarks. These results highlight MAE as a scalable, data-efficient method for enhancing the general reasoning abilities of LLMs with minimal reliance on human-curated supervision.
PG-Rainbow: Using Distributional Reinforcement Learning in Policy Gradient Methods
This paper introduces PG-Rainbow, a novel algorithm that incorporates a distributional reinforcement learning framework with a policy gradient algorithm. Existing policy gradient methods are sample inefficient and rely on the mean of returns when calculating the state-action value function, neglecting the distributional nature of returns in reinforcement learning tasks. To address this issue, we use an Implicit Quantile Network that provides the quantile information of the distribution of rewards to the critic network of the Proximal Policy Optimization algorithm. We show empirical results that through the integration of reward distribution information into the policy network, the policy agent acquires enhanced capabilities to comprehensively evaluate the consequences of potential actions in a given state, facilitating more sophisticated and informed decision-making processes. We evaluate the performance of the proposed algorithm in the Atari-2600 game suite, simulated via the Arcade Learning Environment (ALE).
Curiosity-Driven Exploration via Latent Bayesian Surprise
The human intrinsic desire to pursue knowledge, also known as curiosity, is considered essential in the process of skill acquisition. With the aid of artificial curiosity, we could equip current techniques for control, such as Reinforcement Learning, with more natural exploration capabilities. A promising approach in this respect has consisted of using Bayesian surprise on model parameters, i.e. a metric for the difference between prior and posterior beliefs, to favour exploration. In this contribution, we propose to apply Bayesian surprise in a latent space representing the agent's current understanding of the dynamics of the system, drastically reducing the computational costs. We extensively evaluate our method by measuring the agent's performance in terms of environment exploration, for continuous tasks, and looking at the game scores achieved, for video games. Our model is computationally cheap and compares positively with current state-of-the-art methods on several problems. We also investigate the effects caused by stochasticity in the environment, which is often a failure case for curiosity-driven agents. In this regime, the results suggest that our approach is resilient to stochastic transitions.
Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep Learning in Self Driving Cars
As an initial assessment, over 480,000 labeled virtual images of normal highway driving were readily generated in Grand Theft Auto V's virtual environment. Using these images, a CNN was trained to detect following distance to cars/objects ahead, lane markings, and driving angle (angular heading relative to lane centerline): all variables necessary for basic autonomous driving. Encouraging results were obtained when tested on over 50,000 labeled virtual images from substantially different GTA-V driving environments. This initial assessment begins to define both the range and scope of the labeled images needed for training as well as the range and scope of labeled images needed for testing the definition of boundaries and limitations of trained networks. It is the efficacy and flexibility of a "GTA-V"-like virtual environment that is expected to provide an efficient well-defined foundation for the training and testing of Convolutional Neural Networks for safe driving. Additionally, described is the Princeton Virtual Environment (PVE) for the training, testing and enhancement of safe driving AI, which is being developed using the video-game engine Unity. PVE is being developed to recreate rare but critical corner cases that can be used in re-training and enhancing machine learning models and understanding the limitations of current self driving models. The Florida Tesla crash is being used as an initial reference.
PUG: Photorealistic and Semantically Controllable Synthetic Data for Representation Learning
Synthetic image datasets offer unmatched advantages for designing and evaluating deep neural networks: they make it possible to (i) render as many data samples as needed, (ii) precisely control each scene and yield granular ground truth labels (and captions), (iii) precisely control distribution shifts between training and testing to isolate variables of interest for sound experimentation. Despite such promise, the use of synthetic image data is still limited -- and often played down -- mainly due to their lack of realism. Most works therefore rely on datasets of real images, which have often been scraped from public images on the internet, and may have issues with regards to privacy, bias, and copyright, while offering little control over how objects precisely appear. In this work, we present a path to democratize the use of photorealistic synthetic data: we develop a new generation of interactive environments for representation learning research, that offer both controllability and realism. We use the Unreal Engine, a powerful game engine well known in the entertainment industry, to produce PUG (Photorealistic Unreal Graphics) environments and datasets for representation learning. In this paper, we demonstrate the potential of PUG to enable more rigorous evaluations of vision models.
Benchmarking the Spectrum of Agent Capabilities
Evaluating the general abilities of intelligent agents requires complex simulation environments. Existing benchmarks typically evaluate only one narrow task per environment, requiring researchers to perform expensive training runs on many different environments. We introduce Crafter, an open world survival game with visual inputs that evaluates a wide range of general abilities within a single environment. Agents either learn from the provided reward signal or through intrinsic objectives and are evaluated by semantically meaningful achievements that can be unlocked during each episode, such as discovering resources and crafting tools. Consistently unlocking all achievements requires strong generalization, deep exploration, and long-term reasoning. We experimentally verify that Crafter is of appropriate difficulty to drive future research and provide baselines scores of reward agents and unsupervised agents. Furthermore, we observe sophisticated behaviors emerging from maximizing the reward signal, such as building tunnel systems, bridges, houses, and plantations. We hope that Crafter will accelerate research progress by quickly evaluating a wide spectrum of abilities.
