Edward J. Schwartz
commited on
Commit
·
f57ae1a
1
Parent(s):
221e108
Add first loading script that has configs for splits
Browse files- oo-method-test-split.py +112 -0
oo-method-test-split.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
|
| 5 |
+
import pyarrow as pa
|
| 6 |
+
import pyarrow.parquet as pq
|
| 7 |
+
|
| 8 |
+
BASE_DATASET = "ejschwartz/oo-method-test"
|
| 9 |
+
|
| 10 |
+
class OOMethodTestDataset(datasets.ArrowBasedBuilder):
|
| 11 |
+
|
| 12 |
+
BUILDER_CONFIGS = [
|
| 13 |
+
datasets.BuilderConfig(
|
| 14 |
+
name="combined",
|
| 15 |
+
version=datasets.Version("1.0.0"),
|
| 16 |
+
description="All data files combined",
|
| 17 |
+
),
|
| 18 |
+
datasets.BuilderConfig(
|
| 19 |
+
name="byrow",
|
| 20 |
+
version=datasets.Version("1.0.0"),
|
| 21 |
+
description="Split by example (dumb)",
|
| 22 |
+
),
|
| 23 |
+
datasets.BuilderConfig(
|
| 24 |
+
name="byfuncname",
|
| 25 |
+
version=datasets.Version("1.0.0"),
|
| 26 |
+
description="Split by function name",
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
def __init__(self, *args, **kwargs):
|
| 32 |
+
super().__init__(*args, **kwargs)
|
| 33 |
+
|
| 34 |
+
def _info(self):
|
| 35 |
+
return datasets.DatasetInfo()
|
| 36 |
+
|
| 37 |
+
def _split_generators(self, dl_manager):
|
| 38 |
+
ds = datasets.load_dataset(BASE_DATASET)
|
| 39 |
+
|
| 40 |
+
#print(files)
|
| 41 |
+
#print(downloaded_files)
|
| 42 |
+
|
| 43 |
+
if self.config.name == "combined":
|
| 44 |
+
|
| 45 |
+
return [
|
| 46 |
+
datasets.SplitGenerator(
|
| 47 |
+
name="combined",
|
| 48 |
+
gen_kwargs={
|
| 49 |
+
"ds": ds['combined'],
|
| 50 |
+
},
|
| 51 |
+
),
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
elif self.config.name == "byrow":
|
| 55 |
+
|
| 56 |
+
ds = ds['combined'].train_test_split(test_size=0.1, seed=42)
|
| 57 |
+
#print(ds)
|
| 58 |
+
|
| 59 |
+
return [
|
| 60 |
+
datasets.SplitGenerator(
|
| 61 |
+
name="train",
|
| 62 |
+
gen_kwargs={
|
| 63 |
+
"ds": ds['train'],
|
| 64 |
+
},
|
| 65 |
+
),
|
| 66 |
+
datasets.SplitGenerator(
|
| 67 |
+
name="test",
|
| 68 |
+
gen_kwargs={
|
| 69 |
+
"ds": ds['test'],
|
| 70 |
+
},
|
| 71 |
+
),
|
| 72 |
+
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
elif self.config.name == "byfuncname":
|
| 76 |
+
|
| 77 |
+
ds = ds['combined']
|
| 78 |
+
|
| 79 |
+
unique_names = ds.unique('Name')
|
| 80 |
+
nameds = datasets.Dataset.from_dict({'Name': unique_names})
|
| 81 |
+
|
| 82 |
+
name_split = nameds.train_test_split(test_size=0.1, seed=42)
|
| 83 |
+
#print(name_split)
|
| 84 |
+
|
| 85 |
+
train_name = name_split['train']['Name']
|
| 86 |
+
test_name = name_split['test']['Name']
|
| 87 |
+
|
| 88 |
+
return [
|
| 89 |
+
datasets.SplitGenerator(
|
| 90 |
+
name="train",
|
| 91 |
+
gen_kwargs={
|
| 92 |
+
"ds": ds.filter(lambda r: r['Name'] in train_name),
|
| 93 |
+
},
|
| 94 |
+
),
|
| 95 |
+
datasets.SplitGenerator(
|
| 96 |
+
name="test",
|
| 97 |
+
gen_kwargs={
|
| 98 |
+
"ds": ds.filter(lambda r: r['Name'] in test_name),
|
| 99 |
+
},
|
| 100 |
+
),
|
| 101 |
+
|
| 102 |
+
]
|
| 103 |
+
|
| 104 |
+
else:
|
| 105 |
+
assert False
|
| 106 |
+
|
| 107 |
+
def _generate_tables(self, ds):
|
| 108 |
+
|
| 109 |
+
# Converting to pandas is silly, but the old version of datasets doesn't
|
| 110 |
+
# seem to have a way to convert to Arrow?
|
| 111 |
+
for i, batch in enumerate(ds.to_pandas(batched=True)):
|
| 112 |
+
yield i, pa.Table.from_pandas(batch)
|