url
stringlengths
56
57
repository_url
stringclasses
1 value
labels_url
stringlengths
70
71
comments_url
stringlengths
65
66
events_url
stringlengths
63
64
html_url
stringlengths
46
47
id
int64
1.88B
2.91B
node_id
stringlengths
18
18
number
int64
906
2.42k
title
stringlengths
3
380
user
dict
labels
listlengths
0
3
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
1
milestone
null
comments
int64
0
42
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
4 values
sub_issues_summary
dict
active_lock_reason
null
draft
bool
0 classes
pull_request
dict
body
stringlengths
4
45.9k
closed_by
dict
reactions
dict
timeline_url
stringlengths
65
66
performed_via_github_app
null
state_reason
stringclasses
3 values
is_pull_request
bool
1 class
https://api.github.com/repos/huggingface/peft/issues/2415
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2415/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2415/comments
https://api.github.com/repos/huggingface/peft/issues/2415/events
https://github.com/huggingface/peft/issues/2415
2,905,929,237
I_kwDOIf9iDM6tNPYV
2,415
size mismatch for lm_head when fintune QWEN2.5
{ "login": "minmie", "id": 40080081, "node_id": "MDQ6VXNlcjQwMDgwMDgx", "avatar_url": "https://avatars.githubusercontent.com/u/40080081?v=4", "gravatar_id": "", "url": "https://api.github.com/users/minmie", "html_url": "https://github.com/minmie", "followers_url": "https://api.github.com/users/minmie/followers", "following_url": "https://api.github.com/users/minmie/following{/other_user}", "gists_url": "https://api.github.com/users/minmie/gists{/gist_id}", "starred_url": "https://api.github.com/users/minmie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/minmie/subscriptions", "organizations_url": "https://api.github.com/users/minmie/orgs", "repos_url": "https://api.github.com/users/minmie/repos", "events_url": "https://api.github.com/users/minmie/events{/privacy}", "received_events_url": "https://api.github.com/users/minmie/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
0
2025-03-10T02:45:29
2025-03-10T02:45:29
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info transformers version: 4.49.0 Platform: Linux-6.6.0-72.0.0.64.oe2403.x86_64-x86_64-with-glibc2.38 Python version: 3.10.16 Huggingface_hub version: 0.29.1 Safetensors version: 0.5.3 Accelerate version: 1.4.0 Accelerate config: not found DeepSpeed version: not installed PyTorch version (GPU?): 2.2.2+cu121 (True) Tensorflow version (GPU?): not installed (NA) Flax version (CPU?/GPU?/TPU?): not installed (NA) Jax version: not installed JaxLib version: not installed Using distributed or parallel set-up in script?: Using GPU in script?: GPU type: NVIDIA L4 ### Who can help? @benjaminbossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction I load an adapter for Qwen/Qwen2.5-0.5B using the following code and an error occur: ```python import torch from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, pipeline from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "/home/chenjq/pythonWork/nlp/Qwen2.5-0.5B-SFT-Capybara/checkpoint-31" # peft_model_id = args.output_dir tokenizer = AutoTokenizer.from_pretrained(peft_model_id) # Load Model with PEFT adapter model = AutoPeftModelForCausalLM.from_pretrained( peft_model_id, device_map="auto", torch_dtype=torch.float16 ) ``` Error info as follow: ```python Sliding Window Attention is enabled but not implemented for `sdpa`; unexpected results may be encountered. Traceback (most recent call last): File "/home/chenjq/.pycharm_helpers/pydev/pydevd.py", line 1500, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "/home/chenjq/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "/home/chenjq/pythonWork/nlp/test14.py", line 11, in <module> model = AutoPeftModelForCausalLM.from_pretrained( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/auto.py", line 130, in from_pretrained return cls._target_peft_class.from_pretrained( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/peft_model.py", line 581, in from_pretrained load_result = model.load_adapter( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/peft_model.py", line 1239, in load_adapter load_result = set_peft_model_state_dict( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/utils/save_and_load.py", line 451, in set_peft_model_state_dict load_result = model.load_state_dict(peft_model_state_dict, strict=False) File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2153, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for PeftModelForCausalLM: size mismatch for base_model.model.lm_head.modules_to_save.default.weight: copying a param with shape torch.Size([151936, 896]) from checkpoint, the shape in current model is torch.Size([151665, 896]). Process finished with exit code 1 ``` However, if I use the following code to load model, everything just work fine: ```python from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer base_model_name ='/home/models/qwen/Qwen2.5-0.5B' adapter_model_name = "/home/chenjq/pythonWork/nlp/Qwen2.5-0.5B-SFT-Capybara/checkpoint-31" model = AutoModelForCausalLM.from_pretrained(base_model_name) model = PeftModel.from_pretrained(model, adapter_model_name) tokenizer = AutoTokenizer.from_pretrained(base_model_name) ``` Some info from [here ](https://github.com/huggingface/transformers/issues/36550#issuecomment-2708336059)that maybe help: Hi everyone! I did some research and found out that the error occurs because the len(tokenizer)(151665) and the embedding size (151936) of Qwen/Qwen2.5-0.5B do not match. _BaseAutoPeftModel.from_pretrained resizes the base model embeddings to match with the tokenizer ([here](https://github.com/huggingface/peft/blob/8edaae9460e4b76bce9431dc187402178ff7b689/src/peft/auto.py#L137)) and as a result, it is unable to load the saved weights. I think a possible solution might be to only resize base model embeddings if the tokenizer size differs from the base tokenizer size. What do you think? The adapter trained using the following code: ```python from datasets import load_dataset from trl import SFTConfig, SFTTrainer from peft import LoraConfig import os os.environ['CUDA_VISIBLE_DEVICES'] = '1' dataset = load_dataset("trl-lib/Capybara", split="train") dataset = dataset.select(range(500)) MODEL_ID = 'Qwen/Qwen2.5-0.5B' peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, target_modules="all-linear", modules_to_save=["lm_head", "embed_token"], task_type="CAUSAL_LM", ) args = SFTConfig( output_dir="Qwen2.5-0.5B-SFT-Capybara", # directory to save and repository id num_train_epochs=1, # number of training epochs per_device_train_batch_size=4, # batch size per device during training gradient_accumulation_steps=4, # number of steps before performing a backward/update pass gradient_checkpointing=True, # use gradient checkpointing to save memory optim="adamw_torch_fused", # use fused adamw optimizer logging_steps=10, # log every 10 steps save_strategy="epoch", # save checkpoint every epoch bf16=True, # use bfloat16 precision tf32=True, # use tf32 precision learning_rate=2e-4, # learning rate, based on QLoRA paper max_grad_norm=0.3, # max gradient norm based on QLoRA paper warmup_ratio=0.03, # warmup ratio based on QLoRA paper lr_scheduler_type="constant", # use constant learning rate scheduler push_to_hub=False, # push model to hub # report_to="tensorboard", # report metrics to tensorboard ) trainer = SFTTrainer( MODEL_ID, train_dataset=dataset, args=args, peft_config=peft_config ) trainer.train() print('end') ``` ### Expected behavior Hope the model can predict normally.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2415/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2415/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2413
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2413/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2413/comments
https://api.github.com/repos/huggingface/peft/issues/2413/events
https://github.com/huggingface/peft/issues/2413
2,901,962,025
I_kwDOIf9iDM6s-G0p
2,413
`LoraConfig` multiple properties should be unified
{ "login": "Qubitium", "id": 417764, "node_id": "MDQ6VXNlcjQxNzc2NA==", "avatar_url": "https://avatars.githubusercontent.com/u/417764?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Qubitium", "html_url": "https://github.com/Qubitium", "followers_url": "https://api.github.com/users/Qubitium/followers", "following_url": "https://api.github.com/users/Qubitium/following{/other_user}", "gists_url": "https://api.github.com/users/Qubitium/gists{/gist_id}", "starred_url": "https://api.github.com/users/Qubitium/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Qubitium/subscriptions", "organizations_url": "https://api.github.com/users/Qubitium/orgs", "repos_url": "https://api.github.com/users/Qubitium/repos", "events_url": "https://api.github.com/users/Qubitium/events{/privacy}", "received_events_url": "https://api.github.com/users/Qubitium/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
9
2025-03-07T04:14:24
2025-03-10T14:59:51
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
@BenjaminBossan I am trying to add dynamic Lora support to both vLLM and SGLang as LoraConfig already supports this dynamic control via the following variables: - `rank_pattern`: regex matching of which different `r`/`rank` values are applied - `exclude_modules`: regex: which modules are not excluded from lora completedly - `alpha_pattern`: regex matching of `alpha` override. extactly the same as `rank_pattern` but different property. Nothing wrong with them individually but together, they become unncessary detached and has negative impact on code cost but also on dynamic control efficiency. GPTQModel uses a single `dynamic`: Diction[str, Dict[]] where the `str` is a regex with `+:` (positive prefix, optional), `-:` negative prefix (Optional). The dict value is the property override in string: value format. Example as applied to PEFT (Proposal): ``` # implicit +: prefix if not used # prefixs are stripped before the regex is performed "mlp\.down_proj": { "r": 128 } # implicit positive "+:mlp\.down_proj": { "r": 256 } # explicit positive "-:mlp\.gate_proj": {} # negative ``` This simple control allows 3 states. - Positive match == override any property values in base config (LoraConfig). - Negative match == skip this modele for Lora (no LoraConfig at all) - No match == There is no module matched so Base LoraConfig is used. This single control replaces all existing PEFT control with same functionally while allowing ALL properties to be dynamically overriden (if necessary) without any additional apis/LoraConfig vars. As it exists, you need to add code and logic to every LoraConfig property that participates in dynamic override/control. Basically I want Peft LoraConfig to the clean standard for vLLM and SGLang when it comes to dynamic control. Having a unified `dynamic` override system makes everyone's life so much easier and at the same time eliminate the issue that we have to write code each time a new LoraConfig property comes into pace. Let me know what you think. I am willing to spend time working on it. You can also reach me at [email protected] and on [X: qubitium](https://x.com/qubitium). I really would love to chat with you for like 15 minutes to ping-pong this idea with you. CC: @SunMarc @MekkCyber
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2413/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2413/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2412
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2412/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2412/comments
https://api.github.com/repos/huggingface/peft/issues/2412/events
https://github.com/huggingface/peft/issues/2412
2,901,275,403
I_kwDOIf9iDM6s7fML
2,412
Lora_B weight becomes 0 when using AuotModel
{ "login": "makcedward", "id": 36614806, "node_id": "MDQ6VXNlcjM2NjE0ODA2", "avatar_url": "https://avatars.githubusercontent.com/u/36614806?v=4", "gravatar_id": "", "url": "https://api.github.com/users/makcedward", "html_url": "https://github.com/makcedward", "followers_url": "https://api.github.com/users/makcedward/followers", "following_url": "https://api.github.com/users/makcedward/following{/other_user}", "gists_url": "https://api.github.com/users/makcedward/gists{/gist_id}", "starred_url": "https://api.github.com/users/makcedward/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/makcedward/subscriptions", "organizations_url": "https://api.github.com/users/makcedward/orgs", "repos_url": "https://api.github.com/users/makcedward/repos", "events_url": "https://api.github.com/users/makcedward/events{/privacy}", "received_events_url": "https://api.github.com/users/makcedward/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
0
2025-03-06T19:45:29
2025-03-06T19:45:29
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info transformers version: 4.49.0 peft version: 0.14.0 ### Who can help? @benjaminbossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction ``` from transformers import AutoModel, AutoModelForCausalLM from peft import PeftModel base_model_id = "meta-llama/Llama-3.2-1B" adapter_id = "makcedward/Llama-3.2-1B-Instruct-LoRA-Adapter" auto_model = PeftModel.from_pretrained( AutoModel.from_pretrained( base_model_id, ), adapter_id ) auto_casual_model = PeftModel.from_pretrained( AutoModelForCausalLM.from_pretrained( base_model_id, ), adapter_id ) print("Auto Model") print(auto_model.base_model.model.layers[0].self_attn.q_proj.lora_A.default.weight) # tensor([[-0.0168, 0.0056, -0.0009, ..., 0.0149, -0.0161, -0.0064], print(auto_model.base_model.model.layers[0].self_attn.q_proj.lora_B.default.weight) # tensor([[0., 0., 0., ..., 0., 0., 0.], print("AutoModelForCausalLM") print(auto_casual_model.base_model.model.model.layers[0].self_attn.q_proj.lora_A.default.weight) # tensor([[ 1.5867e-02, 2.7307e-02, -1.8503e-02, ..., -1.2035e-02, print(auto_casual_model.base_model.model.model.layers[0].self_attn.q_proj.lora_B.default.weight) # tensor([[-7.1123e-04, -4.3834e-03, -1.7415e-03, ..., 4.3514e-03, ``` ### Expected behavior Able to load LoRA weights by using AutoModel
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2412/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2412/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2410
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2410/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2410/comments
https://api.github.com/repos/huggingface/peft/issues/2410/events
https://github.com/huggingface/peft/issues/2410
2,899,373,069
I_kwDOIf9iDM6s0OwN
2,410
running forward loop using get_peft_model disables requires_grad on output
{ "login": "Hamidreza3252", "id": 27887474, "node_id": "MDQ6VXNlcjI3ODg3NDc0", "avatar_url": "https://avatars.githubusercontent.com/u/27887474?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Hamidreza3252", "html_url": "https://github.com/Hamidreza3252", "followers_url": "https://api.github.com/users/Hamidreza3252/followers", "following_url": "https://api.github.com/users/Hamidreza3252/following{/other_user}", "gists_url": "https://api.github.com/users/Hamidreza3252/gists{/gist_id}", "starred_url": "https://api.github.com/users/Hamidreza3252/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hamidreza3252/subscriptions", "organizations_url": "https://api.github.com/users/Hamidreza3252/orgs", "repos_url": "https://api.github.com/users/Hamidreza3252/repos", "events_url": "https://api.github.com/users/Hamidreza3252/events{/privacy}", "received_events_url": "https://api.github.com/users/Hamidreza3252/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-03-06T05:12:42
2025-03-06T15:35:13
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
Hi, I would like to report a recent issue I have been facing, but I am not sure if it is a bug or I am doing something wrong in the process. The steps to re-create the steps are easy. The issue happens when I try to convert **Qwen2-VL-2B-Instruct** model into a PEFT model using `get_peft_model` method. Simply load the model using the sample code in https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct and try to convert it to a PEFT model using a typical **8bit** LoraConfig with just sample `target_modules=["q_proj", "v_proj"]`. Then simply run a forward call to the model using a dummy input, such as `input_ids = torch.zeros((4, 1247)).to(device)`. When I inspect the `requires_grad` of `logits` attribute of the output, it is False. Meaning that I cannot run backward based on that output. This issue has been puzzling me for a while. I would appreciate if you can help me with a solution or advice how to address it properly.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2410/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2410/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2407
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2407/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2407/comments
https://api.github.com/repos/huggingface/peft/issues/2407/events
https://github.com/huggingface/peft/issues/2407
2,895,061,583
I_kwDOIf9iDM6sjyJP
2,407
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:3! (when checking argument for argument mat2 in method wrapper_CUDA_mm)
{ "login": "maxliang114514", "id": 196797831, "node_id": "U_kgDOC7rlhw", "avatar_url": "https://avatars.githubusercontent.com/u/196797831?v=4", "gravatar_id": "", "url": "https://api.github.com/users/maxliang114514", "html_url": "https://github.com/maxliang114514", "followers_url": "https://api.github.com/users/maxliang114514/followers", "following_url": "https://api.github.com/users/maxliang114514/following{/other_user}", "gists_url": "https://api.github.com/users/maxliang114514/gists{/gist_id}", "starred_url": "https://api.github.com/users/maxliang114514/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maxliang114514/subscriptions", "organizations_url": "https://api.github.com/users/maxliang114514/orgs", "repos_url": "https://api.github.com/users/maxliang114514/repos", "events_url": "https://api.github.com/users/maxliang114514/events{/privacy}", "received_events_url": "https://api.github.com/users/maxliang114514/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
6
2025-03-04T18:09:43
2025-03-10T11:17:16
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
**When I attempted to swap out the Lora configuration in Q-Lora(see qlora.py in _https://github.com/artidoro/qlora_) for Vera, I ran into the following error:** Traceback (most recent call last): File "qvera.py", line 859, in <module> train() File "qvera.py", line 821, in train train_result = trainer.train() File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 1539, in train return inner_training_loop( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 1809, in _inner_training_loop tr_loss_step = self.training_step(model, inputs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 2654, in training_step loss = self.compute_loss(model, inputs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 2679, in compute_loss outputs = model(**inputs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/peft/peft_model.py", line 1644, in forward return self.base_model( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/peft/tuners/tuners_utils.py", line 197, in forward return self.model.forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 806, in forward outputs = self.model( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 685, in forward layer_outputs = torch.utils.checkpoint.checkpoint( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 249, in checkpoint return CheckpointFunction.apply(function, preserve, *args) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/autograd/function.py", line 506, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 107, in forward outputs = run_function(*args) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 681, in custom_forward return module(*inputs, output_attentions, None) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 408, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 305, in forward query_states = self.q_proj(hidden_states) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/peft/tuners/vera/layer.py", line 287, in forward result = result + lambda_b * F.linear(lambda_d * F.linear(dropout(x), sliced_A), sliced_B) RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:3! (when checking argument for argument mat2 in method wrapper_CUDA_mm) **However, with the original settings, everything was trainable. My GPU specs are as follows:** +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 550.135 Driver Version: 550.135 CUDA Version: 12.4 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 2080 Ti Off | 00000000:02:00.0 Off | N/A | | 22% 19C P8 11W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ | 1 NVIDIA GeForce RTX 2080 Ti Off | 00000000:03:00.0 Off | N/A | | 22% 19C P8 21W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ | 2 NVIDIA GeForce RTX 2080 Ti Off | 00000000:82:00.0 Off | N/A | | 22% 20C P8 17W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ | 3 NVIDIA GeForce RTX 2080 Ti Off | 00000000:83:00.0 Off | N/A | | 22% 19C P8 8W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ **Is this an issue specific to Vera's unique characteristics? Given the scarcity of resources on Vera, I'd greatly appreciate any help with this problem, thank you!**
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2407/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2407/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2405
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2405/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2405/comments
https://api.github.com/repos/huggingface/peft/issues/2405/events
https://github.com/huggingface/peft/issues/2405
2,890,200,666
I_kwDOIf9iDM6sRPZa
2,405
SafetensorError when Merging LoRA Weights
{ "login": "Nothern-ai", "id": 143473220, "node_id": "U_kgDOCI06RA", "avatar_url": "https://avatars.githubusercontent.com/u/143473220?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Nothern-ai", "html_url": "https://github.com/Nothern-ai", "followers_url": "https://api.github.com/users/Nothern-ai/followers", "following_url": "https://api.github.com/users/Nothern-ai/following{/other_user}", "gists_url": "https://api.github.com/users/Nothern-ai/gists{/gist_id}", "starred_url": "https://api.github.com/users/Nothern-ai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Nothern-ai/subscriptions", "organizations_url": "https://api.github.com/users/Nothern-ai/orgs", "repos_url": "https://api.github.com/users/Nothern-ai/repos", "events_url": "https://api.github.com/users/Nothern-ai/events{/privacy}", "received_events_url": "https://api.github.com/users/Nothern-ai/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
1
2025-03-03T05:22:05
2025-03-03T10:11:44
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Original Working Environment: Python 3.8, transformers==4.46.0.dev0, safetensors==0.4.4, peft==0.12.0, trl==0.10.1 New Environment with Issue: transformers==4.45.2, safetensors==0.4.4, peft==0.12.0, trl==0.10.1 ### Who can help? _No response_ ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction When migrating from the original environment to a new machine with slightly different package versions, I encountered an error during the model merging process. My workflow involves: Saving LoRA weights Merging these weights with the base model The error occurs specifically during the loading of safetensors files after merging/ Reproduction Steps no need to train directly save LoRA weights (this step succeeds) Attempt to merge the saved weights with the original model The merge fails with the above error ``` # train_critic.py import os import time import shutil import argparse import torch import torch.distributed as dist from transformers import ( AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig, ) from datasets import load_dataset from trl import DPOTrainer, DPOConfig from peft import LoraConfig, PeftModel import wandb from datetime import datetime def print_rank_0(message): if dist.get_rank() == 0: print(message) def main(): # ------------- Parse Arguments ------------- parser = argparse.ArgumentParser() parser.add_argument("--epoch", type=int, required=True, help="Current outer training iteration (which round)") parser.add_argument("--pref_dir", type=str, required=True, help="Folder for storing the preference dataset") parser.add_argument("--weights_dir", type=str, required=True, help="Folder for saving and loading weights") parser.add_argument("--train_epochs", type=int, default=1, help="Number of epochs to run in this DPO fine-tuning") parser.add_argument("--beta", type=float, default=0.2, help="Beta hyperparameter for DPO") parser.add_argument("--learning_rate", type=float, default=5e-6, help="Learning rate") parser.add_argument("--batch_size", type=int, default=1, help="Batch Size") args = parser.parse_args() # ------------- Distributed Initialization ------------- local_rank = int(os.environ.get("LOCAL_RANK", -1)) if local_rank >= 0: torch.cuda.set_device(local_rank) dist.init_process_group( backend='nccl', init_method='env://', world_size=int(os.environ.get("WORLD_SIZE", 1)), rank=int(os.environ.get("RANK", 0)) ) print_rank_0(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES')}") print_rank_0(f"LOCAL_RANK: {os.environ.get('LOCAL_RANK')}") print_rank_0(f"WORLD_SIZE: {os.environ.get('WORLD_SIZE')}") # ------------- config ------------- epoch = args.epoch weights_dir = args.weights_dir pref_dir = args.pref_dir batch_size = args.batch_size base_model_path = "meta-llama/Llama-3.1-8B-Instruct" print("base_model_path:", base_model_path) data_path = os.path.join(pref_dir, f"critic_{epoch}.jsonl") output_model_path = os.path.join(weights_dir, f"critic_{epoch}") os.makedirs(output_model_path, exist_ok=True) print_rank_0(f"Loading base model from: {base_model_path}") model = AutoModelForCausalLM.from_pretrained( base_model_path, torch_dtype=torch.bfloat16, device_map={'': torch.cuda.current_device()} # device_map={'': torch.cuda.current_device()} if local_rank >= 0 else "auto", ) tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False) model.generation_config = GenerationConfig( max_new_tokens=512, temperature=0.7, do_sample=True, ) # padding_side/pad_token tokenizer.add_special_tokens({'pad_token': '[PAD]'}) tokenizer.padding_side = 'right' tokenizer.pad_token = '[PAD]' model.config.pad_token_id = tokenizer.pad_token_id model.config.eos_token_id = tokenizer.eos_token_id with torch.no_grad(): model.resize_token_embeddings(len(tokenizer)) print_rank_0(f"Loading dataset from: {data_path}") dataset = load_dataset('json', data_files=data_path)['train'] def convert_format(example): messages = example['messages'] formatted = "<|begin_of_text|>" # system system_msg = messages[0] formatted += f"<|start_header_id|>system<|end_header_id|>\n\n{system_msg['content']}<|eot_id|>" # user user_msg = messages[1] formatted += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg['content']}<|eot_id|>" # assistant formatted += "<|start_header_id|>assistant<|end_header_id|>\n\n" chosen_response = example['chosen'] + tokenizer.eos_token rejected_response = example['rejected'] + tokenizer.eos_token return { "prompt": formatted, "chosen": chosen_response, "rejected": rejected_response } train_dataset = dataset.map( convert_format, remove_columns=dataset.column_names, load_from_cache_file=False ) base_lr = args.learning_rate scaled_lr = base_lr * dist.get_world_size() * batch_size warmup_steps = 100 dpo_config = DPOConfig( beta=args.beta, warmup_steps=warmup_steps, weight_decay=0.01, learning_rate=scaled_lr, rpo_alpha=1.0, # lr_scheduler_type="cosine", output_dir=output_model_path, num_train_epochs=args.train_epochs, per_device_train_batch_size=batch_size, fp16=False, bf16=True, logging_steps=10, save_strategy="no", save_total_limit=1, report_to="none", ddp_backend='nccl', remove_unused_columns=False, dataloader_drop_last=True, max_length=2048, max_prompt_length=2048, local_rank=local_rank, ) # LoRA peft_config = LoraConfig( r=256, lora_alpha=32, target_modules=["q_proj", "k_proj", "v_proj", "o_proj"], lora_dropout=0.0, bias="none", task_type="CAUSAL_LM", ) trainer = DPOTrainer( model=model, args=dpo_config, train_dataset=train_dataset, tokenizer=tokenizer, peft_config=peft_config, ) trainer.train() # ------------- merge LoRA ------------- if dist.get_rank() == 0: lora_weights_path = os.path.join(output_model_path, "lora_weights") trainer.model.save_pretrained(lora_weights_path) # print("lora weight saved") # trainer.model.save_pretrained(lora_weights_path, safe_serialization=False) print("lora weight saved") base_merged_model = AutoModelForCausalLM.from_pretrained( base_model_path, device_map=None, low_cpu_mem_usage=False, ) tokenizer.add_special_tokens({'pad_token': '[PAD]'}) tokenizer.pad_token = '[PAD]' base_merged_model.config.pad_token_id = tokenizer.pad_token_id base_merged_model.config.eos_token_id = tokenizer.eos_token_id with torch.no_grad(): base_merged_model.resize_token_embeddings(len(tokenizer)) peft_model = PeftModel.from_pretrained( base_merged_model, lora_weights_path, device_map=None, ) merged_model = peft_model.merge_and_unload() # save print_rank_0(f"Saving merged model to: {output_model_path}") merged_model.save_pretrained(output_model_path) print_rank_0("Model saved successfully") tokenizer.save_pretrained(output_model_path) # delete lora weights shutil.rmtree(lora_weights_path) dist.barrier(device_ids=[local_rank] if local_rank >= 0 else None) print_rank_0("DPO Training complete.") dist.destroy_process_group() if __name__ == "__main__": main() ``` When trying to skip saving the LoRA weights and directly merging them, the merge operation succeeds ``` peft_model = trainer.model merged_model = peft_model.merge_and_unload() print_rank_0(f"Saving merged model to: {output_model_path}") merged_model.save_pretrained(output_model_path) tokenizer.save_pretrained(output_model_path) print_rank_0("Merged model saved successfully") ``` However, attempting to AutoModelForCausalLM.from_pretrained the merged safetensors weights later results in the error2 ### Expected behavior error1(save lora weights and merge): > 100%|██████████| 1/1 [00:01<00:00, 1.91s/it] > 100%|██████████| 1/1 [00:01<00:00, 1.92s/it] > /home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/utils/save_and_load.py:232: UserWarning: Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning. > warnings.warn( > lora weight saved > > Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s] > Loading checkpoint shards: 25%|██▌ | 1/4 [00:00<00:02, 1.28it/s] > Loading checkpoint shards: 50%|█████ | 2/4 [00:01<00:01, 1.32it/s] > Loading checkpoint shards: 75%|███████▌ | 3/4 [00:02<00:00, 1.31it/s] > Loading checkpoint shards: 100%|██████████| 4/4 [00:02<00:00, 1.74it/s] > Loading checkpoint shards: 100%|██████████| 4/4 [00:02<00:00, 1.55it/s] > [rank0]: Traceback (most recent call last): > [rank0]: File "/users/w/ac/train/train_critic.py", line 249, in <module> > [rank0]: main() > [rank0]: File "/users/w/ac/train/train_critic.py", line 225, in main > [rank0]: peft_model = PeftModel.from_pretrained( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/peft_model.py", line 545, in from_pretrained > [rank0]: model.load_adapter( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/peft_model.py", line 1113, in load_adapter > [rank0]: adapters_weights = load_peft_weights(model_id, device=torch_device, **hf_hub_download_kwargs) > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/utils/save_and_load.py", line 486, in load_peft_weights > [rank0]: adapters_weights = safe_load_file(filename, device=device) > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/safetensors/torch.py", line 311, in load_file > [rank0]: with safe_open(filename, framework="pt", device=device) as f: > [rank0]: safetensors_rust.SafetensorError: Error while deserializing header: MetadataIncompleteBuffer > E0302 21:17:38.377842 2650981 site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 0 (pid: 2651079) of binary: /home//miniconda3/envs/py39env/bin/python > Traceback (most recent call last): > File "/home//miniconda3/envs/py39env/bin/torchrun", line 8, in <module> > sys.exit(main()) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper > return f(*args, **kwargs) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 919, in main > run(args) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 910, in run > elastic_launch( > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ > return launch_agent(self._config, self._entrypoint, list(args)) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent > raise ChildFailedError( > torch.distributed.elastic.multiprocessing.errors.ChildFailedError: error2:(directly merge, and load the model after merge > CUDA_VISIBLE_DEVICES: 1 > LOCAL_RANK: 0 > WORLD_SIZE: 1 > base_model_path: /train/runs/301_wd/weights/_1 > Loading base model from: /train/runs/301_wd/weights/_1 > > Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s] > Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s] > [rank0]: Traceback (most recent call last): > [rank0]: File "/train/train_.py", line 216, in <module> > [rank0]: main() > [rank0]: File "/train/train_.py", line 91, in main > [rank0]: model = AutoModelForCausalLM.from_pretrained( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/models/auto/auto_factory.py", line 564, in from_pretrained > [rank0]: return model_class.from_pretrained( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/modeling_utils.py", line 4014, in from_pretrained > [rank0]: ) = cls._load_pretrained_model( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/modeling_utils.py", line 4482, in _load_pretrained_model > [rank0]: state_dict = load_state_dict(shard_file, is_quantized=is_quantized) > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/modeling_utils.py", line 549, in load_state_dict > [rank0]: with safe_open(checkpoint_file, framework="pt") as f: > [rank0]: safetensors_rust.SafetensorError: Error while deserializing header: MetadataIncompleteBuffer > E0302 20:39:06.398025 2565872 site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 0 (pid: 2566031) of binary: /home//miniconda3/envs/py39env/bin/python > Traceback (most recent call last): > File "/home//miniconda3/envs/py39env/bin/torchrun", line 8, in <module> > sys.exit(main()) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper > return f(*args, **kwargs) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 919, in main > run(args) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 910, in run > elastic_launch( > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ > return launch_agent(self._config, self._entrypoint, list(args)) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent > raise ChildFailedError( > torch.distributed.elastic.multiprocessing.errors.ChildFailedError: > ============================================================
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2405/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2405/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2400
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2400/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2400/comments
https://api.github.com/repos/huggingface/peft/issues/2400/events
https://github.com/huggingface/peft/issues/2400
2,881,481,036
I_kwDOIf9iDM6rv-lM
2,400
processing_class and tokenizer arguments on SFTTrainer()
{ "login": "ErikKankaTrea", "id": 18656607, "node_id": "MDQ6VXNlcjE4NjU2NjA3", "avatar_url": "https://avatars.githubusercontent.com/u/18656607?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ErikKankaTrea", "html_url": "https://github.com/ErikKankaTrea", "followers_url": "https://api.github.com/users/ErikKankaTrea/followers", "following_url": "https://api.github.com/users/ErikKankaTrea/following{/other_user}", "gists_url": "https://api.github.com/users/ErikKankaTrea/gists{/gist_id}", "starred_url": "https://api.github.com/users/ErikKankaTrea/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ErikKankaTrea/subscriptions", "organizations_url": "https://api.github.com/users/ErikKankaTrea/orgs", "repos_url": "https://api.github.com/users/ErikKankaTrea/repos", "events_url": "https://api.github.com/users/ErikKankaTrea/events{/privacy}", "received_events_url": "https://api.github.com/users/ErikKankaTrea/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2025-02-26T12:48:33
2025-02-27T03:39:02
2025-02-27T03:39:00
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
Hi!!! I got unexpected error from my side when running the example train.py with deepspeed [(link)](https://github.com/huggingface/peft/tree/main/examples/sft) Argument "**tokenizer**" should be now "**processing_class**". Could anyone please, let me know whether with the example provided (link above) changing the arguments names on SFTTrainer() for passing the tokenizer should be enough ? I am worried if I make that change switching arguments the example scripts will miss sense. Thanks in advance!
{ "login": "ErikKankaTrea", "id": 18656607, "node_id": "MDQ6VXNlcjE4NjU2NjA3", "avatar_url": "https://avatars.githubusercontent.com/u/18656607?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ErikKankaTrea", "html_url": "https://github.com/ErikKankaTrea", "followers_url": "https://api.github.com/users/ErikKankaTrea/followers", "following_url": "https://api.github.com/users/ErikKankaTrea/following{/other_user}", "gists_url": "https://api.github.com/users/ErikKankaTrea/gists{/gist_id}", "starred_url": "https://api.github.com/users/ErikKankaTrea/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ErikKankaTrea/subscriptions", "organizations_url": "https://api.github.com/users/ErikKankaTrea/orgs", "repos_url": "https://api.github.com/users/ErikKankaTrea/repos", "events_url": "https://api.github.com/users/ErikKankaTrea/events{/privacy}", "received_events_url": "https://api.github.com/users/ErikKankaTrea/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2400/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2400/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2394
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2394/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2394/comments
https://api.github.com/repos/huggingface/peft/issues/2394/events
https://github.com/huggingface/peft/issues/2394
2,874,191,172
I_kwDOIf9iDM6rUK1E
2,394
TP + DP training error
{ "login": "iMountTai", "id": 35353688, "node_id": "MDQ6VXNlcjM1MzUzNjg4", "avatar_url": "https://avatars.githubusercontent.com/u/35353688?v=4", "gravatar_id": "", "url": "https://api.github.com/users/iMountTai", "html_url": "https://github.com/iMountTai", "followers_url": "https://api.github.com/users/iMountTai/followers", "following_url": "https://api.github.com/users/iMountTai/following{/other_user}", "gists_url": "https://api.github.com/users/iMountTai/gists{/gist_id}", "starred_url": "https://api.github.com/users/iMountTai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/iMountTai/subscriptions", "organizations_url": "https://api.github.com/users/iMountTai/orgs", "repos_url": "https://api.github.com/users/iMountTai/repos", "events_url": "https://api.github.com/users/iMountTai/events{/privacy}", "received_events_url": "https://api.github.com/users/iMountTai/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
7
2025-02-24T08:30:53
2025-02-27T16:50:07
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft: 0.14.1.dev0 transformers: 4.50.dev0 accelerate: 1.4.0.dev0 python: 3.11 linux ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction After adding the LoRA module to the model, an error occurred: NotImplementederror: ColwiseParallel currently only support nn.linear and nn.embedding ### Expected behavior lora module training with TP
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2394/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2394/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2390
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2390/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2390/comments
https://api.github.com/repos/huggingface/peft/issues/2390/events
https://github.com/huggingface/peft/issues/2390
2,866,034,838
I_kwDOIf9iDM6q1DiW
2,390
Bug: Using 2 LoRA configs with `target_modules='all-linear'` leads to nested LoRA layers
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 4838806417, "node_id": "LA_kwDOIf9iDM8AAAABIGpTkQ", "url": "https://api.github.com/repos/huggingface/peft/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" }, { "id": 4838806434, "node_id": "LA_kwDOIf9iDM8AAAABIGpTog", "url": "https://api.github.com/repos/huggingface/peft/labels/good%20first%20issue", "name": "good first issue", "color": "7057ff", "default": true, "description": "Good for newcomers" } ]
closed
false
null
[]
null
0
2025-02-20T12:34:35
2025-03-04T16:16:16
2025-03-04T16:16:16
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info - ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ```python from transformers import AutoModelForCausalLM from peft import LoraConfig, get_peft_model model_id = "hf-internal-testing/tiny-random-OPTForCausalLM" model = AutoModelForCausalLM.from_pretrained(model_id) config0 = LoraConfig(target_modules="all-linear") config1 = LoraConfig(target_modules="all-linear") model = get_peft_model(model, config0)#, adapter_name="default") model.add_adapter("adapter1", config1) print(model.base_model.model.model.decoder.layers[0].self_attn.k_proj) ``` prints: ``` lora.Linear( (base_layer): lora.Linear( (base_layer): Linear(in_features=16, out_features=16, bias=True) (lora_dropout): ModuleDict( (adapter1): Identity() ) (lora_A): ModuleDict( (adapter1): Linear(in_features=16, out_features=8, bias=False) ) (lora_B): ModuleDict( (adapter1): Linear(in_features=8, out_features=16, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (lora_dropout): ModuleDict( (default): Identity() ) (lora_A): ModuleDict( (default): lora.Linear( (base_layer): Linear(in_features=16, out_features=8, bias=False) (lora_dropout): ModuleDict( (adapter1): Identity() ) (lora_A): ModuleDict( (adapter1): Linear(in_features=16, out_features=8, bias=False) ) (lora_B): ModuleDict( (adapter1): Linear(in_features=8, out_features=8, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (lora_B): ModuleDict( (default): lora.Linear( (base_layer): Linear(in_features=8, out_features=16, bias=False) (lora_dropout): ModuleDict( (adapter1): Identity() ) (lora_A): ModuleDict( (adapter1): Linear(in_features=8, out_features=8, bias=False) ) (lora_B): ModuleDict( (adapter1): Linear(in_features=8, out_features=16, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ``` ### Expected behavior Instead of getting nested LoRA layers, the linear layers belonging to a LoRA layer should not be targeted by `all-linear`.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2390/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2390/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2388
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2388/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2388/comments
https://api.github.com/repos/huggingface/peft/issues/2388/events
https://github.com/huggingface/peft/issues/2388
2,863,639,986
I_kwDOIf9iDM6qr62y
2,388
ValueError: Target module Qwen2_5_VisionTransformerPretrainedModel is not supported.
{ "login": "samuellimabraz", "id": 115582014, "node_id": "U_kgDOBuOkPg", "avatar_url": "https://avatars.githubusercontent.com/u/115582014?v=4", "gravatar_id": "", "url": "https://api.github.com/users/samuellimabraz", "html_url": "https://github.com/samuellimabraz", "followers_url": "https://api.github.com/users/samuellimabraz/followers", "following_url": "https://api.github.com/users/samuellimabraz/following{/other_user}", "gists_url": "https://api.github.com/users/samuellimabraz/gists{/gist_id}", "starred_url": "https://api.github.com/users/samuellimabraz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/samuellimabraz/subscriptions", "organizations_url": "https://api.github.com/users/samuellimabraz/orgs", "repos_url": "https://api.github.com/users/samuellimabraz/repos", "events_url": "https://api.github.com/users/samuellimabraz/events{/privacy}", "received_events_url": "https://api.github.com/users/samuellimabraz/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-02-19T15:09:17
2025-03-06T16:30:36
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
## Context I'm finetuning the Qwen2.5-Vl model with swift for data extraction using LoRA. I'm not sure what is the correct way to save and upload the adapter and be able to recharge it correctly. In short, I followed these steps ```python # load model model, processor = get_model_tokenizer( 'Qwen/Qwen2.5-VL-3B-Instruct', torch_dtype=torch.bfloat16, use_hf=True, attn_impl="flash_attn", ) # get lora ... model = Swift.prepare_model(model, lora_config) # train config e run ... trainer = Seq2SeqTrainer( model=model, args=training_args, data_collator=template.data_collator, train_dataset=train_dataset, eval_dataset=val_dataset, template=template, callbacks= [ EarlyStoppingCallback( early_stopping_patience=6, early_stopping_threshold=0.001 ) ] ) stats = trainer.train() # push adapter model.push_to_hub(f"tech4humans/{model_name}", private=True) ``` debugging the peft model was loaded with the class `PeftModelForCausalLM`. ## Problem Then after I tried to recharge the adapter and I get an error with peft ```python from transformers import Qwen2_5_VLForConditionalGeneration model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", device_map="auto") model.load_adapter("tech4humans/Qwen2.5-VL-3B-Instruct-r4-tuned") ``` ```python /usr/local/lib/python3.10/dist-packages/peft/tuners/lora/model.py in _create_new_module(lora_config, adapter_name, target, **kwargs) 345 if new_module is None: 346 # no module could be matched --> 347 raise ValueError( 348 f"Target module {target} is not supported. Currently, only the following modules are supported: " 349 "`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv1d`, `torch.nn.Conv2d`, `torch.nn.Conv3d`, ". ValueError: Target module Qwen2_5_VisionTransformerPretrainedModel( (patch_embed): Qwen2_5_VisionPatchEmbed( (proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False) ) (rotary_pos_emb): Qwen2_5_VisionRotaryEmbedding() (blocks): ModuleList( (0-31): 32 x Qwen2_5_VLVisionBlock( (norm1): Qwen2RMSNorm((1280,), eps=1e-06) (norm2): Qwen2RMSNorm((1280,), eps=1e-06) (attn): Qwen2_5_VLVisionSdpaAttention( (qkv): Linear(in_features=1280, out_features=3840, bias=True) (proj): Linear(in_features=1280, out_features=1280, bias=True) ) (mlp): Qwen2_5_VLMLP( (gate_proj): Linear(in_features=1280, out_features=3420, bias=True) (up_proj): Linear(in_features=1280, out_features=3420, bias=True) (down_proj): Linear(in_features=3420, out_features=1280, bias=True) (act_fn): SiLU() ) ) ) (merger): Qwen2_5_VLPatchMerger( (ln_q): Qwen2RMSNorm((1280,), eps=1e-06) (mlp): Sequential( (0): Linear(in_features=5120, out_features=5120, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=5120, out_features=2048, bias=True) ) ) ) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv1d`, `torch.nn.Conv2d`, `torch.nn.Conv3d`, `transformers.pytorch_utils.Conv1D`, `torch.nn.MultiheadAttention.`. ``` ## Sytem info ``` transformers 4.50.0.dev0 peft 0.14.1.dev0 ms-swift 3.2.0.dev0 Python 3.10.12 CUDA Version: 12.6 ``` Am I missing something or doing something wrong? Any pointers would be appreciated. Thanks!
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2388/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2388/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2381
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2381/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2381/comments
https://api.github.com/repos/huggingface/peft/issues/2381/events
https://github.com/huggingface/peft/issues/2381
2,857,556,037
I_kwDOIf9iDM6qUthF
2,381
Bug when deleting adapters of a model with modules_to_save
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 4838806417, "node_id": "LA_kwDOIf9iDM8AAAABIGpTkQ", "url": "https://api.github.com/repos/huggingface/peft/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
open
false
null
[]
null
0
2025-02-17T11:22:34
2025-02-20T12:35:13
null
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info All PEFT versions. ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ```python from transformers import AutoModelForSequenceClassification from peft import LoraConfig, get_peft_model model_id = "facebook/opt-125m" config = LoraConfig(task_type="SEQ_CLS") model = AutoModelForSequenceClassification.from_pretrained(model_id) adapter_to_delete = "delete_me" model = get_peft_model(model, config) model.add_adapter(adapter_to_delete, config) # sanity check assert "delete_me" in model.base_model.model.score.modules_to_save model.delete_adapter(adapter_to_delete) assert "delete_me" not in model.base_model.model.score.modules_to_save ``` ### Expected behavior When adding, say, a LoRA adapter with `modules_to_save`, then deleting the adapter, the LoRA part is correctly removed but the `modules_to_save` part is not removed.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2381/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2381/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2379
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2379/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2379/comments
https://api.github.com/repos/huggingface/peft/issues/2379/events
https://github.com/huggingface/peft/issues/2379
2,854,940,754
I_kwDOIf9iDM6qKvBS
2,379
prompt_tuning_peft tutorial raises cache layer error
{ "login": "jakerobers", "id": 1840629, "node_id": "MDQ6VXNlcjE4NDA2Mjk=", "avatar_url": "https://avatars.githubusercontent.com/u/1840629?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jakerobers", "html_url": "https://github.com/jakerobers", "followers_url": "https://api.github.com/users/jakerobers/followers", "following_url": "https://api.github.com/users/jakerobers/following{/other_user}", "gists_url": "https://api.github.com/users/jakerobers/gists{/gist_id}", "starred_url": "https://api.github.com/users/jakerobers/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jakerobers/subscriptions", "organizations_url": "https://api.github.com/users/jakerobers/orgs", "repos_url": "https://api.github.com/users/jakerobers/repos", "events_url": "https://api.github.com/users/jakerobers/events{/privacy}", "received_events_url": "https://api.github.com/users/jakerobers/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-02-15T00:10:11
2025-02-19T10:21:15
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Following the prompt tuning guide leads to an error when executing in a local environment: - https://huggingface.co/learn/cookbook/en/prompt_tuning_peft When executing, an exception is raised when calling `model.generate()` with the prompt-tuned model. Everything up to that point seems to be working as expected (i.e. the `peft_outputs_prompt` and `peft_outputs_sentences` directories containing the prompt-tunings have checkpoints). Having a look at the stacktrace, it looks like `model_kwargs["past_key_values"]` is being referenced in `peft/peft_model.py`. I'm curious if this is possibly related to https://github.com/huggingface/peft/issues/1962. ``` Traceback (most recent call last): File "/main.py", line 148, in <module> loaded_model_prompt_outputs = get_outputs(loaded_model_prompt, input_prompt) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "./main.py", line 17, in get_outputs outputs = model.generate( ^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/peft/peft_model.py", line 1140, in generate outputs = self.base_model.generate(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/transformers/generation/utils.py", line 2255, in generate result = self._sample( ^^^^^^^^^^^^^ File "lib/python3.11/site-packages/transformers/generation/utils.py", line 3247, in _sample model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/peft/peft_model.py", line 1169, in prepare_inputs_for_generation if model_kwargs["past_key_values"][0][0].shape[-2] >= model_kwargs["input_ids"].shape[1]: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^ File "lib/python3.11/site-packages/transformers/cache_utils.py", line 390, in __getitem__ raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") KeyError: 'Cache only has 0 layers, attempted to access layer with index 0' ``` cc @BenjaminBossan since you have some context around how `past_key_values` [works with transformers](https://github.com/huggingface/peft/pull/2096/files) ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction This is the code provided in the article https://huggingface.co/learn/cookbook/en/prompt_tuning_peft, condensed into a single script. ``` #!/usr/bin/env python # TODO: https://huggingface.co/learn/cookbook/en/prompt_tuning_peft # TODO: https://huggingface.co/docs/peft/en/package_reference/prompt_tuning from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "bigscience/bloomz-560m" # model_name="bigscience/bloom-1b1" NUM_VIRTUAL_TOKENS = 4 NUM_EPOCHS = 6 tokenizer = AutoTokenizer.from_pretrained(model_name) foundational_model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) def get_outputs(model, inputs, max_new_tokens=100): outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=max_new_tokens, # temperature=0.2, # top_p=0.95, # do_sample=True, repetition_penalty=1.5, # Avoid repetition. early_stopping=True, # The model can stop before reach the max_length eos_token_id=tokenizer.eos_token_id, ) return outputs input_prompt = tokenizer("I want you to act as a motivational coach. ", return_tensors="pt") foundational_outputs_prompt = get_outputs(foundational_model, input_prompt, max_new_tokens=50) print(tokenizer.batch_decode(foundational_outputs_prompt, skip_special_tokens=True)) import os from IPython.display import display # os.environ["TOKENIZERS_PARALLELISM"] = "false" from datasets import load_dataset dataset_prompt = "fka/awesome-chatgpt-prompts" # Create the Dataset to create prompts. # data_prompt = load_dataset(dataset_prompt) data_prompt = data_prompt.map(lambda samples: tokenizer(samples["prompt"]), batched=True) train_sample_prompt = data_prompt["train"].select(range(50)) display(train_sample_prompt) print(train_sample_prompt[:1]) dataset_sentences = load_dataset("Abirate/english_quotes") data_sentences = dataset_sentences.map(lambda samples: tokenizer(samples["quote"]), batched=True) train_sample_sentences = data_sentences["train"].select(range(25)) train_sample_sentences = train_sample_sentences.remove_columns(["author", "tags"]) display(train_sample_sentences) print(train_sample_sentences[:1]) from peft import get_peft_model, PromptTuningConfig, TaskType, PromptTuningInit generation_config = PromptTuningConfig( task_type=TaskType.CAUSAL_LM, # This type indicates the model will generate text. prompt_tuning_init=PromptTuningInit.RANDOM, # The added virtual tokens are initializad with random numbers num_virtual_tokens=NUM_VIRTUAL_TOKENS, # Number of virtual tokens to be added and trained. tokenizer_name_or_path=model_name, # The pre-trained model. ) peft_model_prompt = get_peft_model(foundational_model, generation_config) print(peft_model_prompt.print_trainable_parameters()) peft_model_sentences = get_peft_model(foundational_model, generation_config) print(peft_model_sentences.print_trainable_parameters()) from transformers import TrainingArguments def create_training_arguments(path, learning_rate=0.0035, epochs=6): training_args = TrainingArguments( output_dir=path, # Where the model predictions and checkpoints will be written use_cpu=True, # This is necessary for CPU clusters. auto_find_batch_size=True, # Find a suitable batch size that will fit into memory automatically learning_rate=learning_rate, # Higher learning rate than full Fine-Tuning num_train_epochs=epochs, ) return training_args import os working_dir = "./" # Is best to store the models in separate folders. # Create the name of the directories where to store the models. output_directory_prompt = os.path.join(working_dir, "peft_outputs_prompt") output_directory_sentences = os.path.join(working_dir, "peft_outputs_sentences") # Just creating the directoris if not exist. if not os.path.exists(working_dir): os.mkdir(working_dir) if not os.path.exists(output_directory_prompt): os.mkdir(output_directory_prompt) if not os.path.exists(output_directory_sentences): os.mkdir(output_directory_sentences) training_args_prompt = create_training_arguments(output_directory_prompt, 0.003, NUM_EPOCHS) training_args_sentences = create_training_arguments(output_directory_sentences, 0.003, NUM_EPOCHS) from transformers import Trainer, DataCollatorForLanguageModeling def create_trainer(model, training_args, train_dataset): trainer = Trainer( model=model, # We pass in the PEFT version of the foundation model, bloomz-560M args=training_args, # The args for the training. train_dataset=train_dataset, # The dataset used to tyrain the model. data_collator=DataCollatorForLanguageModeling( tokenizer, mlm=False ), # mlm=False indicates not to use masked language modeling ) return trainer trainer_prompt = create_trainer(peft_model_prompt, training_args_prompt, train_sample_prompt) trainer_prompt.train() trainer_sentences = create_trainer(peft_model_sentences, training_args_sentences, train_sample_sentences) trainer_sentences.train() trainer_prompt.model.save_pretrained(output_directory_prompt) trainer_sentences.model.save_pretrained(output_directory_sentences) from peft import PeftModel loaded_model_prompt = PeftModel.from_pretrained( foundational_model, output_directory_prompt, # device_map='auto', is_trainable=False, ) loaded_model_prompt_outputs = get_outputs(loaded_model_prompt, input_prompt) print(tokenizer.batch_decode(loaded_model_prompt_outputs, skip_special_tokens=True)) loaded_model_prompt.load_adapter(output_directory_sentences, adapter_name="quotes") loaded_model_prompt.set_adapter("quotes") loaded_model_sentences_outputs = get_outputs(loaded_model_prompt, input_sentences) print(tokenizer.batch_decode(loaded_model_sentences_outputs, skip_special_tokens=True)) # Notes: # - https://github.com/huggingface/peft/issues/1962 # - https://github.com/huggingface/peft/issues/869#issuecomment-2263322623 ``` ### Expected behavior The `loaded_model_prompt` should be able to execute `generate` and return a prompt-tuned response.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2379/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2379/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2377
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2377/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2377/comments
https://api.github.com/repos/huggingface/peft/issues/2377/events
https://github.com/huggingface/peft/issues/2377
2,853,540,672
I_kwDOIf9iDM6qFZNA
2,377
Contributing new model merging method to PEFT
{ "login": "SpeeeedLee", "id": 132431571, "node_id": "U_kgDOB-S-0w", "avatar_url": "https://avatars.githubusercontent.com/u/132431571?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SpeeeedLee", "html_url": "https://github.com/SpeeeedLee", "followers_url": "https://api.github.com/users/SpeeeedLee/followers", "following_url": "https://api.github.com/users/SpeeeedLee/following{/other_user}", "gists_url": "https://api.github.com/users/SpeeeedLee/gists{/gist_id}", "starred_url": "https://api.github.com/users/SpeeeedLee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SpeeeedLee/subscriptions", "organizations_url": "https://api.github.com/users/SpeeeedLee/orgs", "repos_url": "https://api.github.com/users/SpeeeedLee/repos", "events_url": "https://api.github.com/users/SpeeeedLee/events{/privacy}", "received_events_url": "https://api.github.com/users/SpeeeedLee/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
1
2025-02-14T12:17:46
2025-02-14T15:57:51
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request Hi all, I noticed that several model merging methods, such as TIES and DARE, have been implemented in this library, as mentioned [here](https://github.com/huggingface/peft/blob/main/docs/source/developer_guides/model_merging.md). I was wondering if there is a way for me to contribute a recently accepted model merging method to this repo. I would really appreciate any guidance or suggestions on how to proceed. Thanks in advance! ### Motivation Enhance the diversity of model merging supported in this library. ### Your contribution I can submit a PR.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2377/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2377/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2368
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2368/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2368/comments
https://api.github.com/repos/huggingface/peft/issues/2368/events
https://github.com/huggingface/peft/issues/2368
2,838,153,330
I_kwDOIf9iDM6pKshy
2,368
[FSDP] After training embed_tokens in modules_to_save model has hallucinations
{ "login": "DmitryDiTy", "id": 90377536, "node_id": "MDQ6VXNlcjkwMzc3NTM2", "avatar_url": "https://avatars.githubusercontent.com/u/90377536?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DmitryDiTy", "html_url": "https://github.com/DmitryDiTy", "followers_url": "https://api.github.com/users/DmitryDiTy/followers", "following_url": "https://api.github.com/users/DmitryDiTy/following{/other_user}", "gists_url": "https://api.github.com/users/DmitryDiTy/gists{/gist_id}", "starred_url": "https://api.github.com/users/DmitryDiTy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DmitryDiTy/subscriptions", "organizations_url": "https://api.github.com/users/DmitryDiTy/orgs", "repos_url": "https://api.github.com/users/DmitryDiTy/repos", "events_url": "https://api.github.com/users/DmitryDiTy/events{/privacy}", "received_events_url": "https://api.github.com/users/DmitryDiTy/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
17
2025-02-07T13:23:07
2025-02-14T08:23:35
2025-02-14T08:21:23
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info ### Libs ``` absl-py==2.1.0 accelerate==1.3.0 aiohappyeyeballs==2.4.4 aiohttp==3.11.10 aiosignal==1.3.2 annotated-types==0.7.0 asttokens @ file:///home/conda/feedstock_root/build_artifacts/asttokens_1733250440834/work async-timeout==5.0.1 attrs==24.3.0 beartype==0.14.1 bert-score==0.3.13 better-abc==0.0.3 certifi==2024.12.14 charset-normalizer==3.4.0 circuitsvis @ git+https://github.com/callummcdougall/CircuitsVis.git@1e6129d08cae7af9242d9ab5d3ed322dd44b4dd3#subdirectory=python click==8.1.7 comm @ file:///home/conda/feedstock_root/build_artifacts/comm_1733502965406/work contourpy==1.3.1 cycler==0.12.1 datasets==3.2.0 debugpy @ file:///home/conda/feedstock_root/build_artifacts/debugpy_1734158947252/work decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1733236420667/work dill==0.3.8 docker-pycreds==0.4.0 einops==0.8.0 evaluate==0.4.3 exceptiongroup @ file:///home/conda/feedstock_root/build_artifacts/exceptiongroup_1733208806608/work executing @ file:///home/conda/feedstock_root/build_artifacts/executing_1733569351617/work fancy-einsum==0.0.3 filelock==3.16.1 fonttools==4.55.6 frozenlist==1.5.0 fsspec==2024.9.0 gitdb==4.0.11 GitPython==3.1.43 huggingface-hub==0.27.0 idna==3.10 importlib-metadata==5.2.0 ipykernel @ file:///home/conda/feedstock_root/build_artifacts/ipykernel_1719845459717/work ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_1732896932739/work ipywidgets==8.1.5 jaxtyping==0.2.36 jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1733300866624/work Jinja2==3.1.4 joblib==1.4.2 jupyter_client @ file:///home/conda/feedstock_root/build_artifacts/jupyter_client_1733440914442/work jupyter_core @ file:///home/conda/feedstock_root/build_artifacts/jupyter_core_1727163409502/work jupyterlab_widgets==3.0.13 kiwisolver==1.4.8 markdown-it-py==3.0.0 MarkupSafe==3.0.2 matplotlib==3.10.0 matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1733416936468/work mdurl==0.1.2 mpmath==1.3.0 multidict==6.1.0 multiprocess==0.70.16 nest_asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1733325553580/work networkx==3.4.2 nltk==3.9.1 numpy==1.26.4 nvidia-cublas-cu12==12.4.5.8 nvidia-cuda-cupti-cu12==12.4.127 nvidia-cuda-nvrtc-cu12==12.4.127 nvidia-cuda-runtime-cu12==12.4.127 nvidia-cudnn-cu12==9.1.0.70 nvidia-cufft-cu12==11.2.1.3 nvidia-curand-cu12==10.3.5.147 nvidia-cusolver-cu12==11.6.1.9 nvidia-cusparse-cu12==12.3.1.170 nvidia-nccl-cu12==2.21.5 nvidia-nvjitlink-cu12==12.4.127 nvidia-nvtx-cu12==12.4.127 packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1733203243479/work pandas==2.2.3 parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1733271261340/work peft==0.14.0 pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1733301927746/work pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1733327343728/work pillow==11.1.0 platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1733232627818/work prompt_toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1733302527033/work propcache==0.2.1 protobuf==5.29.1 psutil @ file:///home/conda/feedstock_root/build_artifacts/psutil_1729847040822/work ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1733302279685/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl#sha256=92c32ff62b5fd8cf325bec5ab90d7be3d2a8ca8c8a3813ff487a8d2002630d1f pure_eval @ file:///home/conda/feedstock_root/build_artifacts/pure_eval_1733569405015/work pyarrow==18.1.0 pydantic==2.10.3 pydantic_core==2.27.1 Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1733221634316/work pyparsing==3.2.1 python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1733215673016/work pytz==2024.2 PyYAML==6.0.2 pyzmq @ file:///home/conda/feedstock_root/build_artifacts/pyzmq_1728642224099/work regex==2024.11.6 requests==2.32.3 rich==13.9.4 rouge_score==0.1.2 safetensors==0.4.5 scikit-learn==1.6.1 scipy==1.15.1 sentence-transformers==3.3.1 sentencepiece==0.2.0 sentry-sdk==2.19.2 setproctitle==1.3.4 six @ file:///home/conda/feedstock_root/build_artifacts/six_1733380938961/work smmap==5.0.1 stack_data @ file:///home/conda/feedstock_root/build_artifacts/stack_data_1733569443808/work sympy==1.13.1 threadpoolctl==3.5.0 tokenizers==0.21.0 torch==2.5.1 tornado @ file:///home/conda/feedstock_root/build_artifacts/tornado_1732615898999/work tqdm==4.67.1 traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1733367359838/work transformer-lens==2.10.0 transformers==4.48.2 triton==3.1.0 trl==0.14.0 typeguard==4.4.1 typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1733188668063/work tzdata==2024.2 urllib3==2.2.3 wandb==0.19.1 wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1733231326287/work widgetsnbextension==4.0.13 xxhash==3.5.0 yarl==1.18.3 zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1732827521216/work ``` ### Cuda ``` nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2022 NVIDIA Corporation Built on Wed_Sep_21_10:33:58_PDT_2022 Cuda compilation tools, release 11.8, V11.8.89 Build cuda_11.8.r11.8/compiler.31833905_0 ``` ``` +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 545.23.08 Driver Version: 545.23.08 CUDA Version: 12.3 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA RTX 6000 Ada Gene... Off | 00000000:01:00.0 Off | Off | | 30% 40C P8 27W / 300W | 43531MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 1 NVIDIA RTX 6000 Ada Gene... Off | 00000000:25:00.0 Off | Off | | 30% 34C P8 23W / 300W | 3021MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 2 NVIDIA RTX 6000 Ada Gene... Off | 00000000:41:00.0 Off | Off | | 30% 37C P8 29W / 300W | 6MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 3 NVIDIA RTX 6000 Ada Gene... Off | 00000000:61:00.0 Off | Off | | 30% 40C P8 30W / 300W | 10881MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 4 NVIDIA RTX 6000 Ada Gene... Off | 00000000:81:00.0 Off | Off | | 30% 34C P8 24W / 300W | 1319MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 5 NVIDIA RTX 6000 Ada Gene... Off | 00000000:A1:00.0 Off | Off | | 40% 59C P2 71W / 300W | 5763MiB / 49140MiB | 6% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 6 NVIDIA RTX 6000 Ada Gene... Off | 00000000:C1:00.0 Off | Off | | 30% 47C P2 91W / 300W | 43307MiB / 49140MiB | 74% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| +---------------------------------------------------------------------------------------+ ``` ### Who can help? @benjaminbossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction ## Context I do my model training for text generation just for CompletionOnlyLM with my own dataset (long dialogues with system/user/assistant remarks). I added to my model and tokenizer new tokens using: ```python tokenizer.add_tokens( [ AddedToken("<|start_thinking|>", normalized=False, special=False), AddedToken("<|end_thinking|>", normalized=False, special=False), AddedToken("<tool_response>", normalized=False, special=False), AddedToken("</tool_response>", normalized=False, special=False), AddedToken("<|start_response|>", normalized=False, special=False), AddedToken("<|end_response|>", normalized=False, special=False), ] ) model.resize_token_embeddings(len(tokenizer)) ``` and I have saved it before training. After that I just wanted training my extend model with PEFT + TRL + FSDP. Model that I used like base: ``` Qwen2ForCausalLM( (model): Qwen2Model( (embed_tokens): Embedding(151671, 3584) (layers): ModuleList( (0-27): 28 x Qwen2DecoderLayer( (self_attn): Qwen2Attention( (q_proj): Linear(in_features=3584, out_features=3584, bias=True) (k_proj): Linear(in_features=3584, out_features=512, bias=True) (v_proj): Linear(in_features=3584, out_features=512, bias=True) (o_proj): Linear(in_features=3584, out_features=3584, bias=False) ) (mlp): Qwen2MLP( (gate_proj): Linear(in_features=3584, out_features=18944, bias=False) (up_proj): Linear(in_features=3584, out_features=18944, bias=False) (down_proj): Linear(in_features=18944, out_features=3584, bias=False) (act_fn): SiLU() ) (input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) (post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) ) ) (norm): Qwen2RMSNorm((3584,), eps=1e-06) (rotary_emb): Qwen2RotaryEmbedding() ) (lm_head): Linear(in_features=3584, out_features=151671, bias=False) ) ``` ## Code ### Accelerate config ```yaml compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch: BACKWARD_PRE fsdp_cpu_ram_efficient_loading: true fsdp_forward_prefetch: false fsdp_offload_params: false fsdp_sharding_strategy: FULL_SHARD fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sync_module_states: true fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: 'no' num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` ### Training script ```python import warnings warnings.filterwarnings("ignore") import os os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1, 2, 3' os.environ['TOKENIZERS_PARALLELISM'] = 'true' import wandb import numpy as np import torch import json from typing import List, Optional, Union, Any, Literal from datasets import load_dataset, Dataset import evaluate from transformers import ( AutoTokenizer, AutoModelForCausalLM, EarlyStoppingCallback, DataCollatorForLanguageModeling, AddedToken, ) from peft import ( LoraConfig, get_peft_model, TaskType, PeftModelForCausalLM ) from trl import ( SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM ) from special_utils import DataCollatorForMultiCompletionOnlyLM, CustomLossTrainer ################################## # Enviroments and configurations # ################################## CHECKPOINT_PATH = None DATA_CACHE_DIR = "/home/raid/datasets/" MODEL_CACHE_DIR = "/home/raid/hf_cache/" MODEL_PATH = "/home/raid/models/extended_qwen" METRICS_CACHE = "/home/raid/metrics_cache" MAX_PROMPT_LENGTH = 5000 LR = 1e-5 STEP_SIZE = 10 BATCH_SIZE = 2 GA_SIZE = 4 TRAIN_EPOCHS = 1 REPORT_TO = ['none', 'wandb'][0] LORA_R = 48 LORA_ALPHA = 96 TARGET_MODULES = [ "self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj", "self_attn.o_proj", "mlp.gate_proj", "mlp.up_proj", "mlp.down_proj", ] MODULES_TO_SAVE = [ "embed_tokens", "lm_head" ] REVISION_NAME = f"TEST_qwen-tp-({LR})LR-({BATCH_SIZE})BATCH_SIZE-({GA_SIZE})GA_SIZE-({TRAIN_EPOCHS})TRAIN_EPOCHS-({LORA_R})LORA_R-({LORA_ALPHA})LORA_ALPHA" LOGS_PATH = f"/home/raid/models/{REVISION_NAME}/logs" print(REVISION_NAME) def main(): ##################### # Model & Tokenizer # ##################### model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, # cache_dir=MODEL_CACHE_DIR, torch_dtype=torch.bfloat16, use_cache=False, ) tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, # cache_dir=MODEL_CACHE_DIR, ) tokenizer.padding_side = 'right' ### FREEZING ### for param in model.parameters(): param.requires_grad = False print(tokenizer.added_tokens_decoder) ########### # Dataset # ########### dataset = load_dataset( "my/dataset", "train", cache_dir=DATA_CACHE_DIR ) def prepare_texts(example): example['text'] = tokenizer.apply_chat_template( conversation=json.loads(example['conversation']), tools=json.loads(example['tools']), tokenize=False ) return example dataset = dataset.map(prepare_texts) dataset_vvalid = Dataset.from_dict(dataset['train'][:100]) # For tests print(dataset) ######## # PEFT # ######## lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, r=LORA_R, lora_alpha=LORA_ALPHA, target_modules=TARGET_MODULES, modules_to_save=MODULES_TO_SAVE, lora_dropout=0.1, bias="none", ) ################## # Trainer & Args # ################## bertscore = evaluate.load( "bertscore", cache_dir=METRICS_CACHE ) rouge = evaluate.load( "rouge", cache_dir=METRICS_CACHE ) def preprocess_logits_for_metrics(logits, labels): pred_ids = torch.argmax(logits, dim=-1) return pred_ids, labels def compute_metrics(eval_pred): pred_ids = torch.tensor(eval_pred.predictions[0]) label_ids = torch.tensor(eval_pred.label_ids) preds = tokenizer.batch_decode(torch.where(label_ids == -100, tokenizer.eos_token_id, pred_ids), skip_special_tokens=True) labels = tokenizer.batch_decode(torch.where(label_ids == -100, tokenizer.eos_token_id, label_ids), skip_special_tokens=True) if not os.path.exists(LOGS_PATH): os.makedirs(LOGS_PATH, exist_ok=True) with open(LOGS_PATH + "/data", "w") as f: f.write(json.dumps([preds, labels])) print("PREDS:", preds[0], "###") print("LABELS:", labels[0], "###") bertscore_results = bertscore.compute( predictions=preds, references=labels, lang='en' ) rouge_results = rouge.compute( predictions=preds, references=labels, ) return { "bert_score_f1": np.mean(bertscore_results['f1']), "bert_score_recall": np.mean(bertscore_results['recall']), "bert_score_precision": np.mean(bertscore_results['precision']), "rouge1": rouge_results['rouge1'], 'rouge2': rouge_results['rouge2'], 'rougeL': rouge_results['rougeL'], } data_collator = DataCollatorForMultiCompletionOnlyLM( tokenizer=tokenizer, response_template="<|im_start|>assistant\n", end_response_template="<|im_end|>", mlm=False ) special_token_ids = [151665, 151666, 151667, 151668, 151669, 151670] special_token_weight = 1.2 training_args = SFTConfig( ## SFT Arguments ## max_seq_length=MAX_PROMPT_LENGTH, ## Standard Arguments ## do_train=True, do_eval=True, output_dir=f"/home/raid/checkpoints/{REVISION_NAME}", overwrite_output_dir=True, eval_strategy="steps", eval_steps=STEP_SIZE, torch_empty_cache_steps=STEP_SIZE, num_train_epochs=TRAIN_EPOCHS, per_device_train_batch_size=BATCH_SIZE, per_device_eval_batch_size=BATCH_SIZE, gradient_accumulation_steps=GA_SIZE, optim="adamw_torch", save_steps=STEP_SIZE, save_total_limit=4, logging_steps=STEP_SIZE, learning_rate=LR, lr_scheduler_type="cosine", bf16=True, gradient_checkpointing=True, gradient_checkpointing_kwargs = {"use_reentrant": True}, load_best_model_at_end=True, metric_for_best_model="eval_rougeL", greater_is_better=True, report_to=REPORT_TO, run_name=REVISION_NAME, resume_from_checkpoint=True if CHECKPOINT_PATH else False, ) trainer = CustomLossTrainer( model=model, args=training_args, peft_config=lora_config, train_dataset=dataset_vvalid,#dataset['train'], eval_dataset=dataset_vvalid,#dataset['valid'], processing_class=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, preprocess_logits_for_metrics=preprocess_logits_for_metrics, callbacks=[EarlyStoppingCallback(early_stopping_patience=100)], special_token_ids=special_token_ids, special_token_weight=special_token_weight, ) print("MODEL DTYPE: ", trainer.model.dtype) # handle PEFT+FSDP case trainer.model.print_trainable_parameters() if getattr(trainer.accelerator.state, "fsdp_plugin", None): from peft.utils.other import fsdp_auto_wrap_policy fsdp_plugin = trainer.accelerator.state.fsdp_plugin fsdp_plugin.auto_wrap_policy = fsdp_auto_wrap_policy(trainer.model) # Training if CHECKPOINT_PATH is not None: trainer.train(resume_from_checkpoint=CHECKPOINT_PATH) else: trainer.train() if trainer.is_fsdp_enabled: trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") trainer.save_model(f"/home/raid/models/{REVISION_NAME}/adapter") if __name__ == "__main__": main() ``` ### Custom Collator & Trainer (special_utils.py) ```python import torch from transformers import DataCollatorForLanguageModeling from typing import List, Optional, Union, Any, Literal from trl import SFTTrainer import numpy as np # Adding weights to new tokens class CustomLossTrainer(SFTTrainer): def __init__(self, *args, special_token_ids, special_token_weight=1.2, **kwargs): super().__init__(*args, **kwargs) self.special_token_ids = special_token_ids self.special_token_weight = special_token_weight self.weights = None def _init_weights(self, model): self.weights = torch.ones(model.config.vocab_size, device=model.device) for token_id in self.special_token_ids: self.weights[token_id] = self.special_token_weight self.cross_entropy = torch.nn.CrossEntropyLoss(weight=self.weights) def compute_loss(self, model, inputs, return_outputs=False, **kwargs): if self.weights is None: self._init_weights(model) labels = inputs.pop("labels").to(model.device) outputs = model(**inputs) logits = outputs.get("logits").to(model.device) loss = self.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1)) if return_outputs: return loss, outputs return loss # For Completion with many different instruction templates class DataCollatorForMultiCompletionOnlyLM(DataCollatorForLanguageModeling): def __init__( self, response_template: Union[str, list[int]], end_response_template: Union[str, list[int]], instruction_template: Optional[Union[str, list[int]]] = None, *args, mlm: bool = False, ignore_index: int = -100, padding_free: bool = False, **kwargs, ): super().__init__(*args, mlm=mlm, **kwargs) self.instruction_template = instruction_template if isinstance(instruction_template, str): # The user provides a string, must tokenize self.instruction_token_ids = self.tokenizer.encode(self.instruction_template, add_special_tokens=False) else: # The user already provides the token ids self.instruction_token_ids = instruction_template self.response_template = response_template if isinstance(response_template, str): # The user provides a string, must tokenize self.response_token_ids = self.tokenizer.encode(self.response_template, add_special_tokens=False) else: # The user already provides the token ids self.response_token_ids = response_template self.end_response_template = end_response_template if isinstance(end_response_template, str): # The user provides a string, must tokenize self.end_response_token_ids = self.tokenizer.encode(self.end_response_template, add_special_tokens=False) else: # The user already provides the token ids self.end_response_token_ids = end_response_template if not self.mlm and self.instruction_template and self.tokenizer.pad_token_id == self.tokenizer.eos_token_id: warnings.warn( "The pad_token_id and eos_token_id values of this tokenizer are identical. " "If you are planning for multi-turn training, " "it can result in the model continuously generating questions and answers without eos token. " "To avoid this, set the pad_token_id to a different value.", UserWarning, ) self.ignore_index = ignore_index self.padding_free = padding_free def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: batch = super().torch_call(examples) for i in range(len(examples)): batch["labels"][i] = torch.where(batch["labels"][i] == 0, 999999, batch["labels"][i]) response_token_ids_start_ids = [] for idx in np.where(batch["labels"][i] == self.response_token_ids[0])[0]: # `response_token_ids` is `'### Response:\n'`, here we are just making sure that the token IDs match if ( self.response_token_ids == batch["labels"][i][idx : idx + len(self.response_token_ids)].tolist() ): response_token_ids_start_ids.append(idx) if len(response_token_ids_start_ids) == 0: warnings.warn( f"Could not find response key `{self.response_template}` in the following instance: " f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss " "calculation. Note, if this happens often, consider increasing the `max_seq_length`.", UserWarning, ) batch["labels"][i, :] = self.ignore_index else: response_token_ids_end_ids = [response_token_ids_start_idx + len(self.response_token_ids) for response_token_ids_start_idx in response_token_ids_start_ids] end_response_token_ids_idxs = [] for idx in np.where(batch["labels"][i] == self.end_response_token_ids[0])[0]: # `response_token_ids` is `'### Response:\n'`, here we are just making sure that the token IDs match if ( self.end_response_token_ids == batch["labels"][i][idx : idx + len(self.end_response_token_ids)].tolist() ): end_response_token_ids_idxs.append(idx) if len(end_response_token_ids_idxs) == 0: warnings.warn( f"Could not find end response key `{self.response_template}` in the following instance: " f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss " "calculation. Note, if this happens often, consider increasing the `max_seq_length`.", UserWarning, ) batch["labels"][i, :] = self.ignore_index assistant_end_idxs = [] for assistant_start_idx in response_token_ids_end_ids: for assistant_end_idx in end_response_token_ids_idxs: if assistant_start_idx < assistant_end_idx: assistant_end_idxs.append(assistant_end_idx) break assert len(response_token_ids_end_ids) == len(assistant_end_idxs), "Error, need count assistant replics == count after assistant end suffixes" mask = torch.ones_like(batch['labels'][i, :]) * -1 mask = torch.where(batch['labels'][i, :] == self.ignore_index, 1, mask) for start_id, end_id in zip(response_token_ids_end_ids, assistant_end_idxs): mask[start_id : end_id + 1] = 1 labels = mask * batch['labels'][i, :] batch['labels'][i, :] = torch.where(labels < 0, self.ignore_index, labels) batch["labels"][i] = torch.where(batch["labels"][i] == 999999, 0, batch["labels"][i]) if self.padding_free: # remove padding, `attention_mask` and add `position_ids` attn_mask = batch.pop("attention_mask") batch["input_ids"] = batch["input_ids"][attn_mask.bool()].unsqueeze(0) batch["position_ids"] = attn_mask.cumsum(1)[attn_mask.bool()].unsqueeze(0) - 1 batch["labels"] = batch["labels"][attn_mask.bool()].unsqueeze(0) batch["labels"][batch["position_ids"] == 0] = self.ignore_index # Calculate cumulative sequence lengths for queries and keys to prevent graph breaks during further computations. flattened_position_ids = batch["position_ids"].flatten() indices_q = torch.arange( flattened_position_ids.size(0), device=flattened_position_ids.device, dtype=torch.int32 ) batch["cu_seq_lens_q"] = torch.cat( ( indices_q[flattened_position_ids == 0], torch.tensor( flattened_position_ids.size(), device=flattened_position_ids.device, dtype=torch.int32 ), ) ) batch["cu_seq_lens_k"] = batch["cu_seq_lens_q"] # Determine maximum sequence lengths to prevent graph breaks during further computations. batch["max_length_k"] = flattened_position_ids.max().item() + 1 batch["max_length_q"] = batch["max_length_k"] return batch ``` ## During training To be as sure as possible that this error is not in the learning process, I additionally save the validation examples to a separate file and log the metrics. Metrics from wandb: ![Image](https://github.com/user-attachments/assets/0999005e-926e-4035-829f-96165fa085ef) I tracked the direct text saved for validation, everything was fine. ## After training After training process I have tried load model to check autoregressive inference: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_CACHE_DIR = "/home/raid/hf_cache" DATA_CACHE_DIR = "/home/raid/datasets" MODEL_PATH = "/home/raid/models/extended_qwen" lora_path = "/home/raid/models/tool-plannings/qwen-tp-(1e-05)LR-(2)BATCH_SIZE-(4)GA_SIZE-(6)TRAIN_EPOCHS-(48)LORA_R-(96)LORA_ALPHA/adapter" model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, use_cache=False, ) tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, ) from peft import PeftModelForCausalLM model = PeftModelForCausalLM.from_pretrained( model, lora_path # This contains adapter_model.safetensors, adapter_config.json, etc. ) model ``` ``` PeftModelForCausalLM( (base_model): LoraModel( (model): Qwen2ForCausalLM( (model): Qwen2Model( (embed_tokens): ModulesToSaveWrapper( (original_module): Embedding(151671, 3584) (modules_to_save): ModuleDict( (default): Embedding(151671, 3584) ) ) (layers): ModuleList( (0-27): 28 x Qwen2DecoderLayer( (self_attn): Qwen2Attention( (q_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=3584, bias=True) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=3584, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (k_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=512, bias=True) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=512, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (v_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=512, bias=True) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=512, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (o_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=3584, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=3584, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (mlp): Qwen2MLP( (gate_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=18944, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=18944, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (up_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=18944, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=18944, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (down_proj): lora.Linear( (base_layer): Linear(in_features=18944, out_features=3584, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=18944, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=3584, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (act_fn): SiLU() ) (input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) (post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) ) ) (norm): Qwen2RMSNorm((3584,), eps=1e-06) (rotary_emb): Qwen2RotaryEmbedding() ) (lm_head): ModulesToSaveWrapper( (original_module): Linear(in_features=3584, out_features=151671, bias=False) (modules_to_save): ModuleDict( (default): Linear(in_features=3584, out_features=151671, bias=False) ) ) ) ) ) ``` And during inference I had something like that: ```python outputs = model.generate( **inputs_tokens, max_new_tokens=20, )[0] print(tokenizer.decode(outputs, skip_special_tokens=False)) ``` ``` ...ngle stepA journey of a thousand miles'.<|im_end|> <|im_start|>assistant # here start new tokens write write write write write write write write write write write write write write write write write write write... ``` ## Problem I thought there was a mistake in saving the adapter and instead of saving the adapter, I tried to merge model and adapter immediately after the end of the training in script like that: ```python merged_model = trainer.model.merge_and_unload(safe_merge=True) merged_model.save_pretrained(f"/home/raid/models/{REVISION_NAME}") ``` and I have occured the error: ``` MODEL DTYPE: torch.bfloat16 trainable params: 1,107,362,816 || all params: 8,720,162,304 || trainable%: 12.6989 {'train_runtime': 79.4632, 'train_samples_per_second': 1.258, 'train_steps_per_second': 0.038, 'train_loss': 108.3709716796875, 'epoch': 0.92} 100%|██████████████████████████████████████████████████████████████| 3/3 [01:19<00:00, 26.51s/it] [rank2]: Traceback (most recent call last): [rank2]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank2]: main() [rank2]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank2]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank2]: return self._unload_and_optionally_merge( [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank2]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank2]: delta_weight = self.get_delta_weight(active_adapter) [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank2]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank2]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively [rank1]: Traceback (most recent call last): [rank1]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank1]: main() [rank1]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank1]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank1]: return self._unload_and_optionally_merge( [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank1]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank1]: delta_weight = self.get_delta_weight(active_adapter) [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank1]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank1]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively [rank0]: Traceback (most recent call last): [rank0]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank0]: main() [rank0]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank0]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank0]: return self._unload_and_optionally_merge( [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank0]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank0]: delta_weight = self.get_delta_weight(active_adapter) [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank0]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank0]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively [rank3]: Traceback (most recent call last): [rank3]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank3]: main() [rank3]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank3]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank3]: return self._unload_and_optionally_merge( [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank3]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank3]: delta_weight = self.get_delta_weight(active_adapter) [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank3]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank3]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively ``` Besides, I tried load adapter manually by safetensors script smth like that: ```python from safetensors import safe_open lora_state_dict = {} with safe_open(lora_path, framework="pt", device="cpu") as f: for key in f.keys(): new_key = key.replace("lora_A.", "lora_A.default.").replace("lora_B.", "lora_B.default.") new_key = new_key.replace("embed_tokens.weight", "embed_tokens.original_module.weight") new_key = new_key.replace("lm_head.weight", "lm_head.modules_to_save.default.weight") lora_state_dict[new_key] = f.get_tensor(key) m, u = model.load_state_dict(lora_state_dict, strict=False) ``` I was able to upload the adapter in my model, but I was still getting catastrophical hallucinations like: ``` ...<|im_start|>assistant # generated spaces ``` I assume that the error lies in the adapter merge and may be floating bf16 fp16 or something. P.S. BTW I tried to train model with fp16 and I had same problem ### Expected behavior Expected behavior of generation after merging adapter with my model
{ "login": "DmitryDiTy", "id": 90377536, "node_id": "MDQ6VXNlcjkwMzc3NTM2", "avatar_url": "https://avatars.githubusercontent.com/u/90377536?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DmitryDiTy", "html_url": "https://github.com/DmitryDiTy", "followers_url": "https://api.github.com/users/DmitryDiTy/followers", "following_url": "https://api.github.com/users/DmitryDiTy/following{/other_user}", "gists_url": "https://api.github.com/users/DmitryDiTy/gists{/gist_id}", "starred_url": "https://api.github.com/users/DmitryDiTy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DmitryDiTy/subscriptions", "organizations_url": "https://api.github.com/users/DmitryDiTy/orgs", "repos_url": "https://api.github.com/users/DmitryDiTy/repos", "events_url": "https://api.github.com/users/DmitryDiTy/events{/privacy}", "received_events_url": "https://api.github.com/users/DmitryDiTy/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2368/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2368/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2367
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2367/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2367/comments
https://api.github.com/repos/huggingface/peft/issues/2367/events
https://github.com/huggingface/peft/issues/2367
2,838,045,820
I_kwDOIf9iDM6pKSR8
2,367
Some weights of MistralForSequenceClassification were not initialized from the model checkpoint at mistralai/Mistral-7B-Instruct-v0.3 and are newly initialized: ['score.weight']
{ "login": "amritansh6", "id": 46628209, "node_id": "MDQ6VXNlcjQ2NjI4MjA5", "avatar_url": "https://avatars.githubusercontent.com/u/46628209?v=4", "gravatar_id": "", "url": "https://api.github.com/users/amritansh6", "html_url": "https://github.com/amritansh6", "followers_url": "https://api.github.com/users/amritansh6/followers", "following_url": "https://api.github.com/users/amritansh6/following{/other_user}", "gists_url": "https://api.github.com/users/amritansh6/gists{/gist_id}", "starred_url": "https://api.github.com/users/amritansh6/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amritansh6/subscriptions", "organizations_url": "https://api.github.com/users/amritansh6/orgs", "repos_url": "https://api.github.com/users/amritansh6/repos", "events_url": "https://api.github.com/users/amritansh6/events{/privacy}", "received_events_url": "https://api.github.com/users/amritansh6/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2025-02-07T12:29:22
2025-02-10T11:01:57
2025-02-10T11:01:55
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info I have been trying to fine tune mistral 7b v0.3 for a downstream task using lora and I get the following warning while running inference. ```python base_model = AutoModelForSequenceClassification.from_pretrained( model_id, use_auth_token="hf_***", num_labels=2, problem_type="single_label_classification" ) base_model.config.pad_token_id = tokenizer.pad_token_id lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], bias="none", task_type="SEQ_CLS", modules_to_save=["score"] ) model_with_lora = get_peft_model(base_model, lora_config) model_with_lora.print_trainable_parameters() training_args = TrainingArguments( output_dir="./results_4", evaluation_strategy="epoch", save_strategy="steps", save_steps=0.1, logging_dir="./logs", learning_rate=5e-5, per_device_train_batch_size=2, num_train_epochs=2, weight_decay=0.01, report_to="wandb", save_total_limit=2, logging_steps=10, ) trainer = Trainer( model=model_with_lora, args=training_args, train_dataset=hf_dataset, eval_dataset=hf_eval_dataset, tokenizer=tokenizer, compute_metrics=None, ) ``` This is my training script and while loading for inference I get the warning as, Some weights of MistralForSequenceClassification were not initialized from the model checkpoint at mistralai/Mistral-7B-Instruct-v0.3 and are newly initialized: ['score.weight'] Can someone check this. ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ```python base_model = AutoModelForSequenceClassification.from_pretrained( model_id, use_auth_token="hf_***", num_labels=2, problem_type="single_label_classification" ) base_model.config.pad_token_id = tokenizer.pad_token_id lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], bias="none", task_type="SEQ_CLS", modules_to_save=["score"] ) model_with_lora = get_peft_model(base_model, lora_config) model_with_lora.print_trainable_parameters() training_args = TrainingArguments( output_dir="./results_4", evaluation_strategy="epoch", save_strategy="steps", save_steps=0.1, logging_dir="./logs", learning_rate=5e-5, per_device_train_batch_size=2, num_train_epochs=2, weight_decay=0.01, report_to="wandb", save_total_limit=2, logging_steps=10, ) trainer = Trainer( model=model_with_lora, args=training_args, train_dataset=hf_dataset, eval_dataset=hf_eval_dataset, tokenizer=tokenizer, compute_metrics=None, ) ``` ### Expected behavior Ideally this warning should not come.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2367/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2367/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2364
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2364/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2364/comments
https://api.github.com/repos/huggingface/peft/issues/2364/events
https://github.com/huggingface/peft/issues/2364
2,835,746,171
I_kwDOIf9iDM6pBg17
2,364
docs: broken links to boft
{ "login": "makelinux", "id": 2335185, "node_id": "MDQ6VXNlcjIzMzUxODU=", "avatar_url": "https://avatars.githubusercontent.com/u/2335185?v=4", "gravatar_id": "", "url": "https://api.github.com/users/makelinux", "html_url": "https://github.com/makelinux", "followers_url": "https://api.github.com/users/makelinux/followers", "following_url": "https://api.github.com/users/makelinux/following{/other_user}", "gists_url": "https://api.github.com/users/makelinux/gists{/gist_id}", "starred_url": "https://api.github.com/users/makelinux/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/makelinux/subscriptions", "organizations_url": "https://api.github.com/users/makelinux/orgs", "repos_url": "https://api.github.com/users/makelinux/repos", "events_url": "https://api.github.com/users/makelinux/events{/privacy}", "received_events_url": "https://api.github.com/users/makelinux/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2025-02-06T14:48:16
2025-02-07T10:14:44
2025-02-07T10:14:44
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info on page: https://huggingface.co/docs/peft/v0.14.0/en/conceptual_guides/oft ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction on page: https://huggingface.co/docs/peft/v0.14.0/en/conceptual_guides/oft Snippet: Take a look at the following step-by-step guides on how to finetune a model with BOFT: [Dreambooth finetuning with BOFT](https://huggingface.co/docs/peft/v0.14.0/en/task_guides/boft_dreambooth) [Controllable generation finetuning with BOFT (ControlNet)](https://huggingface.co/docs/peft/v0.14.0/en/task_guides/boft_controlnet) ### Expected behavior perhaps the links should lead to https://github.com/huggingface/peft/blob/main/examples/boft_dreambooth/boft_dreambooth.md https://github.com/huggingface/peft/blob/main/examples/boft_controlnet/boft_controlnet.md
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2364/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2364/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2362
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2362/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2362/comments
https://api.github.com/repos/huggingface/peft/issues/2362/events
https://github.com/huggingface/peft/issues/2362
2,833,885,059
I_kwDOIf9iDM6o6aeD
2,362
Import error
{ "login": "ikamensh", "id": 23004004, "node_id": "MDQ6VXNlcjIzMDA0MDA0", "avatar_url": "https://avatars.githubusercontent.com/u/23004004?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ikamensh", "html_url": "https://github.com/ikamensh", "followers_url": "https://api.github.com/users/ikamensh/followers", "following_url": "https://api.github.com/users/ikamensh/following{/other_user}", "gists_url": "https://api.github.com/users/ikamensh/gists{/gist_id}", "starred_url": "https://api.github.com/users/ikamensh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ikamensh/subscriptions", "organizations_url": "https://api.github.com/users/ikamensh/orgs", "repos_url": "https://api.github.com/users/ikamensh/repos", "events_url": "https://api.github.com/users/ikamensh/events{/privacy}", "received_events_url": "https://api.github.com/users/ikamensh/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2025-02-05T20:19:35
2025-02-05T20:38:50
2025-02-05T20:38:23
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Successfully installed accelerate-1.3.0 aiohappyeyeballs-2.4.4 aiohttp-3.11.11 aiosignal-1.3.2 bitsandbytes-0.45.1 datasets-3.2.0 dill-0.3.8 frozenlist-1.5.0 huggingface_hub-0.28.1 multidict-6.1.0 multiprocess-0.70.16 pandas-2.2.3 peft-0.14.0 propcache-0.2.1 pyarrow-19.0.0 pytz-2025.1 regex-2024.11.6 safetensors-0.5.2 tokenizers-0.13.3 tqdm-4.67.1 transformers-4.30.2 tzdata-2025.1 xxhash-3.5.0 yarl-1.18.3 root@77c297c83b18:/workspace# python qlora.py Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1086, in _get_module return importlib.import_module("." + module_name, self.__name__) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [...] File "/usr/local/lib/python3.11/dist-packages/transformers/trainer.py", line 212, in <module> from peft import PeftModel File "/usr/local/lib/python3.11/dist-packages/peft/__init__.py", line 22, in <module> from .auto import ( File "/usr/local/lib/python3.11/dist-packages/peft/auto.py", line 32, in <module> from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING File "/usr/local/lib/python3.11/dist-packages/peft/mapping.py", line 25, in <module> from .mixed_model import PeftMixedModel File "/usr/local/lib/python3.11/dist-packages/peft/mixed_model.py", line 29, in <module> from .peft_model import PeftModel File "/usr/local/lib/python3.11/dist-packages/peft/peft_model.py", line 37, in <module> from transformers import Cache, DynamicCache, EncoderDecoderCache, PreTrainedModel ImportError: cannot import name 'Cache' from 'transformers' (/usr/local/lib/python3.11/dist-packages/transformers/__init__.py) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/workspace/qlora.py", line 17, in <module> from transformers import ( File "<frozen importlib._bootstrap>", line 1229, in _handle_fromlist File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1076, in __getattr__ module = self._get_module(self._class_to_module[name]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1088, in _get_module raise RuntimeError( RuntimeError: Failed to import transformers.trainer because of the following error (look up to see its traceback): cannot import name 'Cache' from 'transformers' (/usr/local/lib/python3.11/dist-packages/transformers/__init__.py) ### Who can help? _No response_ ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction `pip install peft-0.14.0 transformers-4.30.2` on linux + py3.11 run following: ```python from transformers import ( LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling, ) ``` ### Expected behavior imports work (or crash outside peft)
{ "login": "ikamensh", "id": 23004004, "node_id": "MDQ6VXNlcjIzMDA0MDA0", "avatar_url": "https://avatars.githubusercontent.com/u/23004004?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ikamensh", "html_url": "https://github.com/ikamensh", "followers_url": "https://api.github.com/users/ikamensh/followers", "following_url": "https://api.github.com/users/ikamensh/following{/other_user}", "gists_url": "https://api.github.com/users/ikamensh/gists{/gist_id}", "starred_url": "https://api.github.com/users/ikamensh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ikamensh/subscriptions", "organizations_url": "https://api.github.com/users/ikamensh/orgs", "repos_url": "https://api.github.com/users/ikamensh/repos", "events_url": "https://api.github.com/users/ikamensh/events{/privacy}", "received_events_url": "https://api.github.com/users/ikamensh/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2362/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2362/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2359
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2359/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2359/comments
https://api.github.com/repos/huggingface/peft/issues/2359/events
https://github.com/huggingface/peft/issues/2359
2,829,346,186
I_kwDOIf9iDM6opGWK
2,359
Inconsistent documentation
{ "login": "makelinux", "id": 2335185, "node_id": "MDQ6VXNlcjIzMzUxODU=", "avatar_url": "https://avatars.githubusercontent.com/u/2335185?v=4", "gravatar_id": "", "url": "https://api.github.com/users/makelinux", "html_url": "https://github.com/makelinux", "followers_url": "https://api.github.com/users/makelinux/followers", "following_url": "https://api.github.com/users/makelinux/following{/other_user}", "gists_url": "https://api.github.com/users/makelinux/gists{/gist_id}", "starred_url": "https://api.github.com/users/makelinux/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/makelinux/subscriptions", "organizations_url": "https://api.github.com/users/makelinux/orgs", "repos_url": "https://api.github.com/users/makelinux/repos", "events_url": "https://api.github.com/users/makelinux/events{/privacy}", "received_events_url": "https://api.github.com/users/makelinux/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
5
2025-02-04T07:25:29
2025-03-06T15:03:57
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Content of https://huggingface.co/docs/peft/index is not synchronised with ToC. "How-to guides" is already "PEFT method guides". "PEFT method guides" are under directory `task_guides`. ![Image](https://github.com/user-attachments/assets/28cd2e3d-6ff7-4065-9c76-b5862ce09e6b) ### Expected behavior Consistent documentation. Clear unambiguous names. Links match titles and the content.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2359/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2359/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2355
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2355/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2355/comments
https://api.github.com/repos/huggingface/peft/issues/2355/events
https://github.com/huggingface/peft/issues/2355
2,823,704,539
I_kwDOIf9iDM6oTk_b
2,355
dataclass config handling
{ "login": "moghadas76", "id": 23231913, "node_id": "MDQ6VXNlcjIzMjMxOTEz", "avatar_url": "https://avatars.githubusercontent.com/u/23231913?v=4", "gravatar_id": "", "url": "https://api.github.com/users/moghadas76", "html_url": "https://github.com/moghadas76", "followers_url": "https://api.github.com/users/moghadas76/followers", "following_url": "https://api.github.com/users/moghadas76/following{/other_user}", "gists_url": "https://api.github.com/users/moghadas76/gists{/gist_id}", "starred_url": "https://api.github.com/users/moghadas76/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moghadas76/subscriptions", "organizations_url": "https://api.github.com/users/moghadas76/orgs", "repos_url": "https://api.github.com/users/moghadas76/repos", "events_url": "https://api.github.com/users/moghadas76/events{/privacy}", "received_events_url": "https://api.github.com/users/moghadas76/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-31T14:48:29
2025-03-10T15:04:18
2025-03-10T15:04:18
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:12:24) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: 11.5.119 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 GPU 1: NVIDIA GeForce RTX 4090 Nvidia driver version: 555.42.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i9-13900F CPU family: 6 Model: 183 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 1 CPU max MHz: 5600.0000 CPU min MHz: 800.0000 BogoMIPS: 3993.60 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 896 KiB (24 instances) L1i cache: 1.3 MiB (24 instances) L2 cache: 32 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.0 [pip3] torchtune==0.5.0 [conda] blas 1.0 mkl [conda] cuda-cudart 12.1.105 0 nvidia [conda] cuda-cupti 12.1.105 0 nvidia [conda] cuda-libraries 12.1.0 0 nvidia [conda] cuda-nvrtc 12.1.105 0 nvidia [conda] cuda-nvtx 12.1.105 0 nvidia [conda] cuda-opencl 12.3.52 0 nvidia [conda] cuda-runtime 12.1.0 0 nvidia [conda] easy-torch 1.3.2 pypi_0 pypi [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] libcublas 12.1.0.26 0 nvidia [conda] libcufft 11.0.2.4 0 nvidia [conda] libcurand 10.3.4.52 0 nvidia [conda] libcusolver 11.4.4.55 0 nvidia [conda] libcusparse 12.0.2.55 0 nvidia [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch [conda] libnvjitlink 12.1.105 0 nvidia [conda] mkl 2023.1.0 h213fc3f_46343 [conda] mkl-service 2.4.0 py311h5eee18b_1 [conda] mkl_fft 1.3.8 py311h5eee18b_0 [conda] mkl_random 1.2.4 py311hdb19cb5_0 [conda] numpy 1.24.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 8.9.2.26 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch [conda] pytorch-forecasting 1.2.0 pypi_0 pypi [conda] pytorch-lightning 2.2.0 pypi_0 pypi [conda] pytorch-mutex 1.0 cuda pytorch [conda] torch 2.3.0 pypi_0 pypi [conda] torch-cluster 1.6.3+pt23cu121 pypi_0 pypi [conda] torch-geometric 2.4.0 pypi_0 pypi [conda] torch-scatter 2.1.2+pt23cu121 pypi_0 pypi [conda] torch-sparse 0.6.18+pt23cu121 pypi_0 pypi [conda] torch-spline-conv 1.2.2+pt23cu121 pypi_0 pypi [conda] torch-summary 1.4.5 pypi_0 pypi [conda] torchaudio 2.3.0 pypi_0 pypi [conda] torchinfo 1.8.0 pypi_0 pypi [conda] torchmetrics 1.3.0.post0 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchtune 0.5.0 pypi_0 pypi [conda] torchvision 0.18.0 pypi_0 pypi [conda] triton 2.3.0 pypi_0 pypi ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction See PR ### Expected behavior See PR
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2355/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2355/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2354
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2354/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2354/comments
https://api.github.com/repos/huggingface/peft/issues/2354/events
https://github.com/huggingface/peft/issues/2354
2,823,156,387
I_kwDOIf9iDM6oRfKj
2,354
Commented PeftConfig
{ "login": "moghadas76", "id": 23231913, "node_id": "MDQ6VXNlcjIzMjMxOTEz", "avatar_url": "https://avatars.githubusercontent.com/u/23231913?v=4", "gravatar_id": "", "url": "https://api.github.com/users/moghadas76", "html_url": "https://github.com/moghadas76", "followers_url": "https://api.github.com/users/moghadas76/followers", "following_url": "https://api.github.com/users/moghadas76/following{/other_user}", "gists_url": "https://api.github.com/users/moghadas76/gists{/gist_id}", "starred_url": "https://api.github.com/users/moghadas76/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moghadas76/subscriptions", "organizations_url": "https://api.github.com/users/moghadas76/orgs", "repos_url": "https://api.github.com/users/moghadas76/repos", "events_url": "https://api.github.com/users/moghadas76/events{/privacy}", "received_events_url": "https://api.github.com/users/moghadas76/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-31T11:33:50
2025-03-10T15:04:20
2025-03-10T15:04:20
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info # from .config import PeftConfig, PeftType, PromptLearningConfig, TaskType @ ./peft/utils/__init__.py Why? ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction from peft.utils import PeftConfig ### Expected behavior accessing to PeftConfig!
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2354/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2354/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2348
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2348/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2348/comments
https://api.github.com/repos/huggingface/peft/issues/2348/events
https://github.com/huggingface/peft/issues/2348
2,811,752,952
I_kwDOIf9iDM6nl_H4
2,348
Incorrect Magnitude Calculation for DoRA Linear Layers (Violates DoRA Paper Methodology)
{ "login": "arcteryox", "id": 195980235, "node_id": "U_kgDOC65ryw", "avatar_url": "https://avatars.githubusercontent.com/u/195980235?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arcteryox", "html_url": "https://github.com/arcteryox", "followers_url": "https://api.github.com/users/arcteryox/followers", "following_url": "https://api.github.com/users/arcteryox/following{/other_user}", "gists_url": "https://api.github.com/users/arcteryox/gists{/gist_id}", "starred_url": "https://api.github.com/users/arcteryox/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arcteryox/subscriptions", "organizations_url": "https://api.github.com/users/arcteryox/orgs", "repos_url": "https://api.github.com/users/arcteryox/repos", "events_url": "https://api.github.com/users/arcteryox/events{/privacy}", "received_events_url": "https://api.github.com/users/arcteryox/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
5
2025-01-26T19:43:50
2025-01-30T18:56:52
2025-01-30T18:41:26
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### **Description** The current `DoraLinearLayer` incorrectly computes weight magnitude norms **per input channel** instead of **per output channel**, violating the methodology outlined in the [DoRA paper (Section 3.1)](https://arxiv.org/abs/2402.09353). This leads to degraded performance for linear layers (e.g., in LLMs). --- ### **Issue Details** #### **Affected Code**: `peft/tuners/lora/dora.py` → `DoraLinearLayer.get_weight_norm` ```python def get_weight_norm(self, weight, lora_weight, scaling): weight = transpose(weight, self.fan_in_fan_out) # ❌ Transposes to [in_features, out_features] weight = weight + scaling * lora_weight weight_norm = torch.linalg.norm(weight, dim=1) # Norm over input channels (dim=1) return weight_norm ``` #### **Problem**: - For a linear layer with weight shape `[out_features, in_features]`, transposing to `[in_features, out_features]` causes `dim=1` to represent **input channels**, not output channels. - This contradicts the DoRA paper’s requirement to compute magnitude **per output channel** (rows of the weight matrix). --- ### **Steps to Reproduce** 1. Initialize a DoRA-linear layer: ```python base_layer = nn.Linear(10, 5) # out_features=5, in_features=10 dora_layer = DoraLinearLayer(fan_in_fan_out=False) ``` 2. Check weight norm dimensions: ```python weight = base_layer.weight # Shape [5, 10] lora_weight = torch.randn(5, 10) # Simulate LoRA delta norm = dora_layer.get_weight_norm(weight, lora_weight, scaling=1.0) print(norm.shape) # Outputs [10] (input channels) instead of [5] (output channels) ``` --- ### **Expected vs Actual Behavior** | Expected (Per Paper) | Actual (Current Code) | |-----------------------|-----------------------| | Norms computed over **output channels** (`out_features`). | Norms computed over **input channels** (`in_features`). | --- ### **Proposed Fix** Remove the transpose and compute norms over `dim=1` directly: ```python def get_weight_norm(self, weight, lora_weight, scaling): # Remove transpose - work directly with [out_features, in_features] weight = weight + scaling * lora_weight weight_norm = torch.linalg.norm(weight, dim=1) # ✅ Norm over output channels (dim=1) return weight_norm ``` #### **Impact of Fix**: - Aligns with DoRA paper’s methodology for linear layers. - Convolutional layers (e.g., `DoraConv2dLayer`) are unaffected and already correct. --- ### **Additional Context** 1. **Paper Reference**: - Section 3.1 defines magnitude as the L2 norm of **rows** (output channels) for linear layers. - Example: For weight matrix `W ∈ ℝ^{d×k}`, magnitude `m_j = ||W_j||_2` (row-wise norm). 2. **Why This Matters**: - Magnitude scaling is critical for DoRA’s ability to decouple direction and magnitude updates. - Incorrect scaling invalidates the method’s theoretical guarantees and reduces performance (e.g., on LLM fine-tuning tasks). --- ### **Verification** After applying the fix: ```python print(norm.shape) # Now outputs [5] (correct for out_features=5) ``` ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ### **Steps to Reproduce** 1. Initialize a DoRA-linear layer: ```python base_layer = nn.Linear(10, 5) # out_features=5, in_features=10 dora_layer = DoraLinearLayer(fan_in_fan_out=False) ``` 2. Check weight norm dimensions: ```python weight = base_layer.weight # Shape [5, 10] lora_weight = torch.randn(5, 10) # Simulate LoRA delta norm = dora_layer.get_weight_norm(weight, lora_weight, scaling=1.0) print(norm.shape) # Outputs [10] (input channels) instead of [5] (output channels) ``` ### Expected behavior ### **Expected vs Actual Behavior** | Expected (Per Paper) | Actual (Current Code) | |-----------------------|-----------------------| | Norms computed over **output channels** (`out_features`). | Norms computed over **input channels** (`in_features`). |
{ "login": "arcteryox", "id": 195980235, "node_id": "U_kgDOC65ryw", "avatar_url": "https://avatars.githubusercontent.com/u/195980235?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arcteryox", "html_url": "https://github.com/arcteryox", "followers_url": "https://api.github.com/users/arcteryox/followers", "following_url": "https://api.github.com/users/arcteryox/following{/other_user}", "gists_url": "https://api.github.com/users/arcteryox/gists{/gist_id}", "starred_url": "https://api.github.com/users/arcteryox/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arcteryox/subscriptions", "organizations_url": "https://api.github.com/users/arcteryox/orgs", "repos_url": "https://api.github.com/users/arcteryox/repos", "events_url": "https://api.github.com/users/arcteryox/events{/privacy}", "received_events_url": "https://api.github.com/users/arcteryox/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2348/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2348/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2344
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2344/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2344/comments
https://api.github.com/repos/huggingface/peft/issues/2344/events
https://github.com/huggingface/peft/issues/2344
2,807,348,808
I_kwDOIf9iDM6nVL5I
2,344
FSDP2 and peft
{ "login": "psinger", "id": 1677826, "node_id": "MDQ6VXNlcjE2Nzc4MjY=", "avatar_url": "https://avatars.githubusercontent.com/u/1677826?v=4", "gravatar_id": "", "url": "https://api.github.com/users/psinger", "html_url": "https://github.com/psinger", "followers_url": "https://api.github.com/users/psinger/followers", "following_url": "https://api.github.com/users/psinger/following{/other_user}", "gists_url": "https://api.github.com/users/psinger/gists{/gist_id}", "starred_url": "https://api.github.com/users/psinger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/psinger/subscriptions", "organizations_url": "https://api.github.com/users/psinger/orgs", "repos_url": "https://api.github.com/users/psinger/repos", "events_url": "https://api.github.com/users/psinger/events{/privacy}", "received_events_url": "https://api.github.com/users/psinger/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2025-01-23T16:20:47
2025-03-03T15:04:06
2025-03-03T15:04:06
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
Hey, sorry if this is the wrong place. Feel free to move it to discussion. I am trying to get peft working with fsdp2 and am wondering if someone else attempted that already? The issue is that Im always getting errors along the lines of: `RuntimeError: aten.mm.default: got mixed torch.Tensor and DTensor, need to convert all torch.Tensor to DTensor before calling distributed operators!` Happy for any pointers.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2344/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2344/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2342
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2342/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2342/comments
https://api.github.com/repos/huggingface/peft/issues/2342/events
https://github.com/huggingface/peft/issues/2342
2,806,843,497
I_kwDOIf9iDM6nTQhp
2,342
CI: Add gptqmodel to the CI
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 5192585063, "node_id": "LA_kwDOIf9iDM8AAAABNYCPZw", "url": "https://api.github.com/repos/huggingface/peft/labels/wip", "name": "wip", "color": "fbca04", "default": false, "description": "" } ]
open
false
null
[]
null
4
2025-01-23T12:57:29
2025-02-28T10:35:25
null
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
This issue is to track the TODO from [this comment](https://github.com/huggingface/peft/pull/2247#pullrequestreview-2569656574). Once optimum 1.24.0 and transformers 4.49.0 are released, we should enable gptqmodel in the CI (and remove auto-gptq).
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2342/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2342/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2339
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2339/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2339/comments
https://api.github.com/repos/huggingface/peft/issues/2339/events
https://github.com/huggingface/peft/issues/2339
2,802,697,166
I_kwDOIf9iDM6nDcPO
2,339
Peft version upgrade from 0.4.0 to 0.14.0 results in "No module named \u0027peft.utils.config\u0027" error
{ "login": "incchar", "id": 184541983, "node_id": "U_kgDOCv_jHw", "avatar_url": "https://avatars.githubusercontent.com/u/184541983?v=4", "gravatar_id": "", "url": "https://api.github.com/users/incchar", "html_url": "https://github.com/incchar", "followers_url": "https://api.github.com/users/incchar/followers", "following_url": "https://api.github.com/users/incchar/following{/other_user}", "gists_url": "https://api.github.com/users/incchar/gists{/gist_id}", "starred_url": "https://api.github.com/users/incchar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/incchar/subscriptions", "organizations_url": "https://api.github.com/users/incchar/orgs", "repos_url": "https://api.github.com/users/incchar/repos", "events_url": "https://api.github.com/users/incchar/events{/privacy}", "received_events_url": "https://api.github.com/users/incchar/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-21T20:00:07
2025-03-02T15:03:46
2025-03-02T15:03:46
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Hello, I'm migrating my sagemaker endpoint from the `huggingface-pytorch-inference:2.1.0-transformers4.37.0-gpu-py310-cu118-ubuntu20.04` image (which is being deprecated) to the `huggingface-pytorch-inference:2.3.0-transformers4.46.1-gpu-py311-cu121-ubuntu20.04-v1.0` image, which is supported. This new version does not support the 0.4.0 version of peft, so we have upgraded to 1.14.0 and upgraded to a compatible diffusers version. The sagemaker endpoint deploys correctly with these new versions, but once it's run, we receive the following error: `No module named \u0027peft.utils.config\u0027` I dug around and found that there' no usage of peft.utils.config in our inference code. The only usage I could find is here, in the peft code itself: https://github.com/huggingface/peft/blob/main/src/peft/config.py. However, in this code, It looks like utils.config does not exist at all. Here's what I'm currently using: diffusers==0.32.2 peft==0.14.0 Is the peft library somehow breaking itself by looking for a peft.utils.config that doesn't exist? Have I missed a step that would create the utils.config file? Or is there another hidden dependency using peft.utils.config? ### Who can help? @BenjaminBossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction Create a sagemaker endpoint using the new `huggingface-pytorch-inference:2.3.0-transformers4.46.1-gpu-py311-cu121-ubuntu20.04-v1.0` huggingface DLC image. Use a requirements.txt that looks like the following: diffusers==0.32.2 peft==0.14.0 Observe that all requests to the sagemaker endpoint respond with 500 errors. ### Expected behavior The Sagemaker endpoint should continue to process requests as it did before the version upgrade (using peft 0.4.0)
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2339/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2339/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2337
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2337/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2337/comments
https://api.github.com/repos/huggingface/peft/issues/2337/events
https://github.com/huggingface/peft/issues/2337
2,800,325,334
I_kwDOIf9iDM6m6ZLW
2,337
AdaLora kthvalue(): selected number k out of range for dimension 0
{ "login": "PKaralupov", "id": 152442722, "node_id": "U_kgDOCRYXYg", "avatar_url": "https://avatars.githubusercontent.com/u/152442722?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PKaralupov", "html_url": "https://github.com/PKaralupov", "followers_url": "https://api.github.com/users/PKaralupov/followers", "following_url": "https://api.github.com/users/PKaralupov/following{/other_user}", "gists_url": "https://api.github.com/users/PKaralupov/gists{/gist_id}", "starred_url": "https://api.github.com/users/PKaralupov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PKaralupov/subscriptions", "organizations_url": "https://api.github.com/users/PKaralupov/orgs", "repos_url": "https://api.github.com/users/PKaralupov/repos", "events_url": "https://api.github.com/users/PKaralupov/events{/privacy}", "received_events_url": "https://api.github.com/users/PKaralupov/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
4
2025-01-20T21:56:43
2025-01-23T05:25:02
2025-01-23T05:25:02
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Using docker image pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime transformers 4.48.0 accelerate 1.2.1 peft 0.14.0 torch 2.5.1+cu124 Python 3.11.10 ### Who can help? @sayakpaul, @benjaminbossan ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction Using peft AdaLora for finetuning Whiper large v3 ``` model = prepare_model_for_kbit_training(model) target_modules=["q_proj", "v_proj", "k_proj"] t_modules = [] for id, (name, param) in enumerate(model.named_modules()): if 'model.decoder' in name and any([module in name for module in target_modules]): t_modules.append(name) target_modules=t_modules config = AdaLoraConfig( init_r= 96, target_r=64, beta1=0.85, beta2=0.85, tinit=6000, tfinal=11000, deltaT=100, lora_alpha=128, lora_dropout=0.1, target_modules=target_modules, orth_reg_weight=0.5, total_step= 13500 ) model = get_peft_model(model, config) model.print_trainable_parameters() ``` Using trainer callback for update_and_allocate ``` class OptimizerStepCllback(TrainerCallback): def on_optimizer_step(self, args, state, control, **kwargs): model.update_and_allocate(state.global_step) ``` ``` training_args = Seq2SeqTrainingArguments( output_dir=args.output_dir, per_device_train_batch_size=args.train_batchsize, gradient_accumulation_steps=1, learning_rate=args.learning_rate, warmup_steps=args.warmup, gradient_checkpointing=gradient_checkpointing, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), evaluation_strategy="epoch", save_strategy="epoch", num_train_epochs=args.num_epochs, per_device_eval_batch_size=args.eval_batchsize, predict_with_generate=True, generation_max_length=256, logging_steps=25, report_to=["tensorboard"], load_best_model_at_end=True, metric_for_best_model="eval_librispeech_asr_wer", greater_is_better=False, optim="adamw_bnb_8bit", remove_unused_columns=False, dataloader_num_workers=args.num_proc ) trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=raw_dataset["train"], eval_dataset=raw_dataset["eval"], data_collator=data_collator, compute_metrics=compute_metrics, tokenizer=processor.feature_extractor ) trainer.add_callback(OptimizerStepCllback) trainer.train(resume_from_checkpoint=resume_from_checkpoint) ``` Error after 2500 steps: ``` ERROR 2025-01-18T20:36:17.740476732Z [resource.labels.taskName: workerpool0-0] trainer.train(resume_from_checkpoint=resume_from_checkpoint) ERROR 2025-01-18T20:36:17.740483350Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/transformers/trainer.py", line 2171, in train ERROR 2025-01-18T20:36:17.740489895Z [resource.labels.taskName: workerpool0-0] return inner_training_loop( ERROR 2025-01-18T20:36:17.740496256Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740502909Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/transformers/trainer.py", line 2586, in _inner_training_loop ERROR 2025-01-18T20:36:17.740509254Z [resource.labels.taskName: workerpool0-0] self.control = self.callback_handler.on_optimizer_step(args, self.state, self.control) ERROR 2025-01-18T20:36:17.740515900Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740522460Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/transformers/trainer_callback.py", line 491, in on_optimizer_step ERROR 2025-01-18T20:36:17.740529629Z [resource.labels.taskName: workerpool0-0] return self.call_event("on_optimizer_step", args, state, control) ERROR 2025-01-18T20:36:17.740535418Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740541637Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/transformers/trainer_callback.py", line 519, in call_event ERROR 2025-01-18T20:36:17.740547789Z [resource.labels.taskName: workerpool0-0] result = getattr(callback, event)( ERROR 2025-01-18T20:36:17.740554197Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740560199Z [resource.labels.taskName: workerpool0-0] File "/workspace/task.py", line 752, in on_optimizer_step ERROR 2025-01-18T20:36:17.740566453Z [resource.labels.taskName: workerpool0-0] model.update_and_allocate(state.global_step) ERROR 2025-01-18T20:36:17.740572647Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/peft/tuners/adalora/model.py", line 343, in update_and_allocate ERROR 2025-01-18T20:36:17.740578651Z [resource.labels.taskName: workerpool0-0] _, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step, force_mask=True) ERROR 2025-01-18T20:36:17.740589951Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740596643Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/peft/tuners/adalora/layer.py", line 342, in update_and_allocate ERROR 2025-01-18T20:36:17.740605933Z [resource.labels.taskName: workerpool0-0] rank_pattern = self.mask_to_budget(model, budget) ERROR 2025-01-18T20:36:17.740612342Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740618182Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/peft/tuners/adalora/layer.py", line 321, in mask_to_budget ERROR 2025-01-18T20:36:17.740627268Z [resource.labels.taskName: workerpool0-0] mask_threshold = torch.kthvalue( ERROR 2025-01-18T20:36:17.740634138Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740640759Z [resource.labels.taskName: workerpool0-0] RuntimeError: kthvalue(): selected number k out of range for dimension 0 ``` ### Expected behavior I believe something is wrong with my configuration, as this error was not raised with other peft config parameters However, I am not sure why it happenned
{ "login": "PKaralupov", "id": 152442722, "node_id": "U_kgDOCRYXYg", "avatar_url": "https://avatars.githubusercontent.com/u/152442722?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PKaralupov", "html_url": "https://github.com/PKaralupov", "followers_url": "https://api.github.com/users/PKaralupov/followers", "following_url": "https://api.github.com/users/PKaralupov/following{/other_user}", "gists_url": "https://api.github.com/users/PKaralupov/gists{/gist_id}", "starred_url": "https://api.github.com/users/PKaralupov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PKaralupov/subscriptions", "organizations_url": "https://api.github.com/users/PKaralupov/orgs", "repos_url": "https://api.github.com/users/PKaralupov/repos", "events_url": "https://api.github.com/users/PKaralupov/events{/privacy}", "received_events_url": "https://api.github.com/users/PKaralupov/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2337/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2337/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2336
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2336/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2336/comments
https://api.github.com/repos/huggingface/peft/issues/2336/events
https://github.com/huggingface/peft/issues/2336
2,799,925,050
I_kwDOIf9iDM6m43c6
2,336
After using peft, the performance indicators decreased.
{ "login": "KQDtianxiaK", "id": 92998962, "node_id": "U_kgDOBYsNMg", "avatar_url": "https://avatars.githubusercontent.com/u/92998962?v=4", "gravatar_id": "", "url": "https://api.github.com/users/KQDtianxiaK", "html_url": "https://github.com/KQDtianxiaK", "followers_url": "https://api.github.com/users/KQDtianxiaK/followers", "following_url": "https://api.github.com/users/KQDtianxiaK/following{/other_user}", "gists_url": "https://api.github.com/users/KQDtianxiaK/gists{/gist_id}", "starred_url": "https://api.github.com/users/KQDtianxiaK/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KQDtianxiaK/subscriptions", "organizations_url": "https://api.github.com/users/KQDtianxiaK/orgs", "repos_url": "https://api.github.com/users/KQDtianxiaK/repos", "events_url": "https://api.github.com/users/KQDtianxiaK/events{/privacy}", "received_events_url": "https://api.github.com/users/KQDtianxiaK/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
5
2025-01-20T17:04:33
2025-03-09T15:04:20
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Sorry, I just finished the previous question and I still have to ask you a new question. I use the DNABert2 model, whose original structure is as follows: ``` BertForSequenceClassification( (bert): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(4096, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0): BertLayer( (attention): BertUnpadAttention( (self): BertUnpadSelfAttention( (dropout): Dropout(p=0.0, inplace=False) (Wqkv): Linear(in_features=768, out_features=2304, bias=True) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (mlp): BertGatedLinearUnitMLP( (gated_layers): Linear(in_features=768, out_features=6144, bias=False) (act): GELU(approximate='none') (wo): Linear(in_features=3072, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) (layernorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) ) ) ...... (11): BertLayer( (attention): BertUnpadAttention( (self): BertUnpadSelfAttention( (dropout): Dropout(p=0.0, inplace=False) (Wqkv): Linear(in_features=768, out_features=2304, bias=True) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (mlp): BertGatedLinearUnitMLP( (gated_layers): Linear(in_features=768, out_features=6144, bias=False) (act): GELU(approximate='none') (wo): Linear(in_features=3072, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) (layernorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) (dropout): Dropout(p=0.1, inplace=False) (classifier): Linear(in_features=768, out_features=157, bias=True) ) ``` On three different classification tasks, I used OFT, LNTuning and other methods to add fine-tuning modules to linear layers such as ['Wqkv'/'wo'/'gated_layers'], or ['LayerNorm'] and other parts for supervised training. During the training process, the logs output at each logging_steps are normal, the loss keeps decreasing, and the performance indicators keep rising. However, when the saved model weights are finally called to evaluate on the independent test set, the performance will be very poor, and the results are basically equivalent to It's the same as having no training at all. The following error is reported when calling: ``` Some weights of BertForSequenceClassification were not initialized from the model checkpoint at model/DNABERT2-117M and are newly initialized: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight', 'classifier.bias', 'classifier.weight'] ``` ### Who can help? @BenjaminBossan ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction and the code I use to call the model from each path that holds the best model weights: ``` def load_best_model_for_test(checkpoint_dir, fold_number): fold_dir = os.path.join(checkpoint_dir) checkpoint_folders = [d for d in os.scandir(fold_dir) if d.is_dir() and d.name.startswith('checkpoint')] best_model_dir = max(checkpoint_folders, key=lambda d: os.path.getmtime(d.path), default=None) best_model_path = best_model_dir.path model = AutoPeftModelForSequenceClassification.from_pretrained(best_model_path, trust_remote_code=True, num_labels=2) return model def evaluate_on_test_set(models, test_dataset): test_results = [] for model in models: trainer = Trainer( model=model, args=training_args, eval_dataset=test_dataset, data_collator=DataCollatorWithPadding(tokenizer=tokenizer), compute_metrics=eval_predict ) metrics = trainer.evaluate() test_results.append(metrics) average_metrics = {key: np.mean([result[key] for result in test_results]) for key in test_results[0].keys()} return average_metrics ``` However, when I did full-parameter supervised fine-tuning without using peft, the final results on the independent test set were all normal. I changed different tasks, changed different peft methods, changed different parts of fine-tuning, and used the latest version of peft and still can't solve the problem. ### Expected behavior Find out the cause and fix the problem
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2336/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2336/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2330
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2330/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2330/comments
https://api.github.com/repos/huggingface/peft/issues/2330/events
https://github.com/huggingface/peft/issues/2330
2,789,282,442
I_kwDOIf9iDM6mQRKK
2,330
MoELorA
{ "login": "moghadas76", "id": 23231913, "node_id": "MDQ6VXNlcjIzMjMxOTEz", "avatar_url": "https://avatars.githubusercontent.com/u/23231913?v=4", "gravatar_id": "", "url": "https://api.github.com/users/moghadas76", "html_url": "https://github.com/moghadas76", "followers_url": "https://api.github.com/users/moghadas76/followers", "following_url": "https://api.github.com/users/moghadas76/following{/other_user}", "gists_url": "https://api.github.com/users/moghadas76/gists{/gist_id}", "starred_url": "https://api.github.com/users/moghadas76/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moghadas76/subscriptions", "organizations_url": "https://api.github.com/users/moghadas76/orgs", "repos_url": "https://api.github.com/users/moghadas76/repos", "events_url": "https://api.github.com/users/moghadas76/events{/privacy}", "received_events_url": "https://api.github.com/users/moghadas76/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-15T09:29:58
2025-02-23T15:03:30
2025-02-23T15:03:30
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request Feature request The paper "MoELoRA: Contrastive Learning Guided Mixture of Experts on Parameter-Efficient Fine-Tuning for Large Language Models" introduced MoLoRA, a Mixutre-of-Experts approach using LoRA adapters. I am using it to conduct some research for my MSc thesis, and have implemented it in peft. I was wondering if this method is interesting and would be worth it to clean up my code and submit a PR. Motivation The motivation is to include more PEFT methods that the community can benefit from. Your contribution I can contribute a PR with the implementation of MoLoRA. ### Motivation Feature request The paper "MoELoRA: Contrastive Learning Guided Mixture of Experts on Parameter-Efficient Fine-Tuning for Large Language Models" introduced MoLoRA, a Mixutre-of-Experts approach using LoRA adapters. I am using it to conduct some research for my MSc thesis, and have implemented it in peft. I was wondering if this method is interesting and would be worth it to clean up my code and submit a PR. Motivation The motivation is to include more PEFT methods that the community can benefit from. Your contribution I can contribute a PR with the implementation of MoLoRA. ### Your contribution Feature request The paper "MoELoRA: Contrastive Learning Guided Mixture of Experts on Parameter-Efficient Fine-Tuning for Large Language Models" introduced MoLoRA, a Mixutre-of-Experts approach using LoRA adapters. I am using it to conduct some research for my MSc thesis, and have implemented it in peft. I was wondering if this method is interesting and would be worth it to clean up my code and submit a PR. Motivation The motivation is to include more PEFT methods that the community can benefit from. Your contribution I can contribute a PR with the implementation of MoLoRA.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2330/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2330/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2329
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2329/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2329/comments
https://api.github.com/repos/huggingface/peft/issues/2329/events
https://github.com/huggingface/peft/issues/2329
2,788,385,643
I_kwDOIf9iDM6mM2Nr
2,329
Request to intergrate Structure Sparsity-based PEFT (S2FT)
{ "login": "Hanyuezhuohua", "id": 58478765, "node_id": "MDQ6VXNlcjU4NDc4NzY1", "avatar_url": "https://avatars.githubusercontent.com/u/58478765?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Hanyuezhuohua", "html_url": "https://github.com/Hanyuezhuohua", "followers_url": "https://api.github.com/users/Hanyuezhuohua/followers", "following_url": "https://api.github.com/users/Hanyuezhuohua/following{/other_user}", "gists_url": "https://api.github.com/users/Hanyuezhuohua/gists{/gist_id}", "starred_url": "https://api.github.com/users/Hanyuezhuohua/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hanyuezhuohua/subscriptions", "organizations_url": "https://api.github.com/users/Hanyuezhuohua/orgs", "repos_url": "https://api.github.com/users/Hanyuezhuohua/repos", "events_url": "https://api.github.com/users/Hanyuezhuohua/events{/privacy}", "received_events_url": "https://api.github.com/users/Hanyuezhuohua/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-01-14T22:18:53
2025-02-14T15:29:31
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request This request proposes to intergrate S2FT, a pure structure sparsity-based PEFT method that concurrently achieve state-of-theart fine-tuning performance, training efficiency, and inference scalability. More information about our NeurIPS paper can be found here: https://infini-ai-lab.github.io/S2FT-Page/, of which i'm the first author. Here is our code for the implementation: https://github.com/Infini-AI-Lab/S2FT. ### Motivation As far as I know, S2FT is the first one to offer efficient and flexible sparsity-based PEFT for LLMs (previously only some add sparsity to LoRA or use layerwise freezing). Here, we'd like to mention several importance features of S2FT: - Model Versatility: The design of our structure sparsity is based on the coupled structure in LLMs, which commonly exists in LLMs, VLMs, CNNs, and GNNs. Therefore, our method should work for many different structures. - Generalization Ability: When evaluated on more recent models such as LLaMA-3-8B, we observe that our method can outperform both LoRA and Full FT, which is because we only modified a small fraction of the original parameters. Therefore, we can maintain most advanced abilities during pre-training. <img width="806" alt="Image" src="https://github.com/user-attachments/assets/ce046f07-5f0a-4ef3-a17f-13b836cf9473" /> - Training Efficiency: Instead of focusing on the parameter efficiency, S2FT can provide practical acceleration for model training. In our experiments, we show that S2FT can surpass LoRA in both training memory and time by 10%, which is important for resource-limited settings. <img width="794" alt="Image" src="https://github.com/user-attachments/assets/39122dce-f948-421e-936e-592b08463bc6" /> - Scalable Serving: Finally, S2FT also shows good serving ability in comparison with LoRA, where we consider adapter fusion, switch, and parallelism. For these settings, S2FT always outperforms LoRA in both efficiency and performance. <img width="809" alt="Image" src="https://github.com/user-attachments/assets/29dcc747-8cdf-42d9-9474-7b8c7b77c052" /> - Controllability: The model parameters to be updated in S2FT can be selected with user-specific functions, where LoRA cannot achieve this. Based on these information, although S2FT is just released, we think it is new kind of PEFT method showing very good potential. And the integration of it should be benefit for future sparsity-based PEFT methods. ### Your contribution I will try to write most code for this new PEFT method based on the current PEFT
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2329/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2329/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2326
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2326/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2326/comments
https://api.github.com/repos/huggingface/peft/issues/2326/events
https://github.com/huggingface/peft/issues/2326
2,784,601,999
I_kwDOIf9iDM6l-aeP
2,326
AttributeError: ModulesToSaveWrapper has no attribute `dense`
{ "login": "KQDtianxiaK", "id": 92998962, "node_id": "U_kgDOBYsNMg", "avatar_url": "https://avatars.githubusercontent.com/u/92998962?v=4", "gravatar_id": "", "url": "https://api.github.com/users/KQDtianxiaK", "html_url": "https://github.com/KQDtianxiaK", "followers_url": "https://api.github.com/users/KQDtianxiaK/followers", "following_url": "https://api.github.com/users/KQDtianxiaK/following{/other_user}", "gists_url": "https://api.github.com/users/KQDtianxiaK/gists{/gist_id}", "starred_url": "https://api.github.com/users/KQDtianxiaK/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KQDtianxiaK/subscriptions", "organizations_url": "https://api.github.com/users/KQDtianxiaK/orgs", "repos_url": "https://api.github.com/users/KQDtianxiaK/repos", "events_url": "https://api.github.com/users/KQDtianxiaK/events{/privacy}", "received_events_url": "https://api.github.com/users/KQDtianxiaK/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
5
2025-01-13T16:49:37
2025-01-20T16:29:05
2025-01-20T16:29:04
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info **Original model architecture:** ``` EsmForSequenceClassification( (esm): EsmModel( (embeddings): EsmEmbeddings( (word_embeddings): Embedding(33, 640, padding_idx=1) (dropout): Dropout(p=0.0, inplace=False) (position_embeddings): Embedding(1026, 640, padding_idx=1) ) (encoder): EsmEncoder( (layer): ModuleList( (0-29): 30 x EsmLayer( (attention): EsmAttention( (self): EsmSelfAttention( ... **(output): EsmSelfOutput( (dense): Linear(in_features=640, out_features=640, bias=True)** (dropout): Dropout(p=0.0, inplace=False) ) ... **(intermediate): EsmIntermediate( (dense): Linear(in_features=640, out_features=2560, bias=True) )** **(output): EsmOutput( (dense): Linear(in_features=2560, out_features=640, bias=True)** ... **(classifier): EsmClassificationHead( (dense): Linear(in_features=640, out_features=640, bias=True)** ... ``` **my code:** ``` model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=7) config = OFTConfig(task_type=TaskType.SEQ_CLS, target_modules=['dense']) model_OFT = get_peft_model(model, config) ``` **Peft model architecture:** ``` PeftModelForSequenceClassification( (base_model): OFTModel( (model): EsmForSequenceClassification( (esm): EsmModel( (embeddings): EsmEmbeddings( (word_embeddings): Embedding(33, 640, padding_idx=1) (dropout): Dropout(p=0.0, inplace=False) (position_embeddings): Embedding(1026, 640, padding_idx=1) ) (encoder): EsmEncoder( (layer): ModuleList( (0-29): 30 x EsmLayer( (attention): EsmAttention( (self): EsmSelfAttention( (query): Linear(in_features=640, out_features=640, bias=True) (key): Linear(in_features=640, out_features=640, bias=True) (value): Linear(in_features=640, out_features=640, bias=True) ... **(dense): oft.Linear( (base_layer): Linear(in_features=640, out_features=640, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x80x80]) )** ... **(intermediate): EsmIntermediate( (dense): oft.Linear( (base_layer): Linear(in_features=640, out_features=2560, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x320x320]) )** ) **(output): EsmOutput( (dense): oft.Linear( (base_layer): Linear(in_features=2560, out_features=640, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x80x80]) )** ... **(classifier): ModulesToSaveWrapper( (original_module): EsmClassificationHead( (dense): oft.Linear( (base_layer): Linear(in_features=640, out_features=640, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x80x80]) )** ... (modules_to_save): ModuleDict( (default): EsmClassificationHead( **(dense): oft.Linear( (base_layer): Linear(in_features=640, out_features=640, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x80x80]) )** ... ``` **adapter_config.json:** ``` { "alpha_pattern": {}, "auto_mapping": null, "base_model_name_or_path": "model/esm2_35M", "block_share": false, "coft": false, "eps": 6e-05, "inference_mode": true, "init_weights": true, "layers_pattern": null, "layers_to_transform": null, "module_dropout": 0.0, "modules_to_save": [ "classifier", "score" ], "peft_type": "OFT", "r": 8, "rank_pattern": {}, "revision": null, "target_modules": [ "dense" ], "task_type": "SEQ_CLS" } ``` ### Who can help? @BenjaminBossan ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction **After training, I load the model from the saved checkpoint, using the following codes:** ``` best_model_path = best_model_dir.path model_peft = AutoPeftModelForSequenceClassification.from_pretrained(best_model_path, num_labels=7) ``` **Got this error:** ``` Traceback (most recent call last): File "/root/autodl-tmp/PEFT-PLM/ESM2_scop_OFT.py", line 213, in <module> best_model = load_best_model_for_test(training_args.output_dir, i+1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/PEFT-PLM/ESM2_scop_OFT.py", line 189, in load_best_model_for_test model_peft = AutoPeftModelForSequenceClassification.from_pretrained(best_model_path, num_labels=7) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/auto.py", line 130, in from_pretrained return cls._target_peft_class.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/peft_model.py", line 541, in from_pretrained model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type]( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/peft_model.py", line 1311, in __init__ super().__init__(model, peft_config, adapter_name, **kwargs) File "/root/miniconda3/lib/python3.12/site-packages/peft/peft_model.py", line 155, in __init__ self.base_model = cls(model, {adapter_name: peft_config}, adapter_name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/tuners/lycoris_utils.py", line 196, in __init__ super().__init__(model, config, adapter_name) File "/root/miniconda3/lib/python3.12/site-packages/peft/tuners/tuners_utils.py", line 175, in __init__ self.inject_adapter(self.model, adapter_name) File "/root/miniconda3/lib/python3.12/site-packages/peft/tuners/tuners_utils.py", line 430, in inject_adapter parent, target, target_name = _get_submodules(model, key) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/utils/other.py", line 313, in _get_submodules target = model.get_submodule(key) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 717, in get_submodule raise AttributeError( AttributeError: ModulesToSaveWrapper has no attribute `dense` ``` ### Expected behavior Find out the cause and solve the problem
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2326/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2326/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2322
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2322/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2322/comments
https://api.github.com/repos/huggingface/peft/issues/2322/events
https://github.com/huggingface/peft/issues/2322
2,782,367,731
I_kwDOIf9iDM6l14_z
2,322
model merge and unload feature for AdaLora
{ "login": "DaehanKim", "id": 20675681, "node_id": "MDQ6VXNlcjIwNjc1Njgx", "avatar_url": "https://avatars.githubusercontent.com/u/20675681?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DaehanKim", "html_url": "https://github.com/DaehanKim", "followers_url": "https://api.github.com/users/DaehanKim/followers", "following_url": "https://api.github.com/users/DaehanKim/following{/other_user}", "gists_url": "https://api.github.com/users/DaehanKim/gists{/gist_id}", "starred_url": "https://api.github.com/users/DaehanKim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DaehanKim/subscriptions", "organizations_url": "https://api.github.com/users/DaehanKim/orgs", "repos_url": "https://api.github.com/users/DaehanKim/repos", "events_url": "https://api.github.com/users/DaehanKim/events{/privacy}", "received_events_url": "https://api.github.com/users/DaehanKim/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2025-01-12T09:20:01
2025-01-14T12:47:35
2025-01-14T12:47:34
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request unlike Lora or IA3 adapter type, AdaLora does not provide a method to merge lora adapter weights into original weights so that it can be used as a standalone model. I made that feature for a personal usecase and want to make a PR to make this feature accessible to everyone. ### Motivation This feature makes people easily merge AdaLora adapter weights into original weights, which makes further finetuning on it possible (i.e. when one wants to resume adalora training for checkpoints that was already trained with adalora, resuming training is not possible with unmerged weights. ) ### Your contribution I'll submit a PR. I followed the example of IA3 `merge_and_unload` Following is the overview of change : ``` def _unload_and_optionally_merge( self, merge: bool = True, safe_merge: bool = False, adapter_names: Optional[list[str]] = None, eps: float = 1e-5 ) -> torch.nn.Module: """ This method unloads the AdaLoRA adapter modules and optionally merges them into the base model weights. Args: merge (`bool`, defaults to `True`): If True, merges the adapter weights into base model weights. If False, it will only unload the adapters without merging. safe_merge (`bool`, defaults to `False`): If True, performs the merge operation with extra safety checks. adapter_names (`List[str]`, *optional*): The list of adapter names to merge. If None, all active adapters will be merged. eps (`float`, defaults to 1e-5): Small constant for numerical stability when dividing by ranknum. Returns: model (`torch.nn.Module`): The resulting PyTorch model. """ if getattr(self.model, "is_loaded_in_8bit", False): raise ValueError("Cannot merge adalora layers when the model is loaded in 8-bit mode") if getattr(self.model, "is_loaded_in_4bit", False): raise ValueError("Cannot merge adalora layers when the model is loaded in 4-bit mode") if adapter_names is not None: raise ValueError("AdaLoRA does not support merging specific adapters. Got adapter_names={adapter_names}") # Create a copy of the base model state dict to modify original_state_dict = self.model.state_dict() if merge: for name, module in self.model.named_modules(): if hasattr(module, "base_layer") and hasattr(module, "lora_A"): # Extract base layer weight name layer_name = name.replace(".lora_A", "") layer_name = layer_name.replace("base_model.model.", "") base_weight_name = f"{layer_name}.weight" # Get SVD parameters lora_A = module.lora_A["default"] # [r x d_in] lora_B = module.lora_B["default"] # [d_out x r] lora_E = module.lora_E["default"] # [r x 1] # Calculate active ranks ranknum = (lora_E != 0).sum() scaling = module.scaling["default"] if hasattr(module, "scaling") else 16 # Safety check if requested if safe_merge and (torch.isnan(lora_A).any() or torch.isnan(lora_B).any() or torch.isnan(lora_E).any()): raise ValueError(f"NaN detected in adapter weights for layer {name}") # Scale A with E: A' = AE scaled_A = lora_A * lora_E # [r x d_in] # Compute update: ΔW = BA' if ranknum > 0: update = (lora_B @ scaled_A) * scaling / (ranknum + eps) else: update = torch.zeros_like(original_state_dict[base_weight_name]) # Update base weights if base_weight_name in original_state_dict: original_state_dict[base_weight_name] += update # Load the merged state dict back into a clean version of the model self.model.load_state_dict(original_state_dict) return self.model def merge_and_unload( self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None, eps: float = 1e-5 ) -> torch.nn.Module: """ Merge the active adapters into the base model and unload the adapters. Args: safe_merge (`bool`, defaults to `False`): If True, performs the merge operation with extra safety checks. adapter_names (`List[str]`, *optional*): List of adapter names to merge. If None, merges all active adapters. eps (`float`, defaults to 1e-5): Small constant for numerical stability when dividing by ranknum. Returns: `torch.nn.Module`: The merged model. """ return self._unload_and_optionally_merge( safe_merge=safe_merge, adapter_names=adapter_names, eps=eps ) def unload(self) -> torch.nn.Module: """ Unload the adapters without merging them into the base model. Returns: `torch.nn.Module`: The unloaded model. """ return self._unload_and_optionally_merge(merge=False) ```
{ "login": "DaehanKim", "id": 20675681, "node_id": "MDQ6VXNlcjIwNjc1Njgx", "avatar_url": "https://avatars.githubusercontent.com/u/20675681?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DaehanKim", "html_url": "https://github.com/DaehanKim", "followers_url": "https://api.github.com/users/DaehanKim/followers", "following_url": "https://api.github.com/users/DaehanKim/following{/other_user}", "gists_url": "https://api.github.com/users/DaehanKim/gists{/gist_id}", "starred_url": "https://api.github.com/users/DaehanKim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DaehanKim/subscriptions", "organizations_url": "https://api.github.com/users/DaehanKim/orgs", "repos_url": "https://api.github.com/users/DaehanKim/repos", "events_url": "https://api.github.com/users/DaehanKim/events{/privacy}", "received_events_url": "https://api.github.com/users/DaehanKim/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2322/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2322/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2321
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2321/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2321/comments
https://api.github.com/repos/huggingface/peft/issues/2321/events
https://github.com/huggingface/peft/issues/2321
2,782,134,190
I_kwDOIf9iDM6l0_-u
2,321
[Warning] `Merge lora module to 4-bit linear may get different generations`
{ "login": "steveepreston", "id": 175405060, "node_id": "U_kgDOCnR4BA", "avatar_url": "https://avatars.githubusercontent.com/u/175405060?v=4", "gravatar_id": "", "url": "https://api.github.com/users/steveepreston", "html_url": "https://github.com/steveepreston", "followers_url": "https://api.github.com/users/steveepreston/followers", "following_url": "https://api.github.com/users/steveepreston/following{/other_user}", "gists_url": "https://api.github.com/users/steveepreston/gists{/gist_id}", "starred_url": "https://api.github.com/users/steveepreston/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/steveepreston/subscriptions", "organizations_url": "https://api.github.com/users/steveepreston/orgs", "repos_url": "https://api.github.com/users/steveepreston/repos", "events_url": "https://api.github.com/users/steveepreston/events{/privacy}", "received_events_url": "https://api.github.com/users/steveepreston/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
15
2025-01-11T20:27:54
2025-03-06T15:30:07
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft 0.14.0 transformers 4.48.0 bitsandbytes 0.45.0 ### Who can help? @BenjaminBossan @sayakpaul ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction code: ```python base_model_id = "gemma-2-27b-it" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_storage=torch.bfloat16, ) base_model = AutoModelForCausalLM.from_pretrained( base_model_id, quantization_config=quantization_config, attn_implementation="sdpa", torch_dtype=torch.bfloat16, use_cache=True, ) peft_model = PeftModel.from_pretrained(base_model, adapter_path) --> merged_model = peft_model.merge_and_unload() ``` Warning: ``` UserWarning: Merge lora module to 4-bit linear may get different generations due to rounding errors. ``` ### Expected behavior merge_and_unload() correctly and without warning.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2321/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2321/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2319
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2319/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2319/comments
https://api.github.com/repos/huggingface/peft/issues/2319/events
https://github.com/huggingface/peft/issues/2319
2,779,143,092
I_kwDOIf9iDM6lplu0
2,319
Import error , is it a version issue?
{ "login": "zhangyangniubi", "id": 157886832, "node_id": "U_kgDOCWkpcA", "avatar_url": "https://avatars.githubusercontent.com/u/157886832?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zhangyangniubi", "html_url": "https://github.com/zhangyangniubi", "followers_url": "https://api.github.com/users/zhangyangniubi/followers", "following_url": "https://api.github.com/users/zhangyangniubi/following{/other_user}", "gists_url": "https://api.github.com/users/zhangyangniubi/gists{/gist_id}", "starred_url": "https://api.github.com/users/zhangyangniubi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zhangyangniubi/subscriptions", "organizations_url": "https://api.github.com/users/zhangyangniubi/orgs", "repos_url": "https://api.github.com/users/zhangyangniubi/repos", "events_url": "https://api.github.com/users/zhangyangniubi/events{/privacy}", "received_events_url": "https://api.github.com/users/zhangyangniubi/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
3
2025-01-10T02:34:52
2025-01-13T10:13:18
2025-01-13T10:13:18
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info When I execute the finetune.py file, an error occurs as follows: cannot import name 'prepare_model_for_int8_training'.Is it a version issue? My version is 0.14.0. ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction cannot import name 'prepare_model_for_int8_training' from 'peft' (/path/python3.10/site-packages/peft/__init__.py) ### Expected behavior Who can help me answer this question,thks
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2319/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2319/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2318
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2318/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2318/comments
https://api.github.com/repos/huggingface/peft/issues/2318/events
https://github.com/huggingface/peft/issues/2318
2,779,069,108
I_kwDOIf9iDM6lpTq0
2,318
Issue merging a Lora model to a SANA transformer
{ "login": "frutiemax92", "id": 142428698, "node_id": "U_kgDOCH1KGg", "avatar_url": "https://avatars.githubusercontent.com/u/142428698?v=4", "gravatar_id": "", "url": "https://api.github.com/users/frutiemax92", "html_url": "https://github.com/frutiemax92", "followers_url": "https://api.github.com/users/frutiemax92/followers", "following_url": "https://api.github.com/users/frutiemax92/following{/other_user}", "gists_url": "https://api.github.com/users/frutiemax92/gists{/gist_id}", "starred_url": "https://api.github.com/users/frutiemax92/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/frutiemax92/subscriptions", "organizations_url": "https://api.github.com/users/frutiemax92/orgs", "repos_url": "https://api.github.com/users/frutiemax92/repos", "events_url": "https://api.github.com/users/frutiemax92/events{/privacy}", "received_events_url": "https://api.github.com/users/frutiemax92/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
13
2025-01-10T01:24:35
2025-03-06T18:39:20
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft=0.14.0 ### Who can help? @BenjaminBossan @sayakpaul ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ``` from diffusers import SanaPipeline, SanaPAGPipeline, SanaTransformer2DModel from peft import PeftModel transformer = SanaTransformer2DModel.from_pretrained("frutiemax/twistedreality-sana-1600m-1024px") print(transformer) peft_model = PeftModel.from_pretrained(transformer, '0') model = peft_model.merge_and_unload() ``` ### Expected behavior I've trained a Lora model with PEFT on a SANA checkpoint. I can train and inference using the PEFT model. However, when I try to merge the Lora to the base checkpoint, I encounter a shape mismatch. I've attached the Lora model with a rank 4. ![image](https://github.com/user-attachments/assets/9bbdce69-1cbf-4a30-a438-f97614f4c6f3) [0.zip](https://github.com/user-attachments/files/18369238/0.zip)
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2318/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2318/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2317
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2317/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2317/comments
https://api.github.com/repos/huggingface/peft/issues/2317/events
https://github.com/huggingface/peft/issues/2317
2,777,004,984
I_kwDOIf9iDM6lhbu4
2,317
Issue with finetuning with Corda
{ "login": "sirluk", "id": 58826757, "node_id": "MDQ6VXNlcjU4ODI2NzU3", "avatar_url": "https://avatars.githubusercontent.com/u/58826757?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirluk", "html_url": "https://github.com/sirluk", "followers_url": "https://api.github.com/users/sirluk/followers", "following_url": "https://api.github.com/users/sirluk/following{/other_user}", "gists_url": "https://api.github.com/users/sirluk/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirluk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirluk/subscriptions", "organizations_url": "https://api.github.com/users/sirluk/orgs", "repos_url": "https://api.github.com/users/sirluk/repos", "events_url": "https://api.github.com/users/sirluk/events{/privacy}", "received_events_url": "https://api.github.com/users/sirluk/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
13
2025-01-09T07:12:18
2025-02-10T10:22:03
2025-02-10T10:22:01
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft master branch (commit 8d3039b6cb724522625bff26988418cac5759ffa) ### Who can help? @BenjaminBossan @5eqn Hi, I would like to try out Corda for my finetuning usecase but looking at the loss curves something seems to be going wrong so I just wanted to verify I implemented Corda correctly. This is the relevant code snippet from my script. I have a tokenized dataset which I wrap with a dataloader with a batch size = 1 to pass to the `preprocess_corda` function. Once `preprocess_corda` is done computing I can just instantiate the peft model as usual with the required config, correct? Would greatly appreciate some feedback. ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction ```python # imports import torch from functools import partial from datasets import load_dataset, interleave_datasets, DatasetDict from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments from peft import get_peft_model, LoraConfig from peft.tuners.lora.corda import preprocess_corda from peft.tuners.lora.config import CordaConfig # functions def _tokenize_fn(prompts, completions, tokenizer): prompt_tokens = tokenizer(prompts, add_special_tokens=False)["input_ids"] input_tokens = tokenizer([x+y for x, y in zip(prompts, completions)], add_special_tokens=False)["input_ids"] input_tokens = [[tokenizer.bos_token_id]+x+[tokenizer.eos_token_id] for x in input_tokens] prompt_length = [len(x)+1 for x in prompt_tokens] # +1 for the bos token input_length = [len(x) for x in input_tokens] return {"input_ids": input_tokens, "prompt_length": prompt_length, "input_length": input_length} class _TokenizerPromptSource: def __init__(self, tokenizer_path, space_after_prompt=True): # import promptsource from promptsource_custom.templates import DatasetTemplates self.dataset_templates = DatasetTemplates self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) self.space_after_prompt = space_after_prompt def __call__(self, examples): examples = [dict(zip(examples.keys(), e)) for e in zip(*examples.values())] prompts, completions = zip(*[self.prompt.apply(e) for e in examples]) if self.space_after_prompt: prompts = [p + " " for p in prompts] return _tokenize_fn(prompts, completions, self.tokenizer) class TokenizerWinogrande(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("winogrande", "winogrande_xl")["multiple_choice_simple"] class TokenizerHellaswag(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("hellaswag")["multiple_choice_simple"] class TokenizerArcChallenge(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("ai2_arc", "ARC-Challenge")["multiple_choice_simple"] class TokenizerArcEasy(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("ai2_arc", "ARC-Easy")["multiple_choice_simple"] class TokenizerPIQA(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("piqa")["multiple_choice_simple"] class TokenizerSIQA(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("social_i_qa")["multiple_choice_simple"] class TokenizerOpenBookQA(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("openbookqa", "main")["multiple_choice_simple"] class TokenizerBoolQ(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("super_glue", "boolq")["multiple_choice_simple"] class DataCollator: def __init__(self, eos_token_id, max_length = None): self.eos_token_id = eos_token_id self.max_length = max_length def __call__(self, batch): batch = {k: [item[k] for item in batch] for k in batch[0]} input_lengths = torch.stack(batch["input_length"]) prompt_lengths = torch.stack(batch["prompt_length"]) input_ids = torch.nn.utils.rnn.pad_sequence(batch["input_ids"], batch_first=True, padding_value=self.eos_token_id) col_indices = torch.arange(input_ids.size(1)).unsqueeze(0) attention_mask = col_indices < input_lengths.unsqueeze(1) label_mask = torch.logical_or(col_indices < prompt_lengths.unsqueeze(1), ~attention_mask) labels = input_ids.masked_fill(label_mask, -100) if self.max_length is not None: input_ids = input_ids[:, :self.max_length] attention_mask = attention_mask[:, :self.max_length] labels = labels[:, :self.max_length] return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} # constants CORDA = False SEED = 0 BATCH_SIZE = 4 NUM_EPOCHS = 1 LEARNING_RATE = 5e-4 GRADIENT_ACCUMULATION_STEPS = 8 MODEL_NAME = "meta-llama/Llama-2-7b-hf" MODEL_MAX_LENGTH = 1024 QA_DATASETS = [ "Rowan/hellaswag", "allenai/winogrande", "allenai/ai2_arc_challenge", "allenai/ai2_arc_easy", "ybisk/piqa", "allenai/social_i_qa", "allenai/openbookqa", "boolq" ] LOAD_DATASET_KWARGS = { "Rowan/hellaswag": {"path": "Rowan/hellaswag"}, "allenai/winogrande": {"path": "allenai/winogrande", "name": "winogrande_xl"}, "allenai/ai2_arc_challenge": {"path": "allenai/ai2_arc", "name": "ARC-Challenge"}, "allenai/ai2_arc_easy": {"path": "allenai/ai2_arc", "name": "ARC-Easy"}, "ybisk/piqa": {"path": "ybisk/piqa"}, "allenai/social_i_qa": {"path": "allenai/social_i_qa"}, "allenai/openbookqa": {"path": "allenai/openbookqa", "name": "main"}, "boolq": {"path": "aps/super_glue", "name": "boolq"} } TOKENIZE_MAP = { "Rowan/hellaswag": TokenizerHellaswag, "allenai/winogrande": TokenizerWinogrande, "allenai/ai2_arc_challenge": TokenizerArcChallenge, "allenai/ai2_arc_easy": TokenizerArcEasy, "ybisk/piqa": TokenizerPIQA, "allenai/social_i_qa": TokenizerSIQA, "allenai/openbookqa": TokenizerOpenBookQA, "boolq": TokenizerBoolQ } # load model model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) model.cuda() # load dataset datasets = [] for dataset_name in QA_DATASETS: tokenizer_cls = TOKENIZE_MAP[dataset_name] tokenizer_wrapper = tokenizer_cls(tokenizer_path=MODEL_NAME) load_dataset_kwargs = LOAD_DATASET_KWARGS[dataset_name] if load_dataset_kwargs["path"] is not None: load_dataset_kwargs["path"] = load_dataset_kwargs["path"] datasets.append(load_dataset(**load_dataset_kwargs, trust_remote_code=True)) datasets[-1] = datasets[-1].map(tokenizer_wrapper, batched=True, remove_columns=datasets[-1]["train"].column_names) datasets[-1].set_format(type="torch") datasets[-1] = datasets[-1].shuffle(seed=SEED) all_splits = set([n for ds in datasets for n in ds.keys()]) datasets = DatasetDict({split: interleave_datasets([ds[split] for ds in datasets if split in ds]) for split in all_splits}) data_collator = DataCollator(tokenizer_wrapper.tokenizer.eos_token_id, MODEL_MAX_LENGTH) # get peft config target_modules = [n for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)] if CORDA: corda_config = CordaConfig(corda_method="ipm") lora_config = LoraConfig( init_lora_weights="corda", target_modules=target_modules, lora_alpha=1, lora_dropout=0, r=16, corda_config=corda_config ) sampled_dataset = datasets["train"].select(list(range(256))) corda_data_loader = torch.utils.data.DataLoader( sampled_dataset, batch_size=1, collate_fn=data_collator, shuffle=True ) def run_model(model, corda_data_loader): for batch in corda_data_loader: input_ids = batch["input_ids"] input_ids = input_ids.to(model.device) with torch.no_grad(): model(input_ids) run_model = partial(run_model, model=model, corda_data_loader=corda_data_loader) preprocess_corda(model, lora_config, run_model=run_model) else: lora_config = LoraConfig( init_lora_weights=True, target_modules=target_modules, lora_alpha=1, lora_dropout=0, r=16 ) model = get_peft_model(model, lora_config) training_args = TrainingArguments( output_dir="output", num_train_epochs=NUM_EPOCHS, per_device_train_batch_size=BATCH_SIZE, per_device_eval_batch_size=BATCH_SIZE, seed=SEED, learning_rate=LEARNING_RATE, remove_unused_columns=False, gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, report_to=[] ) trainer = Trainer( model=model, args=training_args, train_dataset=datasets["train"], eval_dataset=datasets["validation"] if "validation" in datasets else None, data_collator=data_collator ) trainer.train() ``` ### Expected behavior I tried to follow the corda example in the documentation and thought it should work like this
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2317/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2317/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2316
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2316/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2316/comments
https://api.github.com/repos/huggingface/peft/issues/2316/events
https://github.com/huggingface/peft/issues/2316
2,776,718,486
I_kwDOIf9iDM6lgVyW
2,316
peft with DinoV2 and tasktype feature extraction
{ "login": "createdaccountbecauseIwantgithubcopilot", "id": 109659313, "node_id": "U_kgDOBolEsQ", "avatar_url": "https://avatars.githubusercontent.com/u/109659313?v=4", "gravatar_id": "", "url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot", "html_url": "https://github.com/createdaccountbecauseIwantgithubcopilot", "followers_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/followers", "following_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/following{/other_user}", "gists_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/gists{/gist_id}", "starred_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/subscriptions", "organizations_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/orgs", "repos_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/repos", "events_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/events{/privacy}", "received_events_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-09T02:48:36
2025-01-09T14:11:54
2025-01-09T14:11:54
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info irrelevant. ### Who can help? _No response_ ### Information - [X] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction ```python import torch from transformers import AutoImageProcessor, Dinov2WithRegistersModel from peft import LoraConfig, get_peft_model, TaskType def setup_peft_model(model_name="facebook/dinov2-with-registers-large", lora_r=8, lora_alpha=32, lora_dropout=0.1): base_model = Dinov2WithRegistersModel.from_pretrained(model_name) image_processor = AutoImageProcessor.from_pretrained(model_name) peft_config = LoraConfig( task_type=TaskType.FEATURE_EXTRACTION, inference_mode=False, r=lora_r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, target_modules=["query", "key", "value"] ) peft_model = get_peft_model(base_model, peft_config) peft_model.print_trainable_parameters() return peft_model, image_processor def process_image(model, processor, image_size=(518, 518)): sample_input = torch.randn(1, 3, *image_size) with torch.no_grad(): outputs = model(sample_input) return outputs def main(): model, processor = setup_peft_model() outputs = process_image(model, processor) print(f"Output shape: {outputs.last_hidden_state.shape}") if __name__ == "__main__": main() ``` Error: TypeError: Dinov2WithRegistersModel.forward() got an unexpected keyword argument 'input_ids' ### Expected behavior it to work.
{ "login": "createdaccountbecauseIwantgithubcopilot", "id": 109659313, "node_id": "U_kgDOBolEsQ", "avatar_url": "https://avatars.githubusercontent.com/u/109659313?v=4", "gravatar_id": "", "url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot", "html_url": "https://github.com/createdaccountbecauseIwantgithubcopilot", "followers_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/followers", "following_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/following{/other_user}", "gists_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/gists{/gist_id}", "starred_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/subscriptions", "organizations_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/orgs", "repos_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/repos", "events_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/events{/privacy}", "received_events_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2316/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2316/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2315
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2315/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2315/comments
https://api.github.com/repos/huggingface/peft/issues/2315/events
https://github.com/huggingface/peft/issues/2315
2,776,494,295
I_kwDOIf9iDM6lffDX
2,315
Prefix Tuning dimension error with Qwen2 and missing vocab_size for PaliGemma2
{ "login": "Florian-Dreyer", "id": 64322175, "node_id": "MDQ6VXNlcjY0MzIyMTc1", "avatar_url": "https://avatars.githubusercontent.com/u/64322175?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Florian-Dreyer", "html_url": "https://github.com/Florian-Dreyer", "followers_url": "https://api.github.com/users/Florian-Dreyer/followers", "following_url": "https://api.github.com/users/Florian-Dreyer/following{/other_user}", "gists_url": "https://api.github.com/users/Florian-Dreyer/gists{/gist_id}", "starred_url": "https://api.github.com/users/Florian-Dreyer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Florian-Dreyer/subscriptions", "organizations_url": "https://api.github.com/users/Florian-Dreyer/orgs", "repos_url": "https://api.github.com/users/Florian-Dreyer/repos", "events_url": "https://api.github.com/users/Florian-Dreyer/events{/privacy}", "received_events_url": "https://api.github.com/users/Florian-Dreyer/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
15
2025-01-08T22:52:17
2025-02-25T15:04:15
2025-02-25T15:04:15
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info PEFT: 0.14.0 Transformers: 4.48.0.dev0 ### Who can help? @BenjaminBossan ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction For Qwen we get the following error: IndexError: Caught IndexError in replica 0 on device 0. Original Traceback (most recent call last): File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/parallel/parallel_apply.py", line 84, in _worker output = module(*input, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/peft/peft_model.py", line 1755, in forward return self.base_model(input_ids=input_ids, inputs_embeds=inputs_embeds, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/transformers/models/qwen2_vl/modeling_qwen2_vl.py", line 1682, in forward position_ids, rope_deltas = self.get_rope_index( File "/home/{user_name}/venv/lib/python3.10/site-packages/transformers/models/qwen2_vl/modeling_qwen2_vl.py", line 1486, in get_rope_index input_ids = input_ids[attention_mask[i] == 1] IndexError: The shape of the mask [172] at index 0 does not match the shape of the indexed tensor [122] at index 0 And for PaliGemma2 this one: AttributeError Traceback (most recent call last) Cell In[68], line 8 6 tokenizer = processor.tokenizer 7 # Apply PEFT model adaptation ----> 8 peft_model = get_peft_model(model, peft_config) 10 # Print trainable parameters 11 peft_model.print_trainable_parameters() File ~/venv/lib/python3.10/site-packages/peft/mapping.py:222, in get_peft_model(model, peft_config, adapter_name, mixed, autocast_adapter_dtype, revision, low_cpu_mem_usage) 220 if peft_config.is_prompt_learning: 221 peft_config = _prepare_prompt_learning_config(peft_config, model_config) --> 222 return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type]( 223 model, 224 peft_config, 225 adapter_name=adapter_name, 226 autocast_adapter_dtype=autocast_adapter_dtype, 227 low_cpu_mem_usage=low_cpu_mem_usage, 228 ) File ~/venv/lib/python3.10/site-packages/peft/peft_model.py:1684, in PeftModelForCausalLM.__init__(self, model, peft_config, adapter_name, **kwargs) 1681 def __init__( 1682 self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default", **kwargs 1683 ) -> None: -> 1684 super().__init__(model, peft_config, adapter_name, **kwargs) 1685 self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation File ~/venv/lib/python3.10/site-packages/peft/peft_model.py:170, in PeftModel.__init__(self, model, peft_config, adapter_name, autocast_adapter_dtype, low_cpu_mem_usage) 168 self._peft_config = {adapter_name: peft_config} 169 self.base_model = model --> 170 self.add_adapter(adapter_name, peft_config, low_cpu_mem_usage=low_cpu_mem_usage) 171 else: 172 self._peft_config = None File ~/venv/lib/python3.10/site-packages/peft/peft_model.py:958, in PeftModel.add_adapter(self, adapter_name, peft_config, low_cpu_mem_usage) 955 dict_config = self.config 957 peft_config = _prepare_prompt_learning_config(peft_config, dict_config) --> 958 self._setup_prompt_encoder(adapter_name) 959 elif peft_config.is_adaption_prompt: 960 self.base_model.add_adapter(adapter_name, peft_config) File ~/venv/lib/python3.10/site-packages/peft/peft_model.py:642, in PeftModel._setup_prompt_encoder(self, adapter_name) 635 for named_param, value in list(transformer_backbone.named_parameters()): 636 # for ZeRO-3, the tensor is sharded across accelerators and deepspeed modifies it to a tensor with shape 637 # [0] the actual unsharded shape is stored in "ds_shape" attribute special handling is needed in case 638 # the model is initialized in deepspeed.zero.Init() context or HfDeepSpeedConfig has been called before 639 # For reference refer to issue: https://github.com/huggingface/peft/issues/996 640 deepspeed_distributed_tensor_shape = getattr(value, "ds_shape", None) --> 642 if value.shape[0] == self.base_model.config.vocab_size or ( 643 deepspeed_distributed_tensor_shape is not None 644 and deepspeed_distributed_tensor_shape[0] == self.base_model.config.vocab_size 645 ): 646 word_embeddings = transformer_backbone.get_submodule(named_param.replace(".weight", "")) 647 break File ~/venv/lib/python3.10/site-packages/transformers/configuration_utils.py:211, in PretrainedConfig.__getattribute__(self, key) 209 if key != "attribute_map" and key in super().__getattribute__("attribute_map"): 210 key = super().__getattribute__("attribute_map")[key] --> 211 return super().__getattribute__(key) AttributeError: 'PaliGemmaConfig' object has no attribute 'vocab_size' You can find the notebook here to replicate the errors here: https://github.com/Florian-Dreyer/PEFT_BUG/blob/main/prefix_tuning_peft.ipynb Just execute the cells to get the errors. ### Expected behavior We would expect the models to be able to process the input. We tried just calling model(**inputs) but ran into the same error with Qwen. Note: The dimension difference is exactly the prefix length. So the question is, how can we get the models to run? Is PaliGemma even supported?
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2315/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2315/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2415
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2415/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2415/comments
https://api.github.com/repos/huggingface/peft/issues/2415/events
https://github.com/huggingface/peft/issues/2415
2,905,929,237
I_kwDOIf9iDM6tNPYV
2,415
size mismatch for lm_head when fintune QWEN2.5
{ "login": "minmie", "id": 40080081, "node_id": "MDQ6VXNlcjQwMDgwMDgx", "avatar_url": "https://avatars.githubusercontent.com/u/40080081?v=4", "gravatar_id": "", "url": "https://api.github.com/users/minmie", "html_url": "https://github.com/minmie", "followers_url": "https://api.github.com/users/minmie/followers", "following_url": "https://api.github.com/users/minmie/following{/other_user}", "gists_url": "https://api.github.com/users/minmie/gists{/gist_id}", "starred_url": "https://api.github.com/users/minmie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/minmie/subscriptions", "organizations_url": "https://api.github.com/users/minmie/orgs", "repos_url": "https://api.github.com/users/minmie/repos", "events_url": "https://api.github.com/users/minmie/events{/privacy}", "received_events_url": "https://api.github.com/users/minmie/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
0
2025-03-10T02:45:29
2025-03-10T02:45:29
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info transformers version: 4.49.0 Platform: Linux-6.6.0-72.0.0.64.oe2403.x86_64-x86_64-with-glibc2.38 Python version: 3.10.16 Huggingface_hub version: 0.29.1 Safetensors version: 0.5.3 Accelerate version: 1.4.0 Accelerate config: not found DeepSpeed version: not installed PyTorch version (GPU?): 2.2.2+cu121 (True) Tensorflow version (GPU?): not installed (NA) Flax version (CPU?/GPU?/TPU?): not installed (NA) Jax version: not installed JaxLib version: not installed Using distributed or parallel set-up in script?: Using GPU in script?: GPU type: NVIDIA L4 ### Who can help? @benjaminbossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction I load an adapter for Qwen/Qwen2.5-0.5B using the following code and an error occur: ```python import torch from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, pipeline from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "/home/chenjq/pythonWork/nlp/Qwen2.5-0.5B-SFT-Capybara/checkpoint-31" # peft_model_id = args.output_dir tokenizer = AutoTokenizer.from_pretrained(peft_model_id) # Load Model with PEFT adapter model = AutoPeftModelForCausalLM.from_pretrained( peft_model_id, device_map="auto", torch_dtype=torch.float16 ) ``` Error info as follow: ```python Sliding Window Attention is enabled but not implemented for `sdpa`; unexpected results may be encountered. Traceback (most recent call last): File "/home/chenjq/.pycharm_helpers/pydev/pydevd.py", line 1500, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "/home/chenjq/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "/home/chenjq/pythonWork/nlp/test14.py", line 11, in <module> model = AutoPeftModelForCausalLM.from_pretrained( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/auto.py", line 130, in from_pretrained return cls._target_peft_class.from_pretrained( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/peft_model.py", line 581, in from_pretrained load_result = model.load_adapter( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/peft_model.py", line 1239, in load_adapter load_result = set_peft_model_state_dict( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/utils/save_and_load.py", line 451, in set_peft_model_state_dict load_result = model.load_state_dict(peft_model_state_dict, strict=False) File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2153, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for PeftModelForCausalLM: size mismatch for base_model.model.lm_head.modules_to_save.default.weight: copying a param with shape torch.Size([151936, 896]) from checkpoint, the shape in current model is torch.Size([151665, 896]). Process finished with exit code 1 ``` However, if I use the following code to load model, everything just work fine: ```python from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer base_model_name ='/home/models/qwen/Qwen2.5-0.5B' adapter_model_name = "/home/chenjq/pythonWork/nlp/Qwen2.5-0.5B-SFT-Capybara/checkpoint-31" model = AutoModelForCausalLM.from_pretrained(base_model_name) model = PeftModel.from_pretrained(model, adapter_model_name) tokenizer = AutoTokenizer.from_pretrained(base_model_name) ``` Some info from [here ](https://github.com/huggingface/transformers/issues/36550#issuecomment-2708336059)that maybe help: Hi everyone! I did some research and found out that the error occurs because the len(tokenizer)(151665) and the embedding size (151936) of Qwen/Qwen2.5-0.5B do not match. _BaseAutoPeftModel.from_pretrained resizes the base model embeddings to match with the tokenizer ([here](https://github.com/huggingface/peft/blob/8edaae9460e4b76bce9431dc187402178ff7b689/src/peft/auto.py#L137)) and as a result, it is unable to load the saved weights. I think a possible solution might be to only resize base model embeddings if the tokenizer size differs from the base tokenizer size. What do you think? The adapter trained using the following code: ```python from datasets import load_dataset from trl import SFTConfig, SFTTrainer from peft import LoraConfig import os os.environ['CUDA_VISIBLE_DEVICES'] = '1' dataset = load_dataset("trl-lib/Capybara", split="train") dataset = dataset.select(range(500)) MODEL_ID = 'Qwen/Qwen2.5-0.5B' peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, target_modules="all-linear", modules_to_save=["lm_head", "embed_token"], task_type="CAUSAL_LM", ) args = SFTConfig( output_dir="Qwen2.5-0.5B-SFT-Capybara", # directory to save and repository id num_train_epochs=1, # number of training epochs per_device_train_batch_size=4, # batch size per device during training gradient_accumulation_steps=4, # number of steps before performing a backward/update pass gradient_checkpointing=True, # use gradient checkpointing to save memory optim="adamw_torch_fused", # use fused adamw optimizer logging_steps=10, # log every 10 steps save_strategy="epoch", # save checkpoint every epoch bf16=True, # use bfloat16 precision tf32=True, # use tf32 precision learning_rate=2e-4, # learning rate, based on QLoRA paper max_grad_norm=0.3, # max gradient norm based on QLoRA paper warmup_ratio=0.03, # warmup ratio based on QLoRA paper lr_scheduler_type="constant", # use constant learning rate scheduler push_to_hub=False, # push model to hub # report_to="tensorboard", # report metrics to tensorboard ) trainer = SFTTrainer( MODEL_ID, train_dataset=dataset, args=args, peft_config=peft_config ) trainer.train() print('end') ``` ### Expected behavior Hope the model can predict normally.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2415/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2415/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2413
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2413/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2413/comments
https://api.github.com/repos/huggingface/peft/issues/2413/events
https://github.com/huggingface/peft/issues/2413
2,901,962,025
I_kwDOIf9iDM6s-G0p
2,413
`LoraConfig` multiple properties should be unified
{ "login": "Qubitium", "id": 417764, "node_id": "MDQ6VXNlcjQxNzc2NA==", "avatar_url": "https://avatars.githubusercontent.com/u/417764?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Qubitium", "html_url": "https://github.com/Qubitium", "followers_url": "https://api.github.com/users/Qubitium/followers", "following_url": "https://api.github.com/users/Qubitium/following{/other_user}", "gists_url": "https://api.github.com/users/Qubitium/gists{/gist_id}", "starred_url": "https://api.github.com/users/Qubitium/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Qubitium/subscriptions", "organizations_url": "https://api.github.com/users/Qubitium/orgs", "repos_url": "https://api.github.com/users/Qubitium/repos", "events_url": "https://api.github.com/users/Qubitium/events{/privacy}", "received_events_url": "https://api.github.com/users/Qubitium/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
9
2025-03-07T04:14:24
2025-03-10T14:59:51
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
@BenjaminBossan I am trying to add dynamic Lora support to both vLLM and SGLang as LoraConfig already supports this dynamic control via the following variables: - `rank_pattern`: regex matching of which different `r`/`rank` values are applied - `exclude_modules`: regex: which modules are not excluded from lora completedly - `alpha_pattern`: regex matching of `alpha` override. extactly the same as `rank_pattern` but different property. Nothing wrong with them individually but together, they become unncessary detached and has negative impact on code cost but also on dynamic control efficiency. GPTQModel uses a single `dynamic`: Diction[str, Dict[]] where the `str` is a regex with `+:` (positive prefix, optional), `-:` negative prefix (Optional). The dict value is the property override in string: value format. Example as applied to PEFT (Proposal): ``` # implicit +: prefix if not used # prefixs are stripped before the regex is performed "mlp\.down_proj": { "r": 128 } # implicit positive "+:mlp\.down_proj": { "r": 256 } # explicit positive "-:mlp\.gate_proj": {} # negative ``` This simple control allows 3 states. - Positive match == override any property values in base config (LoraConfig). - Negative match == skip this modele for Lora (no LoraConfig at all) - No match == There is no module matched so Base LoraConfig is used. This single control replaces all existing PEFT control with same functionally while allowing ALL properties to be dynamically overriden (if necessary) without any additional apis/LoraConfig vars. As it exists, you need to add code and logic to every LoraConfig property that participates in dynamic override/control. Basically I want Peft LoraConfig to the clean standard for vLLM and SGLang when it comes to dynamic control. Having a unified `dynamic` override system makes everyone's life so much easier and at the same time eliminate the issue that we have to write code each time a new LoraConfig property comes into pace. Let me know what you think. I am willing to spend time working on it. You can also reach me at [email protected] and on [X: qubitium](https://x.com/qubitium). I really would love to chat with you for like 15 minutes to ping-pong this idea with you. CC: @SunMarc @MekkCyber
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2413/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2413/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2412
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2412/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2412/comments
https://api.github.com/repos/huggingface/peft/issues/2412/events
https://github.com/huggingface/peft/issues/2412
2,901,275,403
I_kwDOIf9iDM6s7fML
2,412
Lora_B weight becomes 0 when using AuotModel
{ "login": "makcedward", "id": 36614806, "node_id": "MDQ6VXNlcjM2NjE0ODA2", "avatar_url": "https://avatars.githubusercontent.com/u/36614806?v=4", "gravatar_id": "", "url": "https://api.github.com/users/makcedward", "html_url": "https://github.com/makcedward", "followers_url": "https://api.github.com/users/makcedward/followers", "following_url": "https://api.github.com/users/makcedward/following{/other_user}", "gists_url": "https://api.github.com/users/makcedward/gists{/gist_id}", "starred_url": "https://api.github.com/users/makcedward/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/makcedward/subscriptions", "organizations_url": "https://api.github.com/users/makcedward/orgs", "repos_url": "https://api.github.com/users/makcedward/repos", "events_url": "https://api.github.com/users/makcedward/events{/privacy}", "received_events_url": "https://api.github.com/users/makcedward/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
0
2025-03-06T19:45:29
2025-03-06T19:45:29
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info transformers version: 4.49.0 peft version: 0.14.0 ### Who can help? @benjaminbossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction ``` from transformers import AutoModel, AutoModelForCausalLM from peft import PeftModel base_model_id = "meta-llama/Llama-3.2-1B" adapter_id = "makcedward/Llama-3.2-1B-Instruct-LoRA-Adapter" auto_model = PeftModel.from_pretrained( AutoModel.from_pretrained( base_model_id, ), adapter_id ) auto_casual_model = PeftModel.from_pretrained( AutoModelForCausalLM.from_pretrained( base_model_id, ), adapter_id ) print("Auto Model") print(auto_model.base_model.model.layers[0].self_attn.q_proj.lora_A.default.weight) # tensor([[-0.0168, 0.0056, -0.0009, ..., 0.0149, -0.0161, -0.0064], print(auto_model.base_model.model.layers[0].self_attn.q_proj.lora_B.default.weight) # tensor([[0., 0., 0., ..., 0., 0., 0.], print("AutoModelForCausalLM") print(auto_casual_model.base_model.model.model.layers[0].self_attn.q_proj.lora_A.default.weight) # tensor([[ 1.5867e-02, 2.7307e-02, -1.8503e-02, ..., -1.2035e-02, print(auto_casual_model.base_model.model.model.layers[0].self_attn.q_proj.lora_B.default.weight) # tensor([[-7.1123e-04, -4.3834e-03, -1.7415e-03, ..., 4.3514e-03, ``` ### Expected behavior Able to load LoRA weights by using AutoModel
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2412/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2412/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2410
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2410/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2410/comments
https://api.github.com/repos/huggingface/peft/issues/2410/events
https://github.com/huggingface/peft/issues/2410
2,899,373,069
I_kwDOIf9iDM6s0OwN
2,410
running forward loop using get_peft_model disables requires_grad on output
{ "login": "Hamidreza3252", "id": 27887474, "node_id": "MDQ6VXNlcjI3ODg3NDc0", "avatar_url": "https://avatars.githubusercontent.com/u/27887474?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Hamidreza3252", "html_url": "https://github.com/Hamidreza3252", "followers_url": "https://api.github.com/users/Hamidreza3252/followers", "following_url": "https://api.github.com/users/Hamidreza3252/following{/other_user}", "gists_url": "https://api.github.com/users/Hamidreza3252/gists{/gist_id}", "starred_url": "https://api.github.com/users/Hamidreza3252/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hamidreza3252/subscriptions", "organizations_url": "https://api.github.com/users/Hamidreza3252/orgs", "repos_url": "https://api.github.com/users/Hamidreza3252/repos", "events_url": "https://api.github.com/users/Hamidreza3252/events{/privacy}", "received_events_url": "https://api.github.com/users/Hamidreza3252/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-03-06T05:12:42
2025-03-06T15:35:13
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
Hi, I would like to report a recent issue I have been facing, but I am not sure if it is a bug or I am doing something wrong in the process. The steps to re-create the steps are easy. The issue happens when I try to convert **Qwen2-VL-2B-Instruct** model into a PEFT model using `get_peft_model` method. Simply load the model using the sample code in https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct and try to convert it to a PEFT model using a typical **8bit** LoraConfig with just sample `target_modules=["q_proj", "v_proj"]`. Then simply run a forward call to the model using a dummy input, such as `input_ids = torch.zeros((4, 1247)).to(device)`. When I inspect the `requires_grad` of `logits` attribute of the output, it is False. Meaning that I cannot run backward based on that output. This issue has been puzzling me for a while. I would appreciate if you can help me with a solution or advice how to address it properly.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2410/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2410/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2407
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2407/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2407/comments
https://api.github.com/repos/huggingface/peft/issues/2407/events
https://github.com/huggingface/peft/issues/2407
2,895,061,583
I_kwDOIf9iDM6sjyJP
2,407
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:3! (when checking argument for argument mat2 in method wrapper_CUDA_mm)
{ "login": "maxliang114514", "id": 196797831, "node_id": "U_kgDOC7rlhw", "avatar_url": "https://avatars.githubusercontent.com/u/196797831?v=4", "gravatar_id": "", "url": "https://api.github.com/users/maxliang114514", "html_url": "https://github.com/maxliang114514", "followers_url": "https://api.github.com/users/maxliang114514/followers", "following_url": "https://api.github.com/users/maxliang114514/following{/other_user}", "gists_url": "https://api.github.com/users/maxliang114514/gists{/gist_id}", "starred_url": "https://api.github.com/users/maxliang114514/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maxliang114514/subscriptions", "organizations_url": "https://api.github.com/users/maxliang114514/orgs", "repos_url": "https://api.github.com/users/maxliang114514/repos", "events_url": "https://api.github.com/users/maxliang114514/events{/privacy}", "received_events_url": "https://api.github.com/users/maxliang114514/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
6
2025-03-04T18:09:43
2025-03-10T11:17:16
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
**When I attempted to swap out the Lora configuration in Q-Lora(see qlora.py in _https://github.com/artidoro/qlora_) for Vera, I ran into the following error:** Traceback (most recent call last): File "qvera.py", line 859, in <module> train() File "qvera.py", line 821, in train train_result = trainer.train() File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 1539, in train return inner_training_loop( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 1809, in _inner_training_loop tr_loss_step = self.training_step(model, inputs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 2654, in training_step loss = self.compute_loss(model, inputs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 2679, in compute_loss outputs = model(**inputs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/peft/peft_model.py", line 1644, in forward return self.base_model( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/peft/tuners/tuners_utils.py", line 197, in forward return self.model.forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 806, in forward outputs = self.model( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 685, in forward layer_outputs = torch.utils.checkpoint.checkpoint( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 249, in checkpoint return CheckpointFunction.apply(function, preserve, *args) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/autograd/function.py", line 506, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 107, in forward outputs = run_function(*args) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 681, in custom_forward return module(*inputs, output_attentions, None) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 408, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 305, in forward query_states = self.q_proj(hidden_states) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/peft/tuners/vera/layer.py", line 287, in forward result = result + lambda_b * F.linear(lambda_d * F.linear(dropout(x), sliced_A), sliced_B) RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:3! (when checking argument for argument mat2 in method wrapper_CUDA_mm) **However, with the original settings, everything was trainable. My GPU specs are as follows:** +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 550.135 Driver Version: 550.135 CUDA Version: 12.4 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 2080 Ti Off | 00000000:02:00.0 Off | N/A | | 22% 19C P8 11W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ | 1 NVIDIA GeForce RTX 2080 Ti Off | 00000000:03:00.0 Off | N/A | | 22% 19C P8 21W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ | 2 NVIDIA GeForce RTX 2080 Ti Off | 00000000:82:00.0 Off | N/A | | 22% 20C P8 17W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ | 3 NVIDIA GeForce RTX 2080 Ti Off | 00000000:83:00.0 Off | N/A | | 22% 19C P8 8W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ **Is this an issue specific to Vera's unique characteristics? Given the scarcity of resources on Vera, I'd greatly appreciate any help with this problem, thank you!**
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2407/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2407/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2405
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2405/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2405/comments
https://api.github.com/repos/huggingface/peft/issues/2405/events
https://github.com/huggingface/peft/issues/2405
2,890,200,666
I_kwDOIf9iDM6sRPZa
2,405
SafetensorError when Merging LoRA Weights
{ "login": "Nothern-ai", "id": 143473220, "node_id": "U_kgDOCI06RA", "avatar_url": "https://avatars.githubusercontent.com/u/143473220?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Nothern-ai", "html_url": "https://github.com/Nothern-ai", "followers_url": "https://api.github.com/users/Nothern-ai/followers", "following_url": "https://api.github.com/users/Nothern-ai/following{/other_user}", "gists_url": "https://api.github.com/users/Nothern-ai/gists{/gist_id}", "starred_url": "https://api.github.com/users/Nothern-ai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Nothern-ai/subscriptions", "organizations_url": "https://api.github.com/users/Nothern-ai/orgs", "repos_url": "https://api.github.com/users/Nothern-ai/repos", "events_url": "https://api.github.com/users/Nothern-ai/events{/privacy}", "received_events_url": "https://api.github.com/users/Nothern-ai/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
1
2025-03-03T05:22:05
2025-03-03T10:11:44
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Original Working Environment: Python 3.8, transformers==4.46.0.dev0, safetensors==0.4.4, peft==0.12.0, trl==0.10.1 New Environment with Issue: transformers==4.45.2, safetensors==0.4.4, peft==0.12.0, trl==0.10.1 ### Who can help? _No response_ ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction When migrating from the original environment to a new machine with slightly different package versions, I encountered an error during the model merging process. My workflow involves: Saving LoRA weights Merging these weights with the base model The error occurs specifically during the loading of safetensors files after merging/ Reproduction Steps no need to train directly save LoRA weights (this step succeeds) Attempt to merge the saved weights with the original model The merge fails with the above error ``` # train_critic.py import os import time import shutil import argparse import torch import torch.distributed as dist from transformers import ( AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig, ) from datasets import load_dataset from trl import DPOTrainer, DPOConfig from peft import LoraConfig, PeftModel import wandb from datetime import datetime def print_rank_0(message): if dist.get_rank() == 0: print(message) def main(): # ------------- Parse Arguments ------------- parser = argparse.ArgumentParser() parser.add_argument("--epoch", type=int, required=True, help="Current outer training iteration (which round)") parser.add_argument("--pref_dir", type=str, required=True, help="Folder for storing the preference dataset") parser.add_argument("--weights_dir", type=str, required=True, help="Folder for saving and loading weights") parser.add_argument("--train_epochs", type=int, default=1, help="Number of epochs to run in this DPO fine-tuning") parser.add_argument("--beta", type=float, default=0.2, help="Beta hyperparameter for DPO") parser.add_argument("--learning_rate", type=float, default=5e-6, help="Learning rate") parser.add_argument("--batch_size", type=int, default=1, help="Batch Size") args = parser.parse_args() # ------------- Distributed Initialization ------------- local_rank = int(os.environ.get("LOCAL_RANK", -1)) if local_rank >= 0: torch.cuda.set_device(local_rank) dist.init_process_group( backend='nccl', init_method='env://', world_size=int(os.environ.get("WORLD_SIZE", 1)), rank=int(os.environ.get("RANK", 0)) ) print_rank_0(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES')}") print_rank_0(f"LOCAL_RANK: {os.environ.get('LOCAL_RANK')}") print_rank_0(f"WORLD_SIZE: {os.environ.get('WORLD_SIZE')}") # ------------- config ------------- epoch = args.epoch weights_dir = args.weights_dir pref_dir = args.pref_dir batch_size = args.batch_size base_model_path = "meta-llama/Llama-3.1-8B-Instruct" print("base_model_path:", base_model_path) data_path = os.path.join(pref_dir, f"critic_{epoch}.jsonl") output_model_path = os.path.join(weights_dir, f"critic_{epoch}") os.makedirs(output_model_path, exist_ok=True) print_rank_0(f"Loading base model from: {base_model_path}") model = AutoModelForCausalLM.from_pretrained( base_model_path, torch_dtype=torch.bfloat16, device_map={'': torch.cuda.current_device()} # device_map={'': torch.cuda.current_device()} if local_rank >= 0 else "auto", ) tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False) model.generation_config = GenerationConfig( max_new_tokens=512, temperature=0.7, do_sample=True, ) # padding_side/pad_token tokenizer.add_special_tokens({'pad_token': '[PAD]'}) tokenizer.padding_side = 'right' tokenizer.pad_token = '[PAD]' model.config.pad_token_id = tokenizer.pad_token_id model.config.eos_token_id = tokenizer.eos_token_id with torch.no_grad(): model.resize_token_embeddings(len(tokenizer)) print_rank_0(f"Loading dataset from: {data_path}") dataset = load_dataset('json', data_files=data_path)['train'] def convert_format(example): messages = example['messages'] formatted = "<|begin_of_text|>" # system system_msg = messages[0] formatted += f"<|start_header_id|>system<|end_header_id|>\n\n{system_msg['content']}<|eot_id|>" # user user_msg = messages[1] formatted += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg['content']}<|eot_id|>" # assistant formatted += "<|start_header_id|>assistant<|end_header_id|>\n\n" chosen_response = example['chosen'] + tokenizer.eos_token rejected_response = example['rejected'] + tokenizer.eos_token return { "prompt": formatted, "chosen": chosen_response, "rejected": rejected_response } train_dataset = dataset.map( convert_format, remove_columns=dataset.column_names, load_from_cache_file=False ) base_lr = args.learning_rate scaled_lr = base_lr * dist.get_world_size() * batch_size warmup_steps = 100 dpo_config = DPOConfig( beta=args.beta, warmup_steps=warmup_steps, weight_decay=0.01, learning_rate=scaled_lr, rpo_alpha=1.0, # lr_scheduler_type="cosine", output_dir=output_model_path, num_train_epochs=args.train_epochs, per_device_train_batch_size=batch_size, fp16=False, bf16=True, logging_steps=10, save_strategy="no", save_total_limit=1, report_to="none", ddp_backend='nccl', remove_unused_columns=False, dataloader_drop_last=True, max_length=2048, max_prompt_length=2048, local_rank=local_rank, ) # LoRA peft_config = LoraConfig( r=256, lora_alpha=32, target_modules=["q_proj", "k_proj", "v_proj", "o_proj"], lora_dropout=0.0, bias="none", task_type="CAUSAL_LM", ) trainer = DPOTrainer( model=model, args=dpo_config, train_dataset=train_dataset, tokenizer=tokenizer, peft_config=peft_config, ) trainer.train() # ------------- merge LoRA ------------- if dist.get_rank() == 0: lora_weights_path = os.path.join(output_model_path, "lora_weights") trainer.model.save_pretrained(lora_weights_path) # print("lora weight saved") # trainer.model.save_pretrained(lora_weights_path, safe_serialization=False) print("lora weight saved") base_merged_model = AutoModelForCausalLM.from_pretrained( base_model_path, device_map=None, low_cpu_mem_usage=False, ) tokenizer.add_special_tokens({'pad_token': '[PAD]'}) tokenizer.pad_token = '[PAD]' base_merged_model.config.pad_token_id = tokenizer.pad_token_id base_merged_model.config.eos_token_id = tokenizer.eos_token_id with torch.no_grad(): base_merged_model.resize_token_embeddings(len(tokenizer)) peft_model = PeftModel.from_pretrained( base_merged_model, lora_weights_path, device_map=None, ) merged_model = peft_model.merge_and_unload() # save print_rank_0(f"Saving merged model to: {output_model_path}") merged_model.save_pretrained(output_model_path) print_rank_0("Model saved successfully") tokenizer.save_pretrained(output_model_path) # delete lora weights shutil.rmtree(lora_weights_path) dist.barrier(device_ids=[local_rank] if local_rank >= 0 else None) print_rank_0("DPO Training complete.") dist.destroy_process_group() if __name__ == "__main__": main() ``` When trying to skip saving the LoRA weights and directly merging them, the merge operation succeeds ``` peft_model = trainer.model merged_model = peft_model.merge_and_unload() print_rank_0(f"Saving merged model to: {output_model_path}") merged_model.save_pretrained(output_model_path) tokenizer.save_pretrained(output_model_path) print_rank_0("Merged model saved successfully") ``` However, attempting to AutoModelForCausalLM.from_pretrained the merged safetensors weights later results in the error2 ### Expected behavior error1(save lora weights and merge): > 100%|██████████| 1/1 [00:01<00:00, 1.91s/it] > 100%|██████████| 1/1 [00:01<00:00, 1.92s/it] > /home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/utils/save_and_load.py:232: UserWarning: Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning. > warnings.warn( > lora weight saved > > Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s] > Loading checkpoint shards: 25%|██▌ | 1/4 [00:00<00:02, 1.28it/s] > Loading checkpoint shards: 50%|█████ | 2/4 [00:01<00:01, 1.32it/s] > Loading checkpoint shards: 75%|███████▌ | 3/4 [00:02<00:00, 1.31it/s] > Loading checkpoint shards: 100%|██████████| 4/4 [00:02<00:00, 1.74it/s] > Loading checkpoint shards: 100%|██████████| 4/4 [00:02<00:00, 1.55it/s] > [rank0]: Traceback (most recent call last): > [rank0]: File "/users/w/ac/train/train_critic.py", line 249, in <module> > [rank0]: main() > [rank0]: File "/users/w/ac/train/train_critic.py", line 225, in main > [rank0]: peft_model = PeftModel.from_pretrained( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/peft_model.py", line 545, in from_pretrained > [rank0]: model.load_adapter( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/peft_model.py", line 1113, in load_adapter > [rank0]: adapters_weights = load_peft_weights(model_id, device=torch_device, **hf_hub_download_kwargs) > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/utils/save_and_load.py", line 486, in load_peft_weights > [rank0]: adapters_weights = safe_load_file(filename, device=device) > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/safetensors/torch.py", line 311, in load_file > [rank0]: with safe_open(filename, framework="pt", device=device) as f: > [rank0]: safetensors_rust.SafetensorError: Error while deserializing header: MetadataIncompleteBuffer > E0302 21:17:38.377842 2650981 site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 0 (pid: 2651079) of binary: /home//miniconda3/envs/py39env/bin/python > Traceback (most recent call last): > File "/home//miniconda3/envs/py39env/bin/torchrun", line 8, in <module> > sys.exit(main()) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper > return f(*args, **kwargs) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 919, in main > run(args) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 910, in run > elastic_launch( > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ > return launch_agent(self._config, self._entrypoint, list(args)) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent > raise ChildFailedError( > torch.distributed.elastic.multiprocessing.errors.ChildFailedError: error2:(directly merge, and load the model after merge > CUDA_VISIBLE_DEVICES: 1 > LOCAL_RANK: 0 > WORLD_SIZE: 1 > base_model_path: /train/runs/301_wd/weights/_1 > Loading base model from: /train/runs/301_wd/weights/_1 > > Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s] > Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s] > [rank0]: Traceback (most recent call last): > [rank0]: File "/train/train_.py", line 216, in <module> > [rank0]: main() > [rank0]: File "/train/train_.py", line 91, in main > [rank0]: model = AutoModelForCausalLM.from_pretrained( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/models/auto/auto_factory.py", line 564, in from_pretrained > [rank0]: return model_class.from_pretrained( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/modeling_utils.py", line 4014, in from_pretrained > [rank0]: ) = cls._load_pretrained_model( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/modeling_utils.py", line 4482, in _load_pretrained_model > [rank0]: state_dict = load_state_dict(shard_file, is_quantized=is_quantized) > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/modeling_utils.py", line 549, in load_state_dict > [rank0]: with safe_open(checkpoint_file, framework="pt") as f: > [rank0]: safetensors_rust.SafetensorError: Error while deserializing header: MetadataIncompleteBuffer > E0302 20:39:06.398025 2565872 site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 0 (pid: 2566031) of binary: /home//miniconda3/envs/py39env/bin/python > Traceback (most recent call last): > File "/home//miniconda3/envs/py39env/bin/torchrun", line 8, in <module> > sys.exit(main()) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper > return f(*args, **kwargs) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 919, in main > run(args) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 910, in run > elastic_launch( > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ > return launch_agent(self._config, self._entrypoint, list(args)) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent > raise ChildFailedError( > torch.distributed.elastic.multiprocessing.errors.ChildFailedError: > ============================================================
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2405/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2405/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2400
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2400/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2400/comments
https://api.github.com/repos/huggingface/peft/issues/2400/events
https://github.com/huggingface/peft/issues/2400
2,881,481,036
I_kwDOIf9iDM6rv-lM
2,400
processing_class and tokenizer arguments on SFTTrainer()
{ "login": "ErikKankaTrea", "id": 18656607, "node_id": "MDQ6VXNlcjE4NjU2NjA3", "avatar_url": "https://avatars.githubusercontent.com/u/18656607?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ErikKankaTrea", "html_url": "https://github.com/ErikKankaTrea", "followers_url": "https://api.github.com/users/ErikKankaTrea/followers", "following_url": "https://api.github.com/users/ErikKankaTrea/following{/other_user}", "gists_url": "https://api.github.com/users/ErikKankaTrea/gists{/gist_id}", "starred_url": "https://api.github.com/users/ErikKankaTrea/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ErikKankaTrea/subscriptions", "organizations_url": "https://api.github.com/users/ErikKankaTrea/orgs", "repos_url": "https://api.github.com/users/ErikKankaTrea/repos", "events_url": "https://api.github.com/users/ErikKankaTrea/events{/privacy}", "received_events_url": "https://api.github.com/users/ErikKankaTrea/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2025-02-26T12:48:33
2025-02-27T03:39:02
2025-02-27T03:39:00
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
Hi!!! I got unexpected error from my side when running the example train.py with deepspeed [(link)](https://github.com/huggingface/peft/tree/main/examples/sft) Argument "**tokenizer**" should be now "**processing_class**". Could anyone please, let me know whether with the example provided (link above) changing the arguments names on SFTTrainer() for passing the tokenizer should be enough ? I am worried if I make that change switching arguments the example scripts will miss sense. Thanks in advance!
{ "login": "ErikKankaTrea", "id": 18656607, "node_id": "MDQ6VXNlcjE4NjU2NjA3", "avatar_url": "https://avatars.githubusercontent.com/u/18656607?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ErikKankaTrea", "html_url": "https://github.com/ErikKankaTrea", "followers_url": "https://api.github.com/users/ErikKankaTrea/followers", "following_url": "https://api.github.com/users/ErikKankaTrea/following{/other_user}", "gists_url": "https://api.github.com/users/ErikKankaTrea/gists{/gist_id}", "starred_url": "https://api.github.com/users/ErikKankaTrea/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ErikKankaTrea/subscriptions", "organizations_url": "https://api.github.com/users/ErikKankaTrea/orgs", "repos_url": "https://api.github.com/users/ErikKankaTrea/repos", "events_url": "https://api.github.com/users/ErikKankaTrea/events{/privacy}", "received_events_url": "https://api.github.com/users/ErikKankaTrea/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2400/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2400/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2394
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2394/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2394/comments
https://api.github.com/repos/huggingface/peft/issues/2394/events
https://github.com/huggingface/peft/issues/2394
2,874,191,172
I_kwDOIf9iDM6rUK1E
2,394
TP + DP training error
{ "login": "iMountTai", "id": 35353688, "node_id": "MDQ6VXNlcjM1MzUzNjg4", "avatar_url": "https://avatars.githubusercontent.com/u/35353688?v=4", "gravatar_id": "", "url": "https://api.github.com/users/iMountTai", "html_url": "https://github.com/iMountTai", "followers_url": "https://api.github.com/users/iMountTai/followers", "following_url": "https://api.github.com/users/iMountTai/following{/other_user}", "gists_url": "https://api.github.com/users/iMountTai/gists{/gist_id}", "starred_url": "https://api.github.com/users/iMountTai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/iMountTai/subscriptions", "organizations_url": "https://api.github.com/users/iMountTai/orgs", "repos_url": "https://api.github.com/users/iMountTai/repos", "events_url": "https://api.github.com/users/iMountTai/events{/privacy}", "received_events_url": "https://api.github.com/users/iMountTai/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
7
2025-02-24T08:30:53
2025-02-27T16:50:07
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft: 0.14.1.dev0 transformers: 4.50.dev0 accelerate: 1.4.0.dev0 python: 3.11 linux ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction After adding the LoRA module to the model, an error occurred: NotImplementederror: ColwiseParallel currently only support nn.linear and nn.embedding ### Expected behavior lora module training with TP
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2394/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2394/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2390
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2390/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2390/comments
https://api.github.com/repos/huggingface/peft/issues/2390/events
https://github.com/huggingface/peft/issues/2390
2,866,034,838
I_kwDOIf9iDM6q1DiW
2,390
Bug: Using 2 LoRA configs with `target_modules='all-linear'` leads to nested LoRA layers
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 4838806417, "node_id": "LA_kwDOIf9iDM8AAAABIGpTkQ", "url": "https://api.github.com/repos/huggingface/peft/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" }, { "id": 4838806434, "node_id": "LA_kwDOIf9iDM8AAAABIGpTog", "url": "https://api.github.com/repos/huggingface/peft/labels/good%20first%20issue", "name": "good first issue", "color": "7057ff", "default": true, "description": "Good for newcomers" } ]
closed
false
null
[]
null
0
2025-02-20T12:34:35
2025-03-04T16:16:16
2025-03-04T16:16:16
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info - ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ```python from transformers import AutoModelForCausalLM from peft import LoraConfig, get_peft_model model_id = "hf-internal-testing/tiny-random-OPTForCausalLM" model = AutoModelForCausalLM.from_pretrained(model_id) config0 = LoraConfig(target_modules="all-linear") config1 = LoraConfig(target_modules="all-linear") model = get_peft_model(model, config0)#, adapter_name="default") model.add_adapter("adapter1", config1) print(model.base_model.model.model.decoder.layers[0].self_attn.k_proj) ``` prints: ``` lora.Linear( (base_layer): lora.Linear( (base_layer): Linear(in_features=16, out_features=16, bias=True) (lora_dropout): ModuleDict( (adapter1): Identity() ) (lora_A): ModuleDict( (adapter1): Linear(in_features=16, out_features=8, bias=False) ) (lora_B): ModuleDict( (adapter1): Linear(in_features=8, out_features=16, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (lora_dropout): ModuleDict( (default): Identity() ) (lora_A): ModuleDict( (default): lora.Linear( (base_layer): Linear(in_features=16, out_features=8, bias=False) (lora_dropout): ModuleDict( (adapter1): Identity() ) (lora_A): ModuleDict( (adapter1): Linear(in_features=16, out_features=8, bias=False) ) (lora_B): ModuleDict( (adapter1): Linear(in_features=8, out_features=8, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (lora_B): ModuleDict( (default): lora.Linear( (base_layer): Linear(in_features=8, out_features=16, bias=False) (lora_dropout): ModuleDict( (adapter1): Identity() ) (lora_A): ModuleDict( (adapter1): Linear(in_features=8, out_features=8, bias=False) ) (lora_B): ModuleDict( (adapter1): Linear(in_features=8, out_features=16, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ``` ### Expected behavior Instead of getting nested LoRA layers, the linear layers belonging to a LoRA layer should not be targeted by `all-linear`.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2390/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2390/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2388
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2388/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2388/comments
https://api.github.com/repos/huggingface/peft/issues/2388/events
https://github.com/huggingface/peft/issues/2388
2,863,639,986
I_kwDOIf9iDM6qr62y
2,388
ValueError: Target module Qwen2_5_VisionTransformerPretrainedModel is not supported.
{ "login": "samuellimabraz", "id": 115582014, "node_id": "U_kgDOBuOkPg", "avatar_url": "https://avatars.githubusercontent.com/u/115582014?v=4", "gravatar_id": "", "url": "https://api.github.com/users/samuellimabraz", "html_url": "https://github.com/samuellimabraz", "followers_url": "https://api.github.com/users/samuellimabraz/followers", "following_url": "https://api.github.com/users/samuellimabraz/following{/other_user}", "gists_url": "https://api.github.com/users/samuellimabraz/gists{/gist_id}", "starred_url": "https://api.github.com/users/samuellimabraz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/samuellimabraz/subscriptions", "organizations_url": "https://api.github.com/users/samuellimabraz/orgs", "repos_url": "https://api.github.com/users/samuellimabraz/repos", "events_url": "https://api.github.com/users/samuellimabraz/events{/privacy}", "received_events_url": "https://api.github.com/users/samuellimabraz/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-02-19T15:09:17
2025-03-06T16:30:36
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
## Context I'm finetuning the Qwen2.5-Vl model with swift for data extraction using LoRA. I'm not sure what is the correct way to save and upload the adapter and be able to recharge it correctly. In short, I followed these steps ```python # load model model, processor = get_model_tokenizer( 'Qwen/Qwen2.5-VL-3B-Instruct', torch_dtype=torch.bfloat16, use_hf=True, attn_impl="flash_attn", ) # get lora ... model = Swift.prepare_model(model, lora_config) # train config e run ... trainer = Seq2SeqTrainer( model=model, args=training_args, data_collator=template.data_collator, train_dataset=train_dataset, eval_dataset=val_dataset, template=template, callbacks= [ EarlyStoppingCallback( early_stopping_patience=6, early_stopping_threshold=0.001 ) ] ) stats = trainer.train() # push adapter model.push_to_hub(f"tech4humans/{model_name}", private=True) ``` debugging the peft model was loaded with the class `PeftModelForCausalLM`. ## Problem Then after I tried to recharge the adapter and I get an error with peft ```python from transformers import Qwen2_5_VLForConditionalGeneration model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", device_map="auto") model.load_adapter("tech4humans/Qwen2.5-VL-3B-Instruct-r4-tuned") ``` ```python /usr/local/lib/python3.10/dist-packages/peft/tuners/lora/model.py in _create_new_module(lora_config, adapter_name, target, **kwargs) 345 if new_module is None: 346 # no module could be matched --> 347 raise ValueError( 348 f"Target module {target} is not supported. Currently, only the following modules are supported: " 349 "`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv1d`, `torch.nn.Conv2d`, `torch.nn.Conv3d`, ". ValueError: Target module Qwen2_5_VisionTransformerPretrainedModel( (patch_embed): Qwen2_5_VisionPatchEmbed( (proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False) ) (rotary_pos_emb): Qwen2_5_VisionRotaryEmbedding() (blocks): ModuleList( (0-31): 32 x Qwen2_5_VLVisionBlock( (norm1): Qwen2RMSNorm((1280,), eps=1e-06) (norm2): Qwen2RMSNorm((1280,), eps=1e-06) (attn): Qwen2_5_VLVisionSdpaAttention( (qkv): Linear(in_features=1280, out_features=3840, bias=True) (proj): Linear(in_features=1280, out_features=1280, bias=True) ) (mlp): Qwen2_5_VLMLP( (gate_proj): Linear(in_features=1280, out_features=3420, bias=True) (up_proj): Linear(in_features=1280, out_features=3420, bias=True) (down_proj): Linear(in_features=3420, out_features=1280, bias=True) (act_fn): SiLU() ) ) ) (merger): Qwen2_5_VLPatchMerger( (ln_q): Qwen2RMSNorm((1280,), eps=1e-06) (mlp): Sequential( (0): Linear(in_features=5120, out_features=5120, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=5120, out_features=2048, bias=True) ) ) ) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv1d`, `torch.nn.Conv2d`, `torch.nn.Conv3d`, `transformers.pytorch_utils.Conv1D`, `torch.nn.MultiheadAttention.`. ``` ## Sytem info ``` transformers 4.50.0.dev0 peft 0.14.1.dev0 ms-swift 3.2.0.dev0 Python 3.10.12 CUDA Version: 12.6 ``` Am I missing something or doing something wrong? Any pointers would be appreciated. Thanks!
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2388/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2388/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2381
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2381/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2381/comments
https://api.github.com/repos/huggingface/peft/issues/2381/events
https://github.com/huggingface/peft/issues/2381
2,857,556,037
I_kwDOIf9iDM6qUthF
2,381
Bug when deleting adapters of a model with modules_to_save
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 4838806417, "node_id": "LA_kwDOIf9iDM8AAAABIGpTkQ", "url": "https://api.github.com/repos/huggingface/peft/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
open
false
null
[]
null
0
2025-02-17T11:22:34
2025-02-20T12:35:13
null
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info All PEFT versions. ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ```python from transformers import AutoModelForSequenceClassification from peft import LoraConfig, get_peft_model model_id = "facebook/opt-125m" config = LoraConfig(task_type="SEQ_CLS") model = AutoModelForSequenceClassification.from_pretrained(model_id) adapter_to_delete = "delete_me" model = get_peft_model(model, config) model.add_adapter(adapter_to_delete, config) # sanity check assert "delete_me" in model.base_model.model.score.modules_to_save model.delete_adapter(adapter_to_delete) assert "delete_me" not in model.base_model.model.score.modules_to_save ``` ### Expected behavior When adding, say, a LoRA adapter with `modules_to_save`, then deleting the adapter, the LoRA part is correctly removed but the `modules_to_save` part is not removed.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2381/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2381/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2379
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2379/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2379/comments
https://api.github.com/repos/huggingface/peft/issues/2379/events
https://github.com/huggingface/peft/issues/2379
2,854,940,754
I_kwDOIf9iDM6qKvBS
2,379
prompt_tuning_peft tutorial raises cache layer error
{ "login": "jakerobers", "id": 1840629, "node_id": "MDQ6VXNlcjE4NDA2Mjk=", "avatar_url": "https://avatars.githubusercontent.com/u/1840629?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jakerobers", "html_url": "https://github.com/jakerobers", "followers_url": "https://api.github.com/users/jakerobers/followers", "following_url": "https://api.github.com/users/jakerobers/following{/other_user}", "gists_url": "https://api.github.com/users/jakerobers/gists{/gist_id}", "starred_url": "https://api.github.com/users/jakerobers/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jakerobers/subscriptions", "organizations_url": "https://api.github.com/users/jakerobers/orgs", "repos_url": "https://api.github.com/users/jakerobers/repos", "events_url": "https://api.github.com/users/jakerobers/events{/privacy}", "received_events_url": "https://api.github.com/users/jakerobers/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-02-15T00:10:11
2025-02-19T10:21:15
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Following the prompt tuning guide leads to an error when executing in a local environment: - https://huggingface.co/learn/cookbook/en/prompt_tuning_peft When executing, an exception is raised when calling `model.generate()` with the prompt-tuned model. Everything up to that point seems to be working as expected (i.e. the `peft_outputs_prompt` and `peft_outputs_sentences` directories containing the prompt-tunings have checkpoints). Having a look at the stacktrace, it looks like `model_kwargs["past_key_values"]` is being referenced in `peft/peft_model.py`. I'm curious if this is possibly related to https://github.com/huggingface/peft/issues/1962. ``` Traceback (most recent call last): File "/main.py", line 148, in <module> loaded_model_prompt_outputs = get_outputs(loaded_model_prompt, input_prompt) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "./main.py", line 17, in get_outputs outputs = model.generate( ^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/peft/peft_model.py", line 1140, in generate outputs = self.base_model.generate(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/transformers/generation/utils.py", line 2255, in generate result = self._sample( ^^^^^^^^^^^^^ File "lib/python3.11/site-packages/transformers/generation/utils.py", line 3247, in _sample model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/peft/peft_model.py", line 1169, in prepare_inputs_for_generation if model_kwargs["past_key_values"][0][0].shape[-2] >= model_kwargs["input_ids"].shape[1]: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^ File "lib/python3.11/site-packages/transformers/cache_utils.py", line 390, in __getitem__ raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") KeyError: 'Cache only has 0 layers, attempted to access layer with index 0' ``` cc @BenjaminBossan since you have some context around how `past_key_values` [works with transformers](https://github.com/huggingface/peft/pull/2096/files) ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction This is the code provided in the article https://huggingface.co/learn/cookbook/en/prompt_tuning_peft, condensed into a single script. ``` #!/usr/bin/env python # TODO: https://huggingface.co/learn/cookbook/en/prompt_tuning_peft # TODO: https://huggingface.co/docs/peft/en/package_reference/prompt_tuning from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "bigscience/bloomz-560m" # model_name="bigscience/bloom-1b1" NUM_VIRTUAL_TOKENS = 4 NUM_EPOCHS = 6 tokenizer = AutoTokenizer.from_pretrained(model_name) foundational_model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) def get_outputs(model, inputs, max_new_tokens=100): outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=max_new_tokens, # temperature=0.2, # top_p=0.95, # do_sample=True, repetition_penalty=1.5, # Avoid repetition. early_stopping=True, # The model can stop before reach the max_length eos_token_id=tokenizer.eos_token_id, ) return outputs input_prompt = tokenizer("I want you to act as a motivational coach. ", return_tensors="pt") foundational_outputs_prompt = get_outputs(foundational_model, input_prompt, max_new_tokens=50) print(tokenizer.batch_decode(foundational_outputs_prompt, skip_special_tokens=True)) import os from IPython.display import display # os.environ["TOKENIZERS_PARALLELISM"] = "false" from datasets import load_dataset dataset_prompt = "fka/awesome-chatgpt-prompts" # Create the Dataset to create prompts. # data_prompt = load_dataset(dataset_prompt) data_prompt = data_prompt.map(lambda samples: tokenizer(samples["prompt"]), batched=True) train_sample_prompt = data_prompt["train"].select(range(50)) display(train_sample_prompt) print(train_sample_prompt[:1]) dataset_sentences = load_dataset("Abirate/english_quotes") data_sentences = dataset_sentences.map(lambda samples: tokenizer(samples["quote"]), batched=True) train_sample_sentences = data_sentences["train"].select(range(25)) train_sample_sentences = train_sample_sentences.remove_columns(["author", "tags"]) display(train_sample_sentences) print(train_sample_sentences[:1]) from peft import get_peft_model, PromptTuningConfig, TaskType, PromptTuningInit generation_config = PromptTuningConfig( task_type=TaskType.CAUSAL_LM, # This type indicates the model will generate text. prompt_tuning_init=PromptTuningInit.RANDOM, # The added virtual tokens are initializad with random numbers num_virtual_tokens=NUM_VIRTUAL_TOKENS, # Number of virtual tokens to be added and trained. tokenizer_name_or_path=model_name, # The pre-trained model. ) peft_model_prompt = get_peft_model(foundational_model, generation_config) print(peft_model_prompt.print_trainable_parameters()) peft_model_sentences = get_peft_model(foundational_model, generation_config) print(peft_model_sentences.print_trainable_parameters()) from transformers import TrainingArguments def create_training_arguments(path, learning_rate=0.0035, epochs=6): training_args = TrainingArguments( output_dir=path, # Where the model predictions and checkpoints will be written use_cpu=True, # This is necessary for CPU clusters. auto_find_batch_size=True, # Find a suitable batch size that will fit into memory automatically learning_rate=learning_rate, # Higher learning rate than full Fine-Tuning num_train_epochs=epochs, ) return training_args import os working_dir = "./" # Is best to store the models in separate folders. # Create the name of the directories where to store the models. output_directory_prompt = os.path.join(working_dir, "peft_outputs_prompt") output_directory_sentences = os.path.join(working_dir, "peft_outputs_sentences") # Just creating the directoris if not exist. if not os.path.exists(working_dir): os.mkdir(working_dir) if not os.path.exists(output_directory_prompt): os.mkdir(output_directory_prompt) if not os.path.exists(output_directory_sentences): os.mkdir(output_directory_sentences) training_args_prompt = create_training_arguments(output_directory_prompt, 0.003, NUM_EPOCHS) training_args_sentences = create_training_arguments(output_directory_sentences, 0.003, NUM_EPOCHS) from transformers import Trainer, DataCollatorForLanguageModeling def create_trainer(model, training_args, train_dataset): trainer = Trainer( model=model, # We pass in the PEFT version of the foundation model, bloomz-560M args=training_args, # The args for the training. train_dataset=train_dataset, # The dataset used to tyrain the model. data_collator=DataCollatorForLanguageModeling( tokenizer, mlm=False ), # mlm=False indicates not to use masked language modeling ) return trainer trainer_prompt = create_trainer(peft_model_prompt, training_args_prompt, train_sample_prompt) trainer_prompt.train() trainer_sentences = create_trainer(peft_model_sentences, training_args_sentences, train_sample_sentences) trainer_sentences.train() trainer_prompt.model.save_pretrained(output_directory_prompt) trainer_sentences.model.save_pretrained(output_directory_sentences) from peft import PeftModel loaded_model_prompt = PeftModel.from_pretrained( foundational_model, output_directory_prompt, # device_map='auto', is_trainable=False, ) loaded_model_prompt_outputs = get_outputs(loaded_model_prompt, input_prompt) print(tokenizer.batch_decode(loaded_model_prompt_outputs, skip_special_tokens=True)) loaded_model_prompt.load_adapter(output_directory_sentences, adapter_name="quotes") loaded_model_prompt.set_adapter("quotes") loaded_model_sentences_outputs = get_outputs(loaded_model_prompt, input_sentences) print(tokenizer.batch_decode(loaded_model_sentences_outputs, skip_special_tokens=True)) # Notes: # - https://github.com/huggingface/peft/issues/1962 # - https://github.com/huggingface/peft/issues/869#issuecomment-2263322623 ``` ### Expected behavior The `loaded_model_prompt` should be able to execute `generate` and return a prompt-tuned response.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2379/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2379/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2377
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2377/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2377/comments
https://api.github.com/repos/huggingface/peft/issues/2377/events
https://github.com/huggingface/peft/issues/2377
2,853,540,672
I_kwDOIf9iDM6qFZNA
2,377
Contributing new model merging method to PEFT
{ "login": "SpeeeedLee", "id": 132431571, "node_id": "U_kgDOB-S-0w", "avatar_url": "https://avatars.githubusercontent.com/u/132431571?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SpeeeedLee", "html_url": "https://github.com/SpeeeedLee", "followers_url": "https://api.github.com/users/SpeeeedLee/followers", "following_url": "https://api.github.com/users/SpeeeedLee/following{/other_user}", "gists_url": "https://api.github.com/users/SpeeeedLee/gists{/gist_id}", "starred_url": "https://api.github.com/users/SpeeeedLee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SpeeeedLee/subscriptions", "organizations_url": "https://api.github.com/users/SpeeeedLee/orgs", "repos_url": "https://api.github.com/users/SpeeeedLee/repos", "events_url": "https://api.github.com/users/SpeeeedLee/events{/privacy}", "received_events_url": "https://api.github.com/users/SpeeeedLee/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
1
2025-02-14T12:17:46
2025-02-14T15:57:51
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request Hi all, I noticed that several model merging methods, such as TIES and DARE, have been implemented in this library, as mentioned [here](https://github.com/huggingface/peft/blob/main/docs/source/developer_guides/model_merging.md). I was wondering if there is a way for me to contribute a recently accepted model merging method to this repo. I would really appreciate any guidance or suggestions on how to proceed. Thanks in advance! ### Motivation Enhance the diversity of model merging supported in this library. ### Your contribution I can submit a PR.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2377/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2377/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2368
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2368/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2368/comments
https://api.github.com/repos/huggingface/peft/issues/2368/events
https://github.com/huggingface/peft/issues/2368
2,838,153,330
I_kwDOIf9iDM6pKshy
2,368
[FSDP] After training embed_tokens in modules_to_save model has hallucinations
{ "login": "DmitryDiTy", "id": 90377536, "node_id": "MDQ6VXNlcjkwMzc3NTM2", "avatar_url": "https://avatars.githubusercontent.com/u/90377536?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DmitryDiTy", "html_url": "https://github.com/DmitryDiTy", "followers_url": "https://api.github.com/users/DmitryDiTy/followers", "following_url": "https://api.github.com/users/DmitryDiTy/following{/other_user}", "gists_url": "https://api.github.com/users/DmitryDiTy/gists{/gist_id}", "starred_url": "https://api.github.com/users/DmitryDiTy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DmitryDiTy/subscriptions", "organizations_url": "https://api.github.com/users/DmitryDiTy/orgs", "repos_url": "https://api.github.com/users/DmitryDiTy/repos", "events_url": "https://api.github.com/users/DmitryDiTy/events{/privacy}", "received_events_url": "https://api.github.com/users/DmitryDiTy/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
17
2025-02-07T13:23:07
2025-02-14T08:23:35
2025-02-14T08:21:23
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info ### Libs ``` absl-py==2.1.0 accelerate==1.3.0 aiohappyeyeballs==2.4.4 aiohttp==3.11.10 aiosignal==1.3.2 annotated-types==0.7.0 asttokens @ file:///home/conda/feedstock_root/build_artifacts/asttokens_1733250440834/work async-timeout==5.0.1 attrs==24.3.0 beartype==0.14.1 bert-score==0.3.13 better-abc==0.0.3 certifi==2024.12.14 charset-normalizer==3.4.0 circuitsvis @ git+https://github.com/callummcdougall/CircuitsVis.git@1e6129d08cae7af9242d9ab5d3ed322dd44b4dd3#subdirectory=python click==8.1.7 comm @ file:///home/conda/feedstock_root/build_artifacts/comm_1733502965406/work contourpy==1.3.1 cycler==0.12.1 datasets==3.2.0 debugpy @ file:///home/conda/feedstock_root/build_artifacts/debugpy_1734158947252/work decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1733236420667/work dill==0.3.8 docker-pycreds==0.4.0 einops==0.8.0 evaluate==0.4.3 exceptiongroup @ file:///home/conda/feedstock_root/build_artifacts/exceptiongroup_1733208806608/work executing @ file:///home/conda/feedstock_root/build_artifacts/executing_1733569351617/work fancy-einsum==0.0.3 filelock==3.16.1 fonttools==4.55.6 frozenlist==1.5.0 fsspec==2024.9.0 gitdb==4.0.11 GitPython==3.1.43 huggingface-hub==0.27.0 idna==3.10 importlib-metadata==5.2.0 ipykernel @ file:///home/conda/feedstock_root/build_artifacts/ipykernel_1719845459717/work ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_1732896932739/work ipywidgets==8.1.5 jaxtyping==0.2.36 jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1733300866624/work Jinja2==3.1.4 joblib==1.4.2 jupyter_client @ file:///home/conda/feedstock_root/build_artifacts/jupyter_client_1733440914442/work jupyter_core @ file:///home/conda/feedstock_root/build_artifacts/jupyter_core_1727163409502/work jupyterlab_widgets==3.0.13 kiwisolver==1.4.8 markdown-it-py==3.0.0 MarkupSafe==3.0.2 matplotlib==3.10.0 matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1733416936468/work mdurl==0.1.2 mpmath==1.3.0 multidict==6.1.0 multiprocess==0.70.16 nest_asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1733325553580/work networkx==3.4.2 nltk==3.9.1 numpy==1.26.4 nvidia-cublas-cu12==12.4.5.8 nvidia-cuda-cupti-cu12==12.4.127 nvidia-cuda-nvrtc-cu12==12.4.127 nvidia-cuda-runtime-cu12==12.4.127 nvidia-cudnn-cu12==9.1.0.70 nvidia-cufft-cu12==11.2.1.3 nvidia-curand-cu12==10.3.5.147 nvidia-cusolver-cu12==11.6.1.9 nvidia-cusparse-cu12==12.3.1.170 nvidia-nccl-cu12==2.21.5 nvidia-nvjitlink-cu12==12.4.127 nvidia-nvtx-cu12==12.4.127 packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1733203243479/work pandas==2.2.3 parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1733271261340/work peft==0.14.0 pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1733301927746/work pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1733327343728/work pillow==11.1.0 platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1733232627818/work prompt_toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1733302527033/work propcache==0.2.1 protobuf==5.29.1 psutil @ file:///home/conda/feedstock_root/build_artifacts/psutil_1729847040822/work ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1733302279685/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl#sha256=92c32ff62b5fd8cf325bec5ab90d7be3d2a8ca8c8a3813ff487a8d2002630d1f pure_eval @ file:///home/conda/feedstock_root/build_artifacts/pure_eval_1733569405015/work pyarrow==18.1.0 pydantic==2.10.3 pydantic_core==2.27.1 Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1733221634316/work pyparsing==3.2.1 python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1733215673016/work pytz==2024.2 PyYAML==6.0.2 pyzmq @ file:///home/conda/feedstock_root/build_artifacts/pyzmq_1728642224099/work regex==2024.11.6 requests==2.32.3 rich==13.9.4 rouge_score==0.1.2 safetensors==0.4.5 scikit-learn==1.6.1 scipy==1.15.1 sentence-transformers==3.3.1 sentencepiece==0.2.0 sentry-sdk==2.19.2 setproctitle==1.3.4 six @ file:///home/conda/feedstock_root/build_artifacts/six_1733380938961/work smmap==5.0.1 stack_data @ file:///home/conda/feedstock_root/build_artifacts/stack_data_1733569443808/work sympy==1.13.1 threadpoolctl==3.5.0 tokenizers==0.21.0 torch==2.5.1 tornado @ file:///home/conda/feedstock_root/build_artifacts/tornado_1732615898999/work tqdm==4.67.1 traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1733367359838/work transformer-lens==2.10.0 transformers==4.48.2 triton==3.1.0 trl==0.14.0 typeguard==4.4.1 typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1733188668063/work tzdata==2024.2 urllib3==2.2.3 wandb==0.19.1 wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1733231326287/work widgetsnbextension==4.0.13 xxhash==3.5.0 yarl==1.18.3 zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1732827521216/work ``` ### Cuda ``` nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2022 NVIDIA Corporation Built on Wed_Sep_21_10:33:58_PDT_2022 Cuda compilation tools, release 11.8, V11.8.89 Build cuda_11.8.r11.8/compiler.31833905_0 ``` ``` +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 545.23.08 Driver Version: 545.23.08 CUDA Version: 12.3 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA RTX 6000 Ada Gene... Off | 00000000:01:00.0 Off | Off | | 30% 40C P8 27W / 300W | 43531MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 1 NVIDIA RTX 6000 Ada Gene... Off | 00000000:25:00.0 Off | Off | | 30% 34C P8 23W / 300W | 3021MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 2 NVIDIA RTX 6000 Ada Gene... Off | 00000000:41:00.0 Off | Off | | 30% 37C P8 29W / 300W | 6MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 3 NVIDIA RTX 6000 Ada Gene... Off | 00000000:61:00.0 Off | Off | | 30% 40C P8 30W / 300W | 10881MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 4 NVIDIA RTX 6000 Ada Gene... Off | 00000000:81:00.0 Off | Off | | 30% 34C P8 24W / 300W | 1319MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 5 NVIDIA RTX 6000 Ada Gene... Off | 00000000:A1:00.0 Off | Off | | 40% 59C P2 71W / 300W | 5763MiB / 49140MiB | 6% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 6 NVIDIA RTX 6000 Ada Gene... Off | 00000000:C1:00.0 Off | Off | | 30% 47C P2 91W / 300W | 43307MiB / 49140MiB | 74% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| +---------------------------------------------------------------------------------------+ ``` ### Who can help? @benjaminbossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction ## Context I do my model training for text generation just for CompletionOnlyLM with my own dataset (long dialogues with system/user/assistant remarks). I added to my model and tokenizer new tokens using: ```python tokenizer.add_tokens( [ AddedToken("<|start_thinking|>", normalized=False, special=False), AddedToken("<|end_thinking|>", normalized=False, special=False), AddedToken("<tool_response>", normalized=False, special=False), AddedToken("</tool_response>", normalized=False, special=False), AddedToken("<|start_response|>", normalized=False, special=False), AddedToken("<|end_response|>", normalized=False, special=False), ] ) model.resize_token_embeddings(len(tokenizer)) ``` and I have saved it before training. After that I just wanted training my extend model with PEFT + TRL + FSDP. Model that I used like base: ``` Qwen2ForCausalLM( (model): Qwen2Model( (embed_tokens): Embedding(151671, 3584) (layers): ModuleList( (0-27): 28 x Qwen2DecoderLayer( (self_attn): Qwen2Attention( (q_proj): Linear(in_features=3584, out_features=3584, bias=True) (k_proj): Linear(in_features=3584, out_features=512, bias=True) (v_proj): Linear(in_features=3584, out_features=512, bias=True) (o_proj): Linear(in_features=3584, out_features=3584, bias=False) ) (mlp): Qwen2MLP( (gate_proj): Linear(in_features=3584, out_features=18944, bias=False) (up_proj): Linear(in_features=3584, out_features=18944, bias=False) (down_proj): Linear(in_features=18944, out_features=3584, bias=False) (act_fn): SiLU() ) (input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) (post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) ) ) (norm): Qwen2RMSNorm((3584,), eps=1e-06) (rotary_emb): Qwen2RotaryEmbedding() ) (lm_head): Linear(in_features=3584, out_features=151671, bias=False) ) ``` ## Code ### Accelerate config ```yaml compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch: BACKWARD_PRE fsdp_cpu_ram_efficient_loading: true fsdp_forward_prefetch: false fsdp_offload_params: false fsdp_sharding_strategy: FULL_SHARD fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sync_module_states: true fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: 'no' num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` ### Training script ```python import warnings warnings.filterwarnings("ignore") import os os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1, 2, 3' os.environ['TOKENIZERS_PARALLELISM'] = 'true' import wandb import numpy as np import torch import json from typing import List, Optional, Union, Any, Literal from datasets import load_dataset, Dataset import evaluate from transformers import ( AutoTokenizer, AutoModelForCausalLM, EarlyStoppingCallback, DataCollatorForLanguageModeling, AddedToken, ) from peft import ( LoraConfig, get_peft_model, TaskType, PeftModelForCausalLM ) from trl import ( SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM ) from special_utils import DataCollatorForMultiCompletionOnlyLM, CustomLossTrainer ################################## # Enviroments and configurations # ################################## CHECKPOINT_PATH = None DATA_CACHE_DIR = "/home/raid/datasets/" MODEL_CACHE_DIR = "/home/raid/hf_cache/" MODEL_PATH = "/home/raid/models/extended_qwen" METRICS_CACHE = "/home/raid/metrics_cache" MAX_PROMPT_LENGTH = 5000 LR = 1e-5 STEP_SIZE = 10 BATCH_SIZE = 2 GA_SIZE = 4 TRAIN_EPOCHS = 1 REPORT_TO = ['none', 'wandb'][0] LORA_R = 48 LORA_ALPHA = 96 TARGET_MODULES = [ "self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj", "self_attn.o_proj", "mlp.gate_proj", "mlp.up_proj", "mlp.down_proj", ] MODULES_TO_SAVE = [ "embed_tokens", "lm_head" ] REVISION_NAME = f"TEST_qwen-tp-({LR})LR-({BATCH_SIZE})BATCH_SIZE-({GA_SIZE})GA_SIZE-({TRAIN_EPOCHS})TRAIN_EPOCHS-({LORA_R})LORA_R-({LORA_ALPHA})LORA_ALPHA" LOGS_PATH = f"/home/raid/models/{REVISION_NAME}/logs" print(REVISION_NAME) def main(): ##################### # Model & Tokenizer # ##################### model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, # cache_dir=MODEL_CACHE_DIR, torch_dtype=torch.bfloat16, use_cache=False, ) tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, # cache_dir=MODEL_CACHE_DIR, ) tokenizer.padding_side = 'right' ### FREEZING ### for param in model.parameters(): param.requires_grad = False print(tokenizer.added_tokens_decoder) ########### # Dataset # ########### dataset = load_dataset( "my/dataset", "train", cache_dir=DATA_CACHE_DIR ) def prepare_texts(example): example['text'] = tokenizer.apply_chat_template( conversation=json.loads(example['conversation']), tools=json.loads(example['tools']), tokenize=False ) return example dataset = dataset.map(prepare_texts) dataset_vvalid = Dataset.from_dict(dataset['train'][:100]) # For tests print(dataset) ######## # PEFT # ######## lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, r=LORA_R, lora_alpha=LORA_ALPHA, target_modules=TARGET_MODULES, modules_to_save=MODULES_TO_SAVE, lora_dropout=0.1, bias="none", ) ################## # Trainer & Args # ################## bertscore = evaluate.load( "bertscore", cache_dir=METRICS_CACHE ) rouge = evaluate.load( "rouge", cache_dir=METRICS_CACHE ) def preprocess_logits_for_metrics(logits, labels): pred_ids = torch.argmax(logits, dim=-1) return pred_ids, labels def compute_metrics(eval_pred): pred_ids = torch.tensor(eval_pred.predictions[0]) label_ids = torch.tensor(eval_pred.label_ids) preds = tokenizer.batch_decode(torch.where(label_ids == -100, tokenizer.eos_token_id, pred_ids), skip_special_tokens=True) labels = tokenizer.batch_decode(torch.where(label_ids == -100, tokenizer.eos_token_id, label_ids), skip_special_tokens=True) if not os.path.exists(LOGS_PATH): os.makedirs(LOGS_PATH, exist_ok=True) with open(LOGS_PATH + "/data", "w") as f: f.write(json.dumps([preds, labels])) print("PREDS:", preds[0], "###") print("LABELS:", labels[0], "###") bertscore_results = bertscore.compute( predictions=preds, references=labels, lang='en' ) rouge_results = rouge.compute( predictions=preds, references=labels, ) return { "bert_score_f1": np.mean(bertscore_results['f1']), "bert_score_recall": np.mean(bertscore_results['recall']), "bert_score_precision": np.mean(bertscore_results['precision']), "rouge1": rouge_results['rouge1'], 'rouge2': rouge_results['rouge2'], 'rougeL': rouge_results['rougeL'], } data_collator = DataCollatorForMultiCompletionOnlyLM( tokenizer=tokenizer, response_template="<|im_start|>assistant\n", end_response_template="<|im_end|>", mlm=False ) special_token_ids = [151665, 151666, 151667, 151668, 151669, 151670] special_token_weight = 1.2 training_args = SFTConfig( ## SFT Arguments ## max_seq_length=MAX_PROMPT_LENGTH, ## Standard Arguments ## do_train=True, do_eval=True, output_dir=f"/home/raid/checkpoints/{REVISION_NAME}", overwrite_output_dir=True, eval_strategy="steps", eval_steps=STEP_SIZE, torch_empty_cache_steps=STEP_SIZE, num_train_epochs=TRAIN_EPOCHS, per_device_train_batch_size=BATCH_SIZE, per_device_eval_batch_size=BATCH_SIZE, gradient_accumulation_steps=GA_SIZE, optim="adamw_torch", save_steps=STEP_SIZE, save_total_limit=4, logging_steps=STEP_SIZE, learning_rate=LR, lr_scheduler_type="cosine", bf16=True, gradient_checkpointing=True, gradient_checkpointing_kwargs = {"use_reentrant": True}, load_best_model_at_end=True, metric_for_best_model="eval_rougeL", greater_is_better=True, report_to=REPORT_TO, run_name=REVISION_NAME, resume_from_checkpoint=True if CHECKPOINT_PATH else False, ) trainer = CustomLossTrainer( model=model, args=training_args, peft_config=lora_config, train_dataset=dataset_vvalid,#dataset['train'], eval_dataset=dataset_vvalid,#dataset['valid'], processing_class=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, preprocess_logits_for_metrics=preprocess_logits_for_metrics, callbacks=[EarlyStoppingCallback(early_stopping_patience=100)], special_token_ids=special_token_ids, special_token_weight=special_token_weight, ) print("MODEL DTYPE: ", trainer.model.dtype) # handle PEFT+FSDP case trainer.model.print_trainable_parameters() if getattr(trainer.accelerator.state, "fsdp_plugin", None): from peft.utils.other import fsdp_auto_wrap_policy fsdp_plugin = trainer.accelerator.state.fsdp_plugin fsdp_plugin.auto_wrap_policy = fsdp_auto_wrap_policy(trainer.model) # Training if CHECKPOINT_PATH is not None: trainer.train(resume_from_checkpoint=CHECKPOINT_PATH) else: trainer.train() if trainer.is_fsdp_enabled: trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") trainer.save_model(f"/home/raid/models/{REVISION_NAME}/adapter") if __name__ == "__main__": main() ``` ### Custom Collator & Trainer (special_utils.py) ```python import torch from transformers import DataCollatorForLanguageModeling from typing import List, Optional, Union, Any, Literal from trl import SFTTrainer import numpy as np # Adding weights to new tokens class CustomLossTrainer(SFTTrainer): def __init__(self, *args, special_token_ids, special_token_weight=1.2, **kwargs): super().__init__(*args, **kwargs) self.special_token_ids = special_token_ids self.special_token_weight = special_token_weight self.weights = None def _init_weights(self, model): self.weights = torch.ones(model.config.vocab_size, device=model.device) for token_id in self.special_token_ids: self.weights[token_id] = self.special_token_weight self.cross_entropy = torch.nn.CrossEntropyLoss(weight=self.weights) def compute_loss(self, model, inputs, return_outputs=False, **kwargs): if self.weights is None: self._init_weights(model) labels = inputs.pop("labels").to(model.device) outputs = model(**inputs) logits = outputs.get("logits").to(model.device) loss = self.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1)) if return_outputs: return loss, outputs return loss # For Completion with many different instruction templates class DataCollatorForMultiCompletionOnlyLM(DataCollatorForLanguageModeling): def __init__( self, response_template: Union[str, list[int]], end_response_template: Union[str, list[int]], instruction_template: Optional[Union[str, list[int]]] = None, *args, mlm: bool = False, ignore_index: int = -100, padding_free: bool = False, **kwargs, ): super().__init__(*args, mlm=mlm, **kwargs) self.instruction_template = instruction_template if isinstance(instruction_template, str): # The user provides a string, must tokenize self.instruction_token_ids = self.tokenizer.encode(self.instruction_template, add_special_tokens=False) else: # The user already provides the token ids self.instruction_token_ids = instruction_template self.response_template = response_template if isinstance(response_template, str): # The user provides a string, must tokenize self.response_token_ids = self.tokenizer.encode(self.response_template, add_special_tokens=False) else: # The user already provides the token ids self.response_token_ids = response_template self.end_response_template = end_response_template if isinstance(end_response_template, str): # The user provides a string, must tokenize self.end_response_token_ids = self.tokenizer.encode(self.end_response_template, add_special_tokens=False) else: # The user already provides the token ids self.end_response_token_ids = end_response_template if not self.mlm and self.instruction_template and self.tokenizer.pad_token_id == self.tokenizer.eos_token_id: warnings.warn( "The pad_token_id and eos_token_id values of this tokenizer are identical. " "If you are planning for multi-turn training, " "it can result in the model continuously generating questions and answers without eos token. " "To avoid this, set the pad_token_id to a different value.", UserWarning, ) self.ignore_index = ignore_index self.padding_free = padding_free def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: batch = super().torch_call(examples) for i in range(len(examples)): batch["labels"][i] = torch.where(batch["labels"][i] == 0, 999999, batch["labels"][i]) response_token_ids_start_ids = [] for idx in np.where(batch["labels"][i] == self.response_token_ids[0])[0]: # `response_token_ids` is `'### Response:\n'`, here we are just making sure that the token IDs match if ( self.response_token_ids == batch["labels"][i][idx : idx + len(self.response_token_ids)].tolist() ): response_token_ids_start_ids.append(idx) if len(response_token_ids_start_ids) == 0: warnings.warn( f"Could not find response key `{self.response_template}` in the following instance: " f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss " "calculation. Note, if this happens often, consider increasing the `max_seq_length`.", UserWarning, ) batch["labels"][i, :] = self.ignore_index else: response_token_ids_end_ids = [response_token_ids_start_idx + len(self.response_token_ids) for response_token_ids_start_idx in response_token_ids_start_ids] end_response_token_ids_idxs = [] for idx in np.where(batch["labels"][i] == self.end_response_token_ids[0])[0]: # `response_token_ids` is `'### Response:\n'`, here we are just making sure that the token IDs match if ( self.end_response_token_ids == batch["labels"][i][idx : idx + len(self.end_response_token_ids)].tolist() ): end_response_token_ids_idxs.append(idx) if len(end_response_token_ids_idxs) == 0: warnings.warn( f"Could not find end response key `{self.response_template}` in the following instance: " f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss " "calculation. Note, if this happens often, consider increasing the `max_seq_length`.", UserWarning, ) batch["labels"][i, :] = self.ignore_index assistant_end_idxs = [] for assistant_start_idx in response_token_ids_end_ids: for assistant_end_idx in end_response_token_ids_idxs: if assistant_start_idx < assistant_end_idx: assistant_end_idxs.append(assistant_end_idx) break assert len(response_token_ids_end_ids) == len(assistant_end_idxs), "Error, need count assistant replics == count after assistant end suffixes" mask = torch.ones_like(batch['labels'][i, :]) * -1 mask = torch.where(batch['labels'][i, :] == self.ignore_index, 1, mask) for start_id, end_id in zip(response_token_ids_end_ids, assistant_end_idxs): mask[start_id : end_id + 1] = 1 labels = mask * batch['labels'][i, :] batch['labels'][i, :] = torch.where(labels < 0, self.ignore_index, labels) batch["labels"][i] = torch.where(batch["labels"][i] == 999999, 0, batch["labels"][i]) if self.padding_free: # remove padding, `attention_mask` and add `position_ids` attn_mask = batch.pop("attention_mask") batch["input_ids"] = batch["input_ids"][attn_mask.bool()].unsqueeze(0) batch["position_ids"] = attn_mask.cumsum(1)[attn_mask.bool()].unsqueeze(0) - 1 batch["labels"] = batch["labels"][attn_mask.bool()].unsqueeze(0) batch["labels"][batch["position_ids"] == 0] = self.ignore_index # Calculate cumulative sequence lengths for queries and keys to prevent graph breaks during further computations. flattened_position_ids = batch["position_ids"].flatten() indices_q = torch.arange( flattened_position_ids.size(0), device=flattened_position_ids.device, dtype=torch.int32 ) batch["cu_seq_lens_q"] = torch.cat( ( indices_q[flattened_position_ids == 0], torch.tensor( flattened_position_ids.size(), device=flattened_position_ids.device, dtype=torch.int32 ), ) ) batch["cu_seq_lens_k"] = batch["cu_seq_lens_q"] # Determine maximum sequence lengths to prevent graph breaks during further computations. batch["max_length_k"] = flattened_position_ids.max().item() + 1 batch["max_length_q"] = batch["max_length_k"] return batch ``` ## During training To be as sure as possible that this error is not in the learning process, I additionally save the validation examples to a separate file and log the metrics. Metrics from wandb: ![Image](https://github.com/user-attachments/assets/0999005e-926e-4035-829f-96165fa085ef) I tracked the direct text saved for validation, everything was fine. ## After training After training process I have tried load model to check autoregressive inference: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_CACHE_DIR = "/home/raid/hf_cache" DATA_CACHE_DIR = "/home/raid/datasets" MODEL_PATH = "/home/raid/models/extended_qwen" lora_path = "/home/raid/models/tool-plannings/qwen-tp-(1e-05)LR-(2)BATCH_SIZE-(4)GA_SIZE-(6)TRAIN_EPOCHS-(48)LORA_R-(96)LORA_ALPHA/adapter" model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, use_cache=False, ) tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, ) from peft import PeftModelForCausalLM model = PeftModelForCausalLM.from_pretrained( model, lora_path # This contains adapter_model.safetensors, adapter_config.json, etc. ) model ``` ``` PeftModelForCausalLM( (base_model): LoraModel( (model): Qwen2ForCausalLM( (model): Qwen2Model( (embed_tokens): ModulesToSaveWrapper( (original_module): Embedding(151671, 3584) (modules_to_save): ModuleDict( (default): Embedding(151671, 3584) ) ) (layers): ModuleList( (0-27): 28 x Qwen2DecoderLayer( (self_attn): Qwen2Attention( (q_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=3584, bias=True) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=3584, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (k_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=512, bias=True) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=512, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (v_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=512, bias=True) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=512, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (o_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=3584, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=3584, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (mlp): Qwen2MLP( (gate_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=18944, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=18944, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (up_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=18944, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=18944, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (down_proj): lora.Linear( (base_layer): Linear(in_features=18944, out_features=3584, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=18944, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=3584, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (act_fn): SiLU() ) (input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) (post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) ) ) (norm): Qwen2RMSNorm((3584,), eps=1e-06) (rotary_emb): Qwen2RotaryEmbedding() ) (lm_head): ModulesToSaveWrapper( (original_module): Linear(in_features=3584, out_features=151671, bias=False) (modules_to_save): ModuleDict( (default): Linear(in_features=3584, out_features=151671, bias=False) ) ) ) ) ) ``` And during inference I had something like that: ```python outputs = model.generate( **inputs_tokens, max_new_tokens=20, )[0] print(tokenizer.decode(outputs, skip_special_tokens=False)) ``` ``` ...ngle stepA journey of a thousand miles'.<|im_end|> <|im_start|>assistant # here start new tokens write write write write write write write write write write write write write write write write write write write... ``` ## Problem I thought there was a mistake in saving the adapter and instead of saving the adapter, I tried to merge model and adapter immediately after the end of the training in script like that: ```python merged_model = trainer.model.merge_and_unload(safe_merge=True) merged_model.save_pretrained(f"/home/raid/models/{REVISION_NAME}") ``` and I have occured the error: ``` MODEL DTYPE: torch.bfloat16 trainable params: 1,107,362,816 || all params: 8,720,162,304 || trainable%: 12.6989 {'train_runtime': 79.4632, 'train_samples_per_second': 1.258, 'train_steps_per_second': 0.038, 'train_loss': 108.3709716796875, 'epoch': 0.92} 100%|██████████████████████████████████████████████████████████████| 3/3 [01:19<00:00, 26.51s/it] [rank2]: Traceback (most recent call last): [rank2]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank2]: main() [rank2]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank2]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank2]: return self._unload_and_optionally_merge( [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank2]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank2]: delta_weight = self.get_delta_weight(active_adapter) [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank2]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank2]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively [rank1]: Traceback (most recent call last): [rank1]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank1]: main() [rank1]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank1]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank1]: return self._unload_and_optionally_merge( [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank1]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank1]: delta_weight = self.get_delta_weight(active_adapter) [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank1]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank1]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively [rank0]: Traceback (most recent call last): [rank0]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank0]: main() [rank0]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank0]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank0]: return self._unload_and_optionally_merge( [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank0]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank0]: delta_weight = self.get_delta_weight(active_adapter) [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank0]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank0]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively [rank3]: Traceback (most recent call last): [rank3]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank3]: main() [rank3]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank3]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank3]: return self._unload_and_optionally_merge( [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank3]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank3]: delta_weight = self.get_delta_weight(active_adapter) [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank3]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank3]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively ``` Besides, I tried load adapter manually by safetensors script smth like that: ```python from safetensors import safe_open lora_state_dict = {} with safe_open(lora_path, framework="pt", device="cpu") as f: for key in f.keys(): new_key = key.replace("lora_A.", "lora_A.default.").replace("lora_B.", "lora_B.default.") new_key = new_key.replace("embed_tokens.weight", "embed_tokens.original_module.weight") new_key = new_key.replace("lm_head.weight", "lm_head.modules_to_save.default.weight") lora_state_dict[new_key] = f.get_tensor(key) m, u = model.load_state_dict(lora_state_dict, strict=False) ``` I was able to upload the adapter in my model, but I was still getting catastrophical hallucinations like: ``` ...<|im_start|>assistant # generated spaces ``` I assume that the error lies in the adapter merge and may be floating bf16 fp16 or something. P.S. BTW I tried to train model with fp16 and I had same problem ### Expected behavior Expected behavior of generation after merging adapter with my model
{ "login": "DmitryDiTy", "id": 90377536, "node_id": "MDQ6VXNlcjkwMzc3NTM2", "avatar_url": "https://avatars.githubusercontent.com/u/90377536?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DmitryDiTy", "html_url": "https://github.com/DmitryDiTy", "followers_url": "https://api.github.com/users/DmitryDiTy/followers", "following_url": "https://api.github.com/users/DmitryDiTy/following{/other_user}", "gists_url": "https://api.github.com/users/DmitryDiTy/gists{/gist_id}", "starred_url": "https://api.github.com/users/DmitryDiTy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DmitryDiTy/subscriptions", "organizations_url": "https://api.github.com/users/DmitryDiTy/orgs", "repos_url": "https://api.github.com/users/DmitryDiTy/repos", "events_url": "https://api.github.com/users/DmitryDiTy/events{/privacy}", "received_events_url": "https://api.github.com/users/DmitryDiTy/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2368/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2368/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2367
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2367/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2367/comments
https://api.github.com/repos/huggingface/peft/issues/2367/events
https://github.com/huggingface/peft/issues/2367
2,838,045,820
I_kwDOIf9iDM6pKSR8
2,367
Some weights of MistralForSequenceClassification were not initialized from the model checkpoint at mistralai/Mistral-7B-Instruct-v0.3 and are newly initialized: ['score.weight']
{ "login": "amritansh6", "id": 46628209, "node_id": "MDQ6VXNlcjQ2NjI4MjA5", "avatar_url": "https://avatars.githubusercontent.com/u/46628209?v=4", "gravatar_id": "", "url": "https://api.github.com/users/amritansh6", "html_url": "https://github.com/amritansh6", "followers_url": "https://api.github.com/users/amritansh6/followers", "following_url": "https://api.github.com/users/amritansh6/following{/other_user}", "gists_url": "https://api.github.com/users/amritansh6/gists{/gist_id}", "starred_url": "https://api.github.com/users/amritansh6/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amritansh6/subscriptions", "organizations_url": "https://api.github.com/users/amritansh6/orgs", "repos_url": "https://api.github.com/users/amritansh6/repos", "events_url": "https://api.github.com/users/amritansh6/events{/privacy}", "received_events_url": "https://api.github.com/users/amritansh6/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2025-02-07T12:29:22
2025-02-10T11:01:57
2025-02-10T11:01:55
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info I have been trying to fine tune mistral 7b v0.3 for a downstream task using lora and I get the following warning while running inference. ```python base_model = AutoModelForSequenceClassification.from_pretrained( model_id, use_auth_token="hf_***", num_labels=2, problem_type="single_label_classification" ) base_model.config.pad_token_id = tokenizer.pad_token_id lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], bias="none", task_type="SEQ_CLS", modules_to_save=["score"] ) model_with_lora = get_peft_model(base_model, lora_config) model_with_lora.print_trainable_parameters() training_args = TrainingArguments( output_dir="./results_4", evaluation_strategy="epoch", save_strategy="steps", save_steps=0.1, logging_dir="./logs", learning_rate=5e-5, per_device_train_batch_size=2, num_train_epochs=2, weight_decay=0.01, report_to="wandb", save_total_limit=2, logging_steps=10, ) trainer = Trainer( model=model_with_lora, args=training_args, train_dataset=hf_dataset, eval_dataset=hf_eval_dataset, tokenizer=tokenizer, compute_metrics=None, ) ``` This is my training script and while loading for inference I get the warning as, Some weights of MistralForSequenceClassification were not initialized from the model checkpoint at mistralai/Mistral-7B-Instruct-v0.3 and are newly initialized: ['score.weight'] Can someone check this. ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ```python base_model = AutoModelForSequenceClassification.from_pretrained( model_id, use_auth_token="hf_***", num_labels=2, problem_type="single_label_classification" ) base_model.config.pad_token_id = tokenizer.pad_token_id lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], bias="none", task_type="SEQ_CLS", modules_to_save=["score"] ) model_with_lora = get_peft_model(base_model, lora_config) model_with_lora.print_trainable_parameters() training_args = TrainingArguments( output_dir="./results_4", evaluation_strategy="epoch", save_strategy="steps", save_steps=0.1, logging_dir="./logs", learning_rate=5e-5, per_device_train_batch_size=2, num_train_epochs=2, weight_decay=0.01, report_to="wandb", save_total_limit=2, logging_steps=10, ) trainer = Trainer( model=model_with_lora, args=training_args, train_dataset=hf_dataset, eval_dataset=hf_eval_dataset, tokenizer=tokenizer, compute_metrics=None, ) ``` ### Expected behavior Ideally this warning should not come.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2367/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2367/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2364
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2364/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2364/comments
https://api.github.com/repos/huggingface/peft/issues/2364/events
https://github.com/huggingface/peft/issues/2364
2,835,746,171
I_kwDOIf9iDM6pBg17
2,364
docs: broken links to boft
{ "login": "makelinux", "id": 2335185, "node_id": "MDQ6VXNlcjIzMzUxODU=", "avatar_url": "https://avatars.githubusercontent.com/u/2335185?v=4", "gravatar_id": "", "url": "https://api.github.com/users/makelinux", "html_url": "https://github.com/makelinux", "followers_url": "https://api.github.com/users/makelinux/followers", "following_url": "https://api.github.com/users/makelinux/following{/other_user}", "gists_url": "https://api.github.com/users/makelinux/gists{/gist_id}", "starred_url": "https://api.github.com/users/makelinux/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/makelinux/subscriptions", "organizations_url": "https://api.github.com/users/makelinux/orgs", "repos_url": "https://api.github.com/users/makelinux/repos", "events_url": "https://api.github.com/users/makelinux/events{/privacy}", "received_events_url": "https://api.github.com/users/makelinux/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2025-02-06T14:48:16
2025-02-07T10:14:44
2025-02-07T10:14:44
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info on page: https://huggingface.co/docs/peft/v0.14.0/en/conceptual_guides/oft ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction on page: https://huggingface.co/docs/peft/v0.14.0/en/conceptual_guides/oft Snippet: Take a look at the following step-by-step guides on how to finetune a model with BOFT: [Dreambooth finetuning with BOFT](https://huggingface.co/docs/peft/v0.14.0/en/task_guides/boft_dreambooth) [Controllable generation finetuning with BOFT (ControlNet)](https://huggingface.co/docs/peft/v0.14.0/en/task_guides/boft_controlnet) ### Expected behavior perhaps the links should lead to https://github.com/huggingface/peft/blob/main/examples/boft_dreambooth/boft_dreambooth.md https://github.com/huggingface/peft/blob/main/examples/boft_controlnet/boft_controlnet.md
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2364/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2364/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2362
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2362/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2362/comments
https://api.github.com/repos/huggingface/peft/issues/2362/events
https://github.com/huggingface/peft/issues/2362
2,833,885,059
I_kwDOIf9iDM6o6aeD
2,362
Import error
{ "login": "ikamensh", "id": 23004004, "node_id": "MDQ6VXNlcjIzMDA0MDA0", "avatar_url": "https://avatars.githubusercontent.com/u/23004004?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ikamensh", "html_url": "https://github.com/ikamensh", "followers_url": "https://api.github.com/users/ikamensh/followers", "following_url": "https://api.github.com/users/ikamensh/following{/other_user}", "gists_url": "https://api.github.com/users/ikamensh/gists{/gist_id}", "starred_url": "https://api.github.com/users/ikamensh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ikamensh/subscriptions", "organizations_url": "https://api.github.com/users/ikamensh/orgs", "repos_url": "https://api.github.com/users/ikamensh/repos", "events_url": "https://api.github.com/users/ikamensh/events{/privacy}", "received_events_url": "https://api.github.com/users/ikamensh/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2025-02-05T20:19:35
2025-02-05T20:38:50
2025-02-05T20:38:23
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Successfully installed accelerate-1.3.0 aiohappyeyeballs-2.4.4 aiohttp-3.11.11 aiosignal-1.3.2 bitsandbytes-0.45.1 datasets-3.2.0 dill-0.3.8 frozenlist-1.5.0 huggingface_hub-0.28.1 multidict-6.1.0 multiprocess-0.70.16 pandas-2.2.3 peft-0.14.0 propcache-0.2.1 pyarrow-19.0.0 pytz-2025.1 regex-2024.11.6 safetensors-0.5.2 tokenizers-0.13.3 tqdm-4.67.1 transformers-4.30.2 tzdata-2025.1 xxhash-3.5.0 yarl-1.18.3 root@77c297c83b18:/workspace# python qlora.py Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1086, in _get_module return importlib.import_module("." + module_name, self.__name__) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [...] File "/usr/local/lib/python3.11/dist-packages/transformers/trainer.py", line 212, in <module> from peft import PeftModel File "/usr/local/lib/python3.11/dist-packages/peft/__init__.py", line 22, in <module> from .auto import ( File "/usr/local/lib/python3.11/dist-packages/peft/auto.py", line 32, in <module> from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING File "/usr/local/lib/python3.11/dist-packages/peft/mapping.py", line 25, in <module> from .mixed_model import PeftMixedModel File "/usr/local/lib/python3.11/dist-packages/peft/mixed_model.py", line 29, in <module> from .peft_model import PeftModel File "/usr/local/lib/python3.11/dist-packages/peft/peft_model.py", line 37, in <module> from transformers import Cache, DynamicCache, EncoderDecoderCache, PreTrainedModel ImportError: cannot import name 'Cache' from 'transformers' (/usr/local/lib/python3.11/dist-packages/transformers/__init__.py) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/workspace/qlora.py", line 17, in <module> from transformers import ( File "<frozen importlib._bootstrap>", line 1229, in _handle_fromlist File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1076, in __getattr__ module = self._get_module(self._class_to_module[name]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1088, in _get_module raise RuntimeError( RuntimeError: Failed to import transformers.trainer because of the following error (look up to see its traceback): cannot import name 'Cache' from 'transformers' (/usr/local/lib/python3.11/dist-packages/transformers/__init__.py) ### Who can help? _No response_ ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction `pip install peft-0.14.0 transformers-4.30.2` on linux + py3.11 run following: ```python from transformers import ( LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling, ) ``` ### Expected behavior imports work (or crash outside peft)
{ "login": "ikamensh", "id": 23004004, "node_id": "MDQ6VXNlcjIzMDA0MDA0", "avatar_url": "https://avatars.githubusercontent.com/u/23004004?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ikamensh", "html_url": "https://github.com/ikamensh", "followers_url": "https://api.github.com/users/ikamensh/followers", "following_url": "https://api.github.com/users/ikamensh/following{/other_user}", "gists_url": "https://api.github.com/users/ikamensh/gists{/gist_id}", "starred_url": "https://api.github.com/users/ikamensh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ikamensh/subscriptions", "organizations_url": "https://api.github.com/users/ikamensh/orgs", "repos_url": "https://api.github.com/users/ikamensh/repos", "events_url": "https://api.github.com/users/ikamensh/events{/privacy}", "received_events_url": "https://api.github.com/users/ikamensh/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2362/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2362/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2359
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2359/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2359/comments
https://api.github.com/repos/huggingface/peft/issues/2359/events
https://github.com/huggingface/peft/issues/2359
2,829,346,186
I_kwDOIf9iDM6opGWK
2,359
Inconsistent documentation
{ "login": "makelinux", "id": 2335185, "node_id": "MDQ6VXNlcjIzMzUxODU=", "avatar_url": "https://avatars.githubusercontent.com/u/2335185?v=4", "gravatar_id": "", "url": "https://api.github.com/users/makelinux", "html_url": "https://github.com/makelinux", "followers_url": "https://api.github.com/users/makelinux/followers", "following_url": "https://api.github.com/users/makelinux/following{/other_user}", "gists_url": "https://api.github.com/users/makelinux/gists{/gist_id}", "starred_url": "https://api.github.com/users/makelinux/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/makelinux/subscriptions", "organizations_url": "https://api.github.com/users/makelinux/orgs", "repos_url": "https://api.github.com/users/makelinux/repos", "events_url": "https://api.github.com/users/makelinux/events{/privacy}", "received_events_url": "https://api.github.com/users/makelinux/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
5
2025-02-04T07:25:29
2025-03-06T15:03:57
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Content of https://huggingface.co/docs/peft/index is not synchronised with ToC. "How-to guides" is already "PEFT method guides". "PEFT method guides" are under directory `task_guides`. ![Image](https://github.com/user-attachments/assets/28cd2e3d-6ff7-4065-9c76-b5862ce09e6b) ### Expected behavior Consistent documentation. Clear unambiguous names. Links match titles and the content.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2359/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2359/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2355
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2355/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2355/comments
https://api.github.com/repos/huggingface/peft/issues/2355/events
https://github.com/huggingface/peft/issues/2355
2,823,704,539
I_kwDOIf9iDM6oTk_b
2,355
dataclass config handling
{ "login": "moghadas76", "id": 23231913, "node_id": "MDQ6VXNlcjIzMjMxOTEz", "avatar_url": "https://avatars.githubusercontent.com/u/23231913?v=4", "gravatar_id": "", "url": "https://api.github.com/users/moghadas76", "html_url": "https://github.com/moghadas76", "followers_url": "https://api.github.com/users/moghadas76/followers", "following_url": "https://api.github.com/users/moghadas76/following{/other_user}", "gists_url": "https://api.github.com/users/moghadas76/gists{/gist_id}", "starred_url": "https://api.github.com/users/moghadas76/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moghadas76/subscriptions", "organizations_url": "https://api.github.com/users/moghadas76/orgs", "repos_url": "https://api.github.com/users/moghadas76/repos", "events_url": "https://api.github.com/users/moghadas76/events{/privacy}", "received_events_url": "https://api.github.com/users/moghadas76/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-31T14:48:29
2025-03-10T15:04:18
2025-03-10T15:04:18
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:12:24) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: 11.5.119 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 GPU 1: NVIDIA GeForce RTX 4090 Nvidia driver version: 555.42.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i9-13900F CPU family: 6 Model: 183 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 1 CPU max MHz: 5600.0000 CPU min MHz: 800.0000 BogoMIPS: 3993.60 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 896 KiB (24 instances) L1i cache: 1.3 MiB (24 instances) L2 cache: 32 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.0 [pip3] torchtune==0.5.0 [conda] blas 1.0 mkl [conda] cuda-cudart 12.1.105 0 nvidia [conda] cuda-cupti 12.1.105 0 nvidia [conda] cuda-libraries 12.1.0 0 nvidia [conda] cuda-nvrtc 12.1.105 0 nvidia [conda] cuda-nvtx 12.1.105 0 nvidia [conda] cuda-opencl 12.3.52 0 nvidia [conda] cuda-runtime 12.1.0 0 nvidia [conda] easy-torch 1.3.2 pypi_0 pypi [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] libcublas 12.1.0.26 0 nvidia [conda] libcufft 11.0.2.4 0 nvidia [conda] libcurand 10.3.4.52 0 nvidia [conda] libcusolver 11.4.4.55 0 nvidia [conda] libcusparse 12.0.2.55 0 nvidia [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch [conda] libnvjitlink 12.1.105 0 nvidia [conda] mkl 2023.1.0 h213fc3f_46343 [conda] mkl-service 2.4.0 py311h5eee18b_1 [conda] mkl_fft 1.3.8 py311h5eee18b_0 [conda] mkl_random 1.2.4 py311hdb19cb5_0 [conda] numpy 1.24.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 8.9.2.26 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch [conda] pytorch-forecasting 1.2.0 pypi_0 pypi [conda] pytorch-lightning 2.2.0 pypi_0 pypi [conda] pytorch-mutex 1.0 cuda pytorch [conda] torch 2.3.0 pypi_0 pypi [conda] torch-cluster 1.6.3+pt23cu121 pypi_0 pypi [conda] torch-geometric 2.4.0 pypi_0 pypi [conda] torch-scatter 2.1.2+pt23cu121 pypi_0 pypi [conda] torch-sparse 0.6.18+pt23cu121 pypi_0 pypi [conda] torch-spline-conv 1.2.2+pt23cu121 pypi_0 pypi [conda] torch-summary 1.4.5 pypi_0 pypi [conda] torchaudio 2.3.0 pypi_0 pypi [conda] torchinfo 1.8.0 pypi_0 pypi [conda] torchmetrics 1.3.0.post0 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchtune 0.5.0 pypi_0 pypi [conda] torchvision 0.18.0 pypi_0 pypi [conda] triton 2.3.0 pypi_0 pypi ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction See PR ### Expected behavior See PR
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2355/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2355/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2354
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2354/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2354/comments
https://api.github.com/repos/huggingface/peft/issues/2354/events
https://github.com/huggingface/peft/issues/2354
2,823,156,387
I_kwDOIf9iDM6oRfKj
2,354
Commented PeftConfig
{ "login": "moghadas76", "id": 23231913, "node_id": "MDQ6VXNlcjIzMjMxOTEz", "avatar_url": "https://avatars.githubusercontent.com/u/23231913?v=4", "gravatar_id": "", "url": "https://api.github.com/users/moghadas76", "html_url": "https://github.com/moghadas76", "followers_url": "https://api.github.com/users/moghadas76/followers", "following_url": "https://api.github.com/users/moghadas76/following{/other_user}", "gists_url": "https://api.github.com/users/moghadas76/gists{/gist_id}", "starred_url": "https://api.github.com/users/moghadas76/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moghadas76/subscriptions", "organizations_url": "https://api.github.com/users/moghadas76/orgs", "repos_url": "https://api.github.com/users/moghadas76/repos", "events_url": "https://api.github.com/users/moghadas76/events{/privacy}", "received_events_url": "https://api.github.com/users/moghadas76/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-31T11:33:50
2025-03-10T15:04:20
2025-03-10T15:04:20
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info # from .config import PeftConfig, PeftType, PromptLearningConfig, TaskType @ ./peft/utils/__init__.py Why? ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction from peft.utils import PeftConfig ### Expected behavior accessing to PeftConfig!
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2354/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2354/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2348
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2348/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2348/comments
https://api.github.com/repos/huggingface/peft/issues/2348/events
https://github.com/huggingface/peft/issues/2348
2,811,752,952
I_kwDOIf9iDM6nl_H4
2,348
Incorrect Magnitude Calculation for DoRA Linear Layers (Violates DoRA Paper Methodology)
{ "login": "arcteryox", "id": 195980235, "node_id": "U_kgDOC65ryw", "avatar_url": "https://avatars.githubusercontent.com/u/195980235?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arcteryox", "html_url": "https://github.com/arcteryox", "followers_url": "https://api.github.com/users/arcteryox/followers", "following_url": "https://api.github.com/users/arcteryox/following{/other_user}", "gists_url": "https://api.github.com/users/arcteryox/gists{/gist_id}", "starred_url": "https://api.github.com/users/arcteryox/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arcteryox/subscriptions", "organizations_url": "https://api.github.com/users/arcteryox/orgs", "repos_url": "https://api.github.com/users/arcteryox/repos", "events_url": "https://api.github.com/users/arcteryox/events{/privacy}", "received_events_url": "https://api.github.com/users/arcteryox/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
5
2025-01-26T19:43:50
2025-01-30T18:56:52
2025-01-30T18:41:26
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### **Description** The current `DoraLinearLayer` incorrectly computes weight magnitude norms **per input channel** instead of **per output channel**, violating the methodology outlined in the [DoRA paper (Section 3.1)](https://arxiv.org/abs/2402.09353). This leads to degraded performance for linear layers (e.g., in LLMs). --- ### **Issue Details** #### **Affected Code**: `peft/tuners/lora/dora.py` → `DoraLinearLayer.get_weight_norm` ```python def get_weight_norm(self, weight, lora_weight, scaling): weight = transpose(weight, self.fan_in_fan_out) # ❌ Transposes to [in_features, out_features] weight = weight + scaling * lora_weight weight_norm = torch.linalg.norm(weight, dim=1) # Norm over input channels (dim=1) return weight_norm ``` #### **Problem**: - For a linear layer with weight shape `[out_features, in_features]`, transposing to `[in_features, out_features]` causes `dim=1` to represent **input channels**, not output channels. - This contradicts the DoRA paper’s requirement to compute magnitude **per output channel** (rows of the weight matrix). --- ### **Steps to Reproduce** 1. Initialize a DoRA-linear layer: ```python base_layer = nn.Linear(10, 5) # out_features=5, in_features=10 dora_layer = DoraLinearLayer(fan_in_fan_out=False) ``` 2. Check weight norm dimensions: ```python weight = base_layer.weight # Shape [5, 10] lora_weight = torch.randn(5, 10) # Simulate LoRA delta norm = dora_layer.get_weight_norm(weight, lora_weight, scaling=1.0) print(norm.shape) # Outputs [10] (input channels) instead of [5] (output channels) ``` --- ### **Expected vs Actual Behavior** | Expected (Per Paper) | Actual (Current Code) | |-----------------------|-----------------------| | Norms computed over **output channels** (`out_features`). | Norms computed over **input channels** (`in_features`). | --- ### **Proposed Fix** Remove the transpose and compute norms over `dim=1` directly: ```python def get_weight_norm(self, weight, lora_weight, scaling): # Remove transpose - work directly with [out_features, in_features] weight = weight + scaling * lora_weight weight_norm = torch.linalg.norm(weight, dim=1) # ✅ Norm over output channels (dim=1) return weight_norm ``` #### **Impact of Fix**: - Aligns with DoRA paper’s methodology for linear layers. - Convolutional layers (e.g., `DoraConv2dLayer`) are unaffected and already correct. --- ### **Additional Context** 1. **Paper Reference**: - Section 3.1 defines magnitude as the L2 norm of **rows** (output channels) for linear layers. - Example: For weight matrix `W ∈ ℝ^{d×k}`, magnitude `m_j = ||W_j||_2` (row-wise norm). 2. **Why This Matters**: - Magnitude scaling is critical for DoRA’s ability to decouple direction and magnitude updates. - Incorrect scaling invalidates the method’s theoretical guarantees and reduces performance (e.g., on LLM fine-tuning tasks). --- ### **Verification** After applying the fix: ```python print(norm.shape) # Now outputs [5] (correct for out_features=5) ``` ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ### **Steps to Reproduce** 1. Initialize a DoRA-linear layer: ```python base_layer = nn.Linear(10, 5) # out_features=5, in_features=10 dora_layer = DoraLinearLayer(fan_in_fan_out=False) ``` 2. Check weight norm dimensions: ```python weight = base_layer.weight # Shape [5, 10] lora_weight = torch.randn(5, 10) # Simulate LoRA delta norm = dora_layer.get_weight_norm(weight, lora_weight, scaling=1.0) print(norm.shape) # Outputs [10] (input channels) instead of [5] (output channels) ``` ### Expected behavior ### **Expected vs Actual Behavior** | Expected (Per Paper) | Actual (Current Code) | |-----------------------|-----------------------| | Norms computed over **output channels** (`out_features`). | Norms computed over **input channels** (`in_features`). |
{ "login": "arcteryox", "id": 195980235, "node_id": "U_kgDOC65ryw", "avatar_url": "https://avatars.githubusercontent.com/u/195980235?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arcteryox", "html_url": "https://github.com/arcteryox", "followers_url": "https://api.github.com/users/arcteryox/followers", "following_url": "https://api.github.com/users/arcteryox/following{/other_user}", "gists_url": "https://api.github.com/users/arcteryox/gists{/gist_id}", "starred_url": "https://api.github.com/users/arcteryox/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arcteryox/subscriptions", "organizations_url": "https://api.github.com/users/arcteryox/orgs", "repos_url": "https://api.github.com/users/arcteryox/repos", "events_url": "https://api.github.com/users/arcteryox/events{/privacy}", "received_events_url": "https://api.github.com/users/arcteryox/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2348/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2348/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2344
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2344/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2344/comments
https://api.github.com/repos/huggingface/peft/issues/2344/events
https://github.com/huggingface/peft/issues/2344
2,807,348,808
I_kwDOIf9iDM6nVL5I
2,344
FSDP2 and peft
{ "login": "psinger", "id": 1677826, "node_id": "MDQ6VXNlcjE2Nzc4MjY=", "avatar_url": "https://avatars.githubusercontent.com/u/1677826?v=4", "gravatar_id": "", "url": "https://api.github.com/users/psinger", "html_url": "https://github.com/psinger", "followers_url": "https://api.github.com/users/psinger/followers", "following_url": "https://api.github.com/users/psinger/following{/other_user}", "gists_url": "https://api.github.com/users/psinger/gists{/gist_id}", "starred_url": "https://api.github.com/users/psinger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/psinger/subscriptions", "organizations_url": "https://api.github.com/users/psinger/orgs", "repos_url": "https://api.github.com/users/psinger/repos", "events_url": "https://api.github.com/users/psinger/events{/privacy}", "received_events_url": "https://api.github.com/users/psinger/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2025-01-23T16:20:47
2025-03-03T15:04:06
2025-03-03T15:04:06
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
Hey, sorry if this is the wrong place. Feel free to move it to discussion. I am trying to get peft working with fsdp2 and am wondering if someone else attempted that already? The issue is that Im always getting errors along the lines of: `RuntimeError: aten.mm.default: got mixed torch.Tensor and DTensor, need to convert all torch.Tensor to DTensor before calling distributed operators!` Happy for any pointers.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2344/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2344/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2342
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2342/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2342/comments
https://api.github.com/repos/huggingface/peft/issues/2342/events
https://github.com/huggingface/peft/issues/2342
2,806,843,497
I_kwDOIf9iDM6nTQhp
2,342
CI: Add gptqmodel to the CI
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 5192585063, "node_id": "LA_kwDOIf9iDM8AAAABNYCPZw", "url": "https://api.github.com/repos/huggingface/peft/labels/wip", "name": "wip", "color": "fbca04", "default": false, "description": "" } ]
open
false
null
[]
null
4
2025-01-23T12:57:29
2025-02-28T10:35:25
null
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
This issue is to track the TODO from [this comment](https://github.com/huggingface/peft/pull/2247#pullrequestreview-2569656574). Once optimum 1.24.0 and transformers 4.49.0 are released, we should enable gptqmodel in the CI (and remove auto-gptq).
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2342/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2342/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2339
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2339/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2339/comments
https://api.github.com/repos/huggingface/peft/issues/2339/events
https://github.com/huggingface/peft/issues/2339
2,802,697,166
I_kwDOIf9iDM6nDcPO
2,339
Peft version upgrade from 0.4.0 to 0.14.0 results in "No module named \u0027peft.utils.config\u0027" error
{ "login": "incchar", "id": 184541983, "node_id": "U_kgDOCv_jHw", "avatar_url": "https://avatars.githubusercontent.com/u/184541983?v=4", "gravatar_id": "", "url": "https://api.github.com/users/incchar", "html_url": "https://github.com/incchar", "followers_url": "https://api.github.com/users/incchar/followers", "following_url": "https://api.github.com/users/incchar/following{/other_user}", "gists_url": "https://api.github.com/users/incchar/gists{/gist_id}", "starred_url": "https://api.github.com/users/incchar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/incchar/subscriptions", "organizations_url": "https://api.github.com/users/incchar/orgs", "repos_url": "https://api.github.com/users/incchar/repos", "events_url": "https://api.github.com/users/incchar/events{/privacy}", "received_events_url": "https://api.github.com/users/incchar/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-21T20:00:07
2025-03-02T15:03:46
2025-03-02T15:03:46
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Hello, I'm migrating my sagemaker endpoint from the `huggingface-pytorch-inference:2.1.0-transformers4.37.0-gpu-py310-cu118-ubuntu20.04` image (which is being deprecated) to the `huggingface-pytorch-inference:2.3.0-transformers4.46.1-gpu-py311-cu121-ubuntu20.04-v1.0` image, which is supported. This new version does not support the 0.4.0 version of peft, so we have upgraded to 1.14.0 and upgraded to a compatible diffusers version. The sagemaker endpoint deploys correctly with these new versions, but once it's run, we receive the following error: `No module named \u0027peft.utils.config\u0027` I dug around and found that there' no usage of peft.utils.config in our inference code. The only usage I could find is here, in the peft code itself: https://github.com/huggingface/peft/blob/main/src/peft/config.py. However, in this code, It looks like utils.config does not exist at all. Here's what I'm currently using: diffusers==0.32.2 peft==0.14.0 Is the peft library somehow breaking itself by looking for a peft.utils.config that doesn't exist? Have I missed a step that would create the utils.config file? Or is there another hidden dependency using peft.utils.config? ### Who can help? @BenjaminBossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction Create a sagemaker endpoint using the new `huggingface-pytorch-inference:2.3.0-transformers4.46.1-gpu-py311-cu121-ubuntu20.04-v1.0` huggingface DLC image. Use a requirements.txt that looks like the following: diffusers==0.32.2 peft==0.14.0 Observe that all requests to the sagemaker endpoint respond with 500 errors. ### Expected behavior The Sagemaker endpoint should continue to process requests as it did before the version upgrade (using peft 0.4.0)
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2339/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2339/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2337
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2337/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2337/comments
https://api.github.com/repos/huggingface/peft/issues/2337/events
https://github.com/huggingface/peft/issues/2337
2,800,325,334
I_kwDOIf9iDM6m6ZLW
2,337
AdaLora kthvalue(): selected number k out of range for dimension 0
{ "login": "PKaralupov", "id": 152442722, "node_id": "U_kgDOCRYXYg", "avatar_url": "https://avatars.githubusercontent.com/u/152442722?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PKaralupov", "html_url": "https://github.com/PKaralupov", "followers_url": "https://api.github.com/users/PKaralupov/followers", "following_url": "https://api.github.com/users/PKaralupov/following{/other_user}", "gists_url": "https://api.github.com/users/PKaralupov/gists{/gist_id}", "starred_url": "https://api.github.com/users/PKaralupov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PKaralupov/subscriptions", "organizations_url": "https://api.github.com/users/PKaralupov/orgs", "repos_url": "https://api.github.com/users/PKaralupov/repos", "events_url": "https://api.github.com/users/PKaralupov/events{/privacy}", "received_events_url": "https://api.github.com/users/PKaralupov/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
4
2025-01-20T21:56:43
2025-01-23T05:25:02
2025-01-23T05:25:02
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Using docker image pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime transformers 4.48.0 accelerate 1.2.1 peft 0.14.0 torch 2.5.1+cu124 Python 3.11.10 ### Who can help? @sayakpaul, @benjaminbossan ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction Using peft AdaLora for finetuning Whiper large v3 ``` model = prepare_model_for_kbit_training(model) target_modules=["q_proj", "v_proj", "k_proj"] t_modules = [] for id, (name, param) in enumerate(model.named_modules()): if 'model.decoder' in name and any([module in name for module in target_modules]): t_modules.append(name) target_modules=t_modules config = AdaLoraConfig( init_r= 96, target_r=64, beta1=0.85, beta2=0.85, tinit=6000, tfinal=11000, deltaT=100, lora_alpha=128, lora_dropout=0.1, target_modules=target_modules, orth_reg_weight=0.5, total_step= 13500 ) model = get_peft_model(model, config) model.print_trainable_parameters() ``` Using trainer callback for update_and_allocate ``` class OptimizerStepCllback(TrainerCallback): def on_optimizer_step(self, args, state, control, **kwargs): model.update_and_allocate(state.global_step) ``` ``` training_args = Seq2SeqTrainingArguments( output_dir=args.output_dir, per_device_train_batch_size=args.train_batchsize, gradient_accumulation_steps=1, learning_rate=args.learning_rate, warmup_steps=args.warmup, gradient_checkpointing=gradient_checkpointing, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), evaluation_strategy="epoch", save_strategy="epoch", num_train_epochs=args.num_epochs, per_device_eval_batch_size=args.eval_batchsize, predict_with_generate=True, generation_max_length=256, logging_steps=25, report_to=["tensorboard"], load_best_model_at_end=True, metric_for_best_model="eval_librispeech_asr_wer", greater_is_better=False, optim="adamw_bnb_8bit", remove_unused_columns=False, dataloader_num_workers=args.num_proc ) trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=raw_dataset["train"], eval_dataset=raw_dataset["eval"], data_collator=data_collator, compute_metrics=compute_metrics, tokenizer=processor.feature_extractor ) trainer.add_callback(OptimizerStepCllback) trainer.train(resume_from_checkpoint=resume_from_checkpoint) ``` Error after 2500 steps: ``` ERROR 2025-01-18T20:36:17.740476732Z [resource.labels.taskName: workerpool0-0] trainer.train(resume_from_checkpoint=resume_from_checkpoint) ERROR 2025-01-18T20:36:17.740483350Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/transformers/trainer.py", line 2171, in train ERROR 2025-01-18T20:36:17.740489895Z [resource.labels.taskName: workerpool0-0] return inner_training_loop( ERROR 2025-01-18T20:36:17.740496256Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740502909Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/transformers/trainer.py", line 2586, in _inner_training_loop ERROR 2025-01-18T20:36:17.740509254Z [resource.labels.taskName: workerpool0-0] self.control = self.callback_handler.on_optimizer_step(args, self.state, self.control) ERROR 2025-01-18T20:36:17.740515900Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740522460Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/transformers/trainer_callback.py", line 491, in on_optimizer_step ERROR 2025-01-18T20:36:17.740529629Z [resource.labels.taskName: workerpool0-0] return self.call_event("on_optimizer_step", args, state, control) ERROR 2025-01-18T20:36:17.740535418Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740541637Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/transformers/trainer_callback.py", line 519, in call_event ERROR 2025-01-18T20:36:17.740547789Z [resource.labels.taskName: workerpool0-0] result = getattr(callback, event)( ERROR 2025-01-18T20:36:17.740554197Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740560199Z [resource.labels.taskName: workerpool0-0] File "/workspace/task.py", line 752, in on_optimizer_step ERROR 2025-01-18T20:36:17.740566453Z [resource.labels.taskName: workerpool0-0] model.update_and_allocate(state.global_step) ERROR 2025-01-18T20:36:17.740572647Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/peft/tuners/adalora/model.py", line 343, in update_and_allocate ERROR 2025-01-18T20:36:17.740578651Z [resource.labels.taskName: workerpool0-0] _, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step, force_mask=True) ERROR 2025-01-18T20:36:17.740589951Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740596643Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/peft/tuners/adalora/layer.py", line 342, in update_and_allocate ERROR 2025-01-18T20:36:17.740605933Z [resource.labels.taskName: workerpool0-0] rank_pattern = self.mask_to_budget(model, budget) ERROR 2025-01-18T20:36:17.740612342Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740618182Z [resource.labels.taskName: workerpool0-0] File "/opt/conda/lib/python3.11/site-packages/peft/tuners/adalora/layer.py", line 321, in mask_to_budget ERROR 2025-01-18T20:36:17.740627268Z [resource.labels.taskName: workerpool0-0] mask_threshold = torch.kthvalue( ERROR 2025-01-18T20:36:17.740634138Z [resource.labels.taskName: workerpool0-0] ^^^^^^^^^^^^^^^ ERROR 2025-01-18T20:36:17.740640759Z [resource.labels.taskName: workerpool0-0] RuntimeError: kthvalue(): selected number k out of range for dimension 0 ``` ### Expected behavior I believe something is wrong with my configuration, as this error was not raised with other peft config parameters However, I am not sure why it happenned
{ "login": "PKaralupov", "id": 152442722, "node_id": "U_kgDOCRYXYg", "avatar_url": "https://avatars.githubusercontent.com/u/152442722?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PKaralupov", "html_url": "https://github.com/PKaralupov", "followers_url": "https://api.github.com/users/PKaralupov/followers", "following_url": "https://api.github.com/users/PKaralupov/following{/other_user}", "gists_url": "https://api.github.com/users/PKaralupov/gists{/gist_id}", "starred_url": "https://api.github.com/users/PKaralupov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PKaralupov/subscriptions", "organizations_url": "https://api.github.com/users/PKaralupov/orgs", "repos_url": "https://api.github.com/users/PKaralupov/repos", "events_url": "https://api.github.com/users/PKaralupov/events{/privacy}", "received_events_url": "https://api.github.com/users/PKaralupov/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2337/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2337/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2336
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2336/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2336/comments
https://api.github.com/repos/huggingface/peft/issues/2336/events
https://github.com/huggingface/peft/issues/2336
2,799,925,050
I_kwDOIf9iDM6m43c6
2,336
After using peft, the performance indicators decreased.
{ "login": "KQDtianxiaK", "id": 92998962, "node_id": "U_kgDOBYsNMg", "avatar_url": "https://avatars.githubusercontent.com/u/92998962?v=4", "gravatar_id": "", "url": "https://api.github.com/users/KQDtianxiaK", "html_url": "https://github.com/KQDtianxiaK", "followers_url": "https://api.github.com/users/KQDtianxiaK/followers", "following_url": "https://api.github.com/users/KQDtianxiaK/following{/other_user}", "gists_url": "https://api.github.com/users/KQDtianxiaK/gists{/gist_id}", "starred_url": "https://api.github.com/users/KQDtianxiaK/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KQDtianxiaK/subscriptions", "organizations_url": "https://api.github.com/users/KQDtianxiaK/orgs", "repos_url": "https://api.github.com/users/KQDtianxiaK/repos", "events_url": "https://api.github.com/users/KQDtianxiaK/events{/privacy}", "received_events_url": "https://api.github.com/users/KQDtianxiaK/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
5
2025-01-20T17:04:33
2025-03-09T15:04:20
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Sorry, I just finished the previous question and I still have to ask you a new question. I use the DNABert2 model, whose original structure is as follows: ``` BertForSequenceClassification( (bert): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(4096, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0): BertLayer( (attention): BertUnpadAttention( (self): BertUnpadSelfAttention( (dropout): Dropout(p=0.0, inplace=False) (Wqkv): Linear(in_features=768, out_features=2304, bias=True) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (mlp): BertGatedLinearUnitMLP( (gated_layers): Linear(in_features=768, out_features=6144, bias=False) (act): GELU(approximate='none') (wo): Linear(in_features=3072, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) (layernorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) ) ) ...... (11): BertLayer( (attention): BertUnpadAttention( (self): BertUnpadSelfAttention( (dropout): Dropout(p=0.0, inplace=False) (Wqkv): Linear(in_features=768, out_features=2304, bias=True) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (mlp): BertGatedLinearUnitMLP( (gated_layers): Linear(in_features=768, out_features=6144, bias=False) (act): GELU(approximate='none') (wo): Linear(in_features=3072, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) (layernorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) (dropout): Dropout(p=0.1, inplace=False) (classifier): Linear(in_features=768, out_features=157, bias=True) ) ``` On three different classification tasks, I used OFT, LNTuning and other methods to add fine-tuning modules to linear layers such as ['Wqkv'/'wo'/'gated_layers'], or ['LayerNorm'] and other parts for supervised training. During the training process, the logs output at each logging_steps are normal, the loss keeps decreasing, and the performance indicators keep rising. However, when the saved model weights are finally called to evaluate on the independent test set, the performance will be very poor, and the results are basically equivalent to It's the same as having no training at all. The following error is reported when calling: ``` Some weights of BertForSequenceClassification were not initialized from the model checkpoint at model/DNABERT2-117M and are newly initialized: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight', 'classifier.bias', 'classifier.weight'] ``` ### Who can help? @BenjaminBossan ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction and the code I use to call the model from each path that holds the best model weights: ``` def load_best_model_for_test(checkpoint_dir, fold_number): fold_dir = os.path.join(checkpoint_dir) checkpoint_folders = [d for d in os.scandir(fold_dir) if d.is_dir() and d.name.startswith('checkpoint')] best_model_dir = max(checkpoint_folders, key=lambda d: os.path.getmtime(d.path), default=None) best_model_path = best_model_dir.path model = AutoPeftModelForSequenceClassification.from_pretrained(best_model_path, trust_remote_code=True, num_labels=2) return model def evaluate_on_test_set(models, test_dataset): test_results = [] for model in models: trainer = Trainer( model=model, args=training_args, eval_dataset=test_dataset, data_collator=DataCollatorWithPadding(tokenizer=tokenizer), compute_metrics=eval_predict ) metrics = trainer.evaluate() test_results.append(metrics) average_metrics = {key: np.mean([result[key] for result in test_results]) for key in test_results[0].keys()} return average_metrics ``` However, when I did full-parameter supervised fine-tuning without using peft, the final results on the independent test set were all normal. I changed different tasks, changed different peft methods, changed different parts of fine-tuning, and used the latest version of peft and still can't solve the problem. ### Expected behavior Find out the cause and fix the problem
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2336/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2336/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2330
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2330/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2330/comments
https://api.github.com/repos/huggingface/peft/issues/2330/events
https://github.com/huggingface/peft/issues/2330
2,789,282,442
I_kwDOIf9iDM6mQRKK
2,330
MoELorA
{ "login": "moghadas76", "id": 23231913, "node_id": "MDQ6VXNlcjIzMjMxOTEz", "avatar_url": "https://avatars.githubusercontent.com/u/23231913?v=4", "gravatar_id": "", "url": "https://api.github.com/users/moghadas76", "html_url": "https://github.com/moghadas76", "followers_url": "https://api.github.com/users/moghadas76/followers", "following_url": "https://api.github.com/users/moghadas76/following{/other_user}", "gists_url": "https://api.github.com/users/moghadas76/gists{/gist_id}", "starred_url": "https://api.github.com/users/moghadas76/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moghadas76/subscriptions", "organizations_url": "https://api.github.com/users/moghadas76/orgs", "repos_url": "https://api.github.com/users/moghadas76/repos", "events_url": "https://api.github.com/users/moghadas76/events{/privacy}", "received_events_url": "https://api.github.com/users/moghadas76/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-15T09:29:58
2025-02-23T15:03:30
2025-02-23T15:03:30
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request Feature request The paper "MoELoRA: Contrastive Learning Guided Mixture of Experts on Parameter-Efficient Fine-Tuning for Large Language Models" introduced MoLoRA, a Mixutre-of-Experts approach using LoRA adapters. I am using it to conduct some research for my MSc thesis, and have implemented it in peft. I was wondering if this method is interesting and would be worth it to clean up my code and submit a PR. Motivation The motivation is to include more PEFT methods that the community can benefit from. Your contribution I can contribute a PR with the implementation of MoLoRA. ### Motivation Feature request The paper "MoELoRA: Contrastive Learning Guided Mixture of Experts on Parameter-Efficient Fine-Tuning for Large Language Models" introduced MoLoRA, a Mixutre-of-Experts approach using LoRA adapters. I am using it to conduct some research for my MSc thesis, and have implemented it in peft. I was wondering if this method is interesting and would be worth it to clean up my code and submit a PR. Motivation The motivation is to include more PEFT methods that the community can benefit from. Your contribution I can contribute a PR with the implementation of MoLoRA. ### Your contribution Feature request The paper "MoELoRA: Contrastive Learning Guided Mixture of Experts on Parameter-Efficient Fine-Tuning for Large Language Models" introduced MoLoRA, a Mixutre-of-Experts approach using LoRA adapters. I am using it to conduct some research for my MSc thesis, and have implemented it in peft. I was wondering if this method is interesting and would be worth it to clean up my code and submit a PR. Motivation The motivation is to include more PEFT methods that the community can benefit from. Your contribution I can contribute a PR with the implementation of MoLoRA.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2330/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2330/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2329
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2329/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2329/comments
https://api.github.com/repos/huggingface/peft/issues/2329/events
https://github.com/huggingface/peft/issues/2329
2,788,385,643
I_kwDOIf9iDM6mM2Nr
2,329
Request to intergrate Structure Sparsity-based PEFT (S2FT)
{ "login": "Hanyuezhuohua", "id": 58478765, "node_id": "MDQ6VXNlcjU4NDc4NzY1", "avatar_url": "https://avatars.githubusercontent.com/u/58478765?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Hanyuezhuohua", "html_url": "https://github.com/Hanyuezhuohua", "followers_url": "https://api.github.com/users/Hanyuezhuohua/followers", "following_url": "https://api.github.com/users/Hanyuezhuohua/following{/other_user}", "gists_url": "https://api.github.com/users/Hanyuezhuohua/gists{/gist_id}", "starred_url": "https://api.github.com/users/Hanyuezhuohua/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hanyuezhuohua/subscriptions", "organizations_url": "https://api.github.com/users/Hanyuezhuohua/orgs", "repos_url": "https://api.github.com/users/Hanyuezhuohua/repos", "events_url": "https://api.github.com/users/Hanyuezhuohua/events{/privacy}", "received_events_url": "https://api.github.com/users/Hanyuezhuohua/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-01-14T22:18:53
2025-02-14T15:29:31
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request This request proposes to intergrate S2FT, a pure structure sparsity-based PEFT method that concurrently achieve state-of-theart fine-tuning performance, training efficiency, and inference scalability. More information about our NeurIPS paper can be found here: https://infini-ai-lab.github.io/S2FT-Page/, of which i'm the first author. Here is our code for the implementation: https://github.com/Infini-AI-Lab/S2FT. ### Motivation As far as I know, S2FT is the first one to offer efficient and flexible sparsity-based PEFT for LLMs (previously only some add sparsity to LoRA or use layerwise freezing). Here, we'd like to mention several importance features of S2FT: - Model Versatility: The design of our structure sparsity is based on the coupled structure in LLMs, which commonly exists in LLMs, VLMs, CNNs, and GNNs. Therefore, our method should work for many different structures. - Generalization Ability: When evaluated on more recent models such as LLaMA-3-8B, we observe that our method can outperform both LoRA and Full FT, which is because we only modified a small fraction of the original parameters. Therefore, we can maintain most advanced abilities during pre-training. <img width="806" alt="Image" src="https://github.com/user-attachments/assets/ce046f07-5f0a-4ef3-a17f-13b836cf9473" /> - Training Efficiency: Instead of focusing on the parameter efficiency, S2FT can provide practical acceleration for model training. In our experiments, we show that S2FT can surpass LoRA in both training memory and time by 10%, which is important for resource-limited settings. <img width="794" alt="Image" src="https://github.com/user-attachments/assets/39122dce-f948-421e-936e-592b08463bc6" /> - Scalable Serving: Finally, S2FT also shows good serving ability in comparison with LoRA, where we consider adapter fusion, switch, and parallelism. For these settings, S2FT always outperforms LoRA in both efficiency and performance. <img width="809" alt="Image" src="https://github.com/user-attachments/assets/29dcc747-8cdf-42d9-9474-7b8c7b77c052" /> - Controllability: The model parameters to be updated in S2FT can be selected with user-specific functions, where LoRA cannot achieve this. Based on these information, although S2FT is just released, we think it is new kind of PEFT method showing very good potential. And the integration of it should be benefit for future sparsity-based PEFT methods. ### Your contribution I will try to write most code for this new PEFT method based on the current PEFT
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2329/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2329/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2326
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2326/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2326/comments
https://api.github.com/repos/huggingface/peft/issues/2326/events
https://github.com/huggingface/peft/issues/2326
2,784,601,999
I_kwDOIf9iDM6l-aeP
2,326
AttributeError: ModulesToSaveWrapper has no attribute `dense`
{ "login": "KQDtianxiaK", "id": 92998962, "node_id": "U_kgDOBYsNMg", "avatar_url": "https://avatars.githubusercontent.com/u/92998962?v=4", "gravatar_id": "", "url": "https://api.github.com/users/KQDtianxiaK", "html_url": "https://github.com/KQDtianxiaK", "followers_url": "https://api.github.com/users/KQDtianxiaK/followers", "following_url": "https://api.github.com/users/KQDtianxiaK/following{/other_user}", "gists_url": "https://api.github.com/users/KQDtianxiaK/gists{/gist_id}", "starred_url": "https://api.github.com/users/KQDtianxiaK/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KQDtianxiaK/subscriptions", "organizations_url": "https://api.github.com/users/KQDtianxiaK/orgs", "repos_url": "https://api.github.com/users/KQDtianxiaK/repos", "events_url": "https://api.github.com/users/KQDtianxiaK/events{/privacy}", "received_events_url": "https://api.github.com/users/KQDtianxiaK/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
5
2025-01-13T16:49:37
2025-01-20T16:29:05
2025-01-20T16:29:04
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info **Original model architecture:** ``` EsmForSequenceClassification( (esm): EsmModel( (embeddings): EsmEmbeddings( (word_embeddings): Embedding(33, 640, padding_idx=1) (dropout): Dropout(p=0.0, inplace=False) (position_embeddings): Embedding(1026, 640, padding_idx=1) ) (encoder): EsmEncoder( (layer): ModuleList( (0-29): 30 x EsmLayer( (attention): EsmAttention( (self): EsmSelfAttention( ... **(output): EsmSelfOutput( (dense): Linear(in_features=640, out_features=640, bias=True)** (dropout): Dropout(p=0.0, inplace=False) ) ... **(intermediate): EsmIntermediate( (dense): Linear(in_features=640, out_features=2560, bias=True) )** **(output): EsmOutput( (dense): Linear(in_features=2560, out_features=640, bias=True)** ... **(classifier): EsmClassificationHead( (dense): Linear(in_features=640, out_features=640, bias=True)** ... ``` **my code:** ``` model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=7) config = OFTConfig(task_type=TaskType.SEQ_CLS, target_modules=['dense']) model_OFT = get_peft_model(model, config) ``` **Peft model architecture:** ``` PeftModelForSequenceClassification( (base_model): OFTModel( (model): EsmForSequenceClassification( (esm): EsmModel( (embeddings): EsmEmbeddings( (word_embeddings): Embedding(33, 640, padding_idx=1) (dropout): Dropout(p=0.0, inplace=False) (position_embeddings): Embedding(1026, 640, padding_idx=1) ) (encoder): EsmEncoder( (layer): ModuleList( (0-29): 30 x EsmLayer( (attention): EsmAttention( (self): EsmSelfAttention( (query): Linear(in_features=640, out_features=640, bias=True) (key): Linear(in_features=640, out_features=640, bias=True) (value): Linear(in_features=640, out_features=640, bias=True) ... **(dense): oft.Linear( (base_layer): Linear(in_features=640, out_features=640, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x80x80]) )** ... **(intermediate): EsmIntermediate( (dense): oft.Linear( (base_layer): Linear(in_features=640, out_features=2560, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x320x320]) )** ) **(output): EsmOutput( (dense): oft.Linear( (base_layer): Linear(in_features=2560, out_features=640, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x80x80]) )** ... **(classifier): ModulesToSaveWrapper( (original_module): EsmClassificationHead( (dense): oft.Linear( (base_layer): Linear(in_features=640, out_features=640, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x80x80]) )** ... (modules_to_save): ModuleDict( (default): EsmClassificationHead( **(dense): oft.Linear( (base_layer): Linear(in_features=640, out_features=640, bias=True) (oft_r): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 8x80x80]) )** ... ``` **adapter_config.json:** ``` { "alpha_pattern": {}, "auto_mapping": null, "base_model_name_or_path": "model/esm2_35M", "block_share": false, "coft": false, "eps": 6e-05, "inference_mode": true, "init_weights": true, "layers_pattern": null, "layers_to_transform": null, "module_dropout": 0.0, "modules_to_save": [ "classifier", "score" ], "peft_type": "OFT", "r": 8, "rank_pattern": {}, "revision": null, "target_modules": [ "dense" ], "task_type": "SEQ_CLS" } ``` ### Who can help? @BenjaminBossan ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction **After training, I load the model from the saved checkpoint, using the following codes:** ``` best_model_path = best_model_dir.path model_peft = AutoPeftModelForSequenceClassification.from_pretrained(best_model_path, num_labels=7) ``` **Got this error:** ``` Traceback (most recent call last): File "/root/autodl-tmp/PEFT-PLM/ESM2_scop_OFT.py", line 213, in <module> best_model = load_best_model_for_test(training_args.output_dir, i+1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/PEFT-PLM/ESM2_scop_OFT.py", line 189, in load_best_model_for_test model_peft = AutoPeftModelForSequenceClassification.from_pretrained(best_model_path, num_labels=7) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/auto.py", line 130, in from_pretrained return cls._target_peft_class.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/peft_model.py", line 541, in from_pretrained model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type]( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/peft_model.py", line 1311, in __init__ super().__init__(model, peft_config, adapter_name, **kwargs) File "/root/miniconda3/lib/python3.12/site-packages/peft/peft_model.py", line 155, in __init__ self.base_model = cls(model, {adapter_name: peft_config}, adapter_name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/tuners/lycoris_utils.py", line 196, in __init__ super().__init__(model, config, adapter_name) File "/root/miniconda3/lib/python3.12/site-packages/peft/tuners/tuners_utils.py", line 175, in __init__ self.inject_adapter(self.model, adapter_name) File "/root/miniconda3/lib/python3.12/site-packages/peft/tuners/tuners_utils.py", line 430, in inject_adapter parent, target, target_name = _get_submodules(model, key) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/peft/utils/other.py", line 313, in _get_submodules target = model.get_submodule(key) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 717, in get_submodule raise AttributeError( AttributeError: ModulesToSaveWrapper has no attribute `dense` ``` ### Expected behavior Find out the cause and solve the problem
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2326/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2326/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2322
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2322/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2322/comments
https://api.github.com/repos/huggingface/peft/issues/2322/events
https://github.com/huggingface/peft/issues/2322
2,782,367,731
I_kwDOIf9iDM6l14_z
2,322
model merge and unload feature for AdaLora
{ "login": "DaehanKim", "id": 20675681, "node_id": "MDQ6VXNlcjIwNjc1Njgx", "avatar_url": "https://avatars.githubusercontent.com/u/20675681?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DaehanKim", "html_url": "https://github.com/DaehanKim", "followers_url": "https://api.github.com/users/DaehanKim/followers", "following_url": "https://api.github.com/users/DaehanKim/following{/other_user}", "gists_url": "https://api.github.com/users/DaehanKim/gists{/gist_id}", "starred_url": "https://api.github.com/users/DaehanKim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DaehanKim/subscriptions", "organizations_url": "https://api.github.com/users/DaehanKim/orgs", "repos_url": "https://api.github.com/users/DaehanKim/repos", "events_url": "https://api.github.com/users/DaehanKim/events{/privacy}", "received_events_url": "https://api.github.com/users/DaehanKim/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2025-01-12T09:20:01
2025-01-14T12:47:35
2025-01-14T12:47:34
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request unlike Lora or IA3 adapter type, AdaLora does not provide a method to merge lora adapter weights into original weights so that it can be used as a standalone model. I made that feature for a personal usecase and want to make a PR to make this feature accessible to everyone. ### Motivation This feature makes people easily merge AdaLora adapter weights into original weights, which makes further finetuning on it possible (i.e. when one wants to resume adalora training for checkpoints that was already trained with adalora, resuming training is not possible with unmerged weights. ) ### Your contribution I'll submit a PR. I followed the example of IA3 `merge_and_unload` Following is the overview of change : ``` def _unload_and_optionally_merge( self, merge: bool = True, safe_merge: bool = False, adapter_names: Optional[list[str]] = None, eps: float = 1e-5 ) -> torch.nn.Module: """ This method unloads the AdaLoRA adapter modules and optionally merges them into the base model weights. Args: merge (`bool`, defaults to `True`): If True, merges the adapter weights into base model weights. If False, it will only unload the adapters without merging. safe_merge (`bool`, defaults to `False`): If True, performs the merge operation with extra safety checks. adapter_names (`List[str]`, *optional*): The list of adapter names to merge. If None, all active adapters will be merged. eps (`float`, defaults to 1e-5): Small constant for numerical stability when dividing by ranknum. Returns: model (`torch.nn.Module`): The resulting PyTorch model. """ if getattr(self.model, "is_loaded_in_8bit", False): raise ValueError("Cannot merge adalora layers when the model is loaded in 8-bit mode") if getattr(self.model, "is_loaded_in_4bit", False): raise ValueError("Cannot merge adalora layers when the model is loaded in 4-bit mode") if adapter_names is not None: raise ValueError("AdaLoRA does not support merging specific adapters. Got adapter_names={adapter_names}") # Create a copy of the base model state dict to modify original_state_dict = self.model.state_dict() if merge: for name, module in self.model.named_modules(): if hasattr(module, "base_layer") and hasattr(module, "lora_A"): # Extract base layer weight name layer_name = name.replace(".lora_A", "") layer_name = layer_name.replace("base_model.model.", "") base_weight_name = f"{layer_name}.weight" # Get SVD parameters lora_A = module.lora_A["default"] # [r x d_in] lora_B = module.lora_B["default"] # [d_out x r] lora_E = module.lora_E["default"] # [r x 1] # Calculate active ranks ranknum = (lora_E != 0).sum() scaling = module.scaling["default"] if hasattr(module, "scaling") else 16 # Safety check if requested if safe_merge and (torch.isnan(lora_A).any() or torch.isnan(lora_B).any() or torch.isnan(lora_E).any()): raise ValueError(f"NaN detected in adapter weights for layer {name}") # Scale A with E: A' = AE scaled_A = lora_A * lora_E # [r x d_in] # Compute update: ΔW = BA' if ranknum > 0: update = (lora_B @ scaled_A) * scaling / (ranknum + eps) else: update = torch.zeros_like(original_state_dict[base_weight_name]) # Update base weights if base_weight_name in original_state_dict: original_state_dict[base_weight_name] += update # Load the merged state dict back into a clean version of the model self.model.load_state_dict(original_state_dict) return self.model def merge_and_unload( self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None, eps: float = 1e-5 ) -> torch.nn.Module: """ Merge the active adapters into the base model and unload the adapters. Args: safe_merge (`bool`, defaults to `False`): If True, performs the merge operation with extra safety checks. adapter_names (`List[str]`, *optional*): List of adapter names to merge. If None, merges all active adapters. eps (`float`, defaults to 1e-5): Small constant for numerical stability when dividing by ranknum. Returns: `torch.nn.Module`: The merged model. """ return self._unload_and_optionally_merge( safe_merge=safe_merge, adapter_names=adapter_names, eps=eps ) def unload(self) -> torch.nn.Module: """ Unload the adapters without merging them into the base model. Returns: `torch.nn.Module`: The unloaded model. """ return self._unload_and_optionally_merge(merge=False) ```
{ "login": "DaehanKim", "id": 20675681, "node_id": "MDQ6VXNlcjIwNjc1Njgx", "avatar_url": "https://avatars.githubusercontent.com/u/20675681?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DaehanKim", "html_url": "https://github.com/DaehanKim", "followers_url": "https://api.github.com/users/DaehanKim/followers", "following_url": "https://api.github.com/users/DaehanKim/following{/other_user}", "gists_url": "https://api.github.com/users/DaehanKim/gists{/gist_id}", "starred_url": "https://api.github.com/users/DaehanKim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DaehanKim/subscriptions", "organizations_url": "https://api.github.com/users/DaehanKim/orgs", "repos_url": "https://api.github.com/users/DaehanKim/repos", "events_url": "https://api.github.com/users/DaehanKim/events{/privacy}", "received_events_url": "https://api.github.com/users/DaehanKim/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2322/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2322/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2321
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2321/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2321/comments
https://api.github.com/repos/huggingface/peft/issues/2321/events
https://github.com/huggingface/peft/issues/2321
2,782,134,190
I_kwDOIf9iDM6l0_-u
2,321
[Warning] `Merge lora module to 4-bit linear may get different generations`
{ "login": "steveepreston", "id": 175405060, "node_id": "U_kgDOCnR4BA", "avatar_url": "https://avatars.githubusercontent.com/u/175405060?v=4", "gravatar_id": "", "url": "https://api.github.com/users/steveepreston", "html_url": "https://github.com/steveepreston", "followers_url": "https://api.github.com/users/steveepreston/followers", "following_url": "https://api.github.com/users/steveepreston/following{/other_user}", "gists_url": "https://api.github.com/users/steveepreston/gists{/gist_id}", "starred_url": "https://api.github.com/users/steveepreston/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/steveepreston/subscriptions", "organizations_url": "https://api.github.com/users/steveepreston/orgs", "repos_url": "https://api.github.com/users/steveepreston/repos", "events_url": "https://api.github.com/users/steveepreston/events{/privacy}", "received_events_url": "https://api.github.com/users/steveepreston/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
15
2025-01-11T20:27:54
2025-03-06T15:30:07
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft 0.14.0 transformers 4.48.0 bitsandbytes 0.45.0 ### Who can help? @BenjaminBossan @sayakpaul ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction code: ```python base_model_id = "gemma-2-27b-it" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_storage=torch.bfloat16, ) base_model = AutoModelForCausalLM.from_pretrained( base_model_id, quantization_config=quantization_config, attn_implementation="sdpa", torch_dtype=torch.bfloat16, use_cache=True, ) peft_model = PeftModel.from_pretrained(base_model, adapter_path) --> merged_model = peft_model.merge_and_unload() ``` Warning: ``` UserWarning: Merge lora module to 4-bit linear may get different generations due to rounding errors. ``` ### Expected behavior merge_and_unload() correctly and without warning.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2321/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2321/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2319
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2319/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2319/comments
https://api.github.com/repos/huggingface/peft/issues/2319/events
https://github.com/huggingface/peft/issues/2319
2,779,143,092
I_kwDOIf9iDM6lplu0
2,319
Import error , is it a version issue?
{ "login": "zhangyangniubi", "id": 157886832, "node_id": "U_kgDOCWkpcA", "avatar_url": "https://avatars.githubusercontent.com/u/157886832?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zhangyangniubi", "html_url": "https://github.com/zhangyangniubi", "followers_url": "https://api.github.com/users/zhangyangniubi/followers", "following_url": "https://api.github.com/users/zhangyangniubi/following{/other_user}", "gists_url": "https://api.github.com/users/zhangyangniubi/gists{/gist_id}", "starred_url": "https://api.github.com/users/zhangyangniubi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zhangyangniubi/subscriptions", "organizations_url": "https://api.github.com/users/zhangyangniubi/orgs", "repos_url": "https://api.github.com/users/zhangyangniubi/repos", "events_url": "https://api.github.com/users/zhangyangniubi/events{/privacy}", "received_events_url": "https://api.github.com/users/zhangyangniubi/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
3
2025-01-10T02:34:52
2025-01-13T10:13:18
2025-01-13T10:13:18
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info When I execute the finetune.py file, an error occurs as follows: cannot import name 'prepare_model_for_int8_training'.Is it a version issue? My version is 0.14.0. ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction cannot import name 'prepare_model_for_int8_training' from 'peft' (/path/python3.10/site-packages/peft/__init__.py) ### Expected behavior Who can help me answer this question,thks
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2319/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2319/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2318
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2318/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2318/comments
https://api.github.com/repos/huggingface/peft/issues/2318/events
https://github.com/huggingface/peft/issues/2318
2,779,069,108
I_kwDOIf9iDM6lpTq0
2,318
Issue merging a Lora model to a SANA transformer
{ "login": "frutiemax92", "id": 142428698, "node_id": "U_kgDOCH1KGg", "avatar_url": "https://avatars.githubusercontent.com/u/142428698?v=4", "gravatar_id": "", "url": "https://api.github.com/users/frutiemax92", "html_url": "https://github.com/frutiemax92", "followers_url": "https://api.github.com/users/frutiemax92/followers", "following_url": "https://api.github.com/users/frutiemax92/following{/other_user}", "gists_url": "https://api.github.com/users/frutiemax92/gists{/gist_id}", "starred_url": "https://api.github.com/users/frutiemax92/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/frutiemax92/subscriptions", "organizations_url": "https://api.github.com/users/frutiemax92/orgs", "repos_url": "https://api.github.com/users/frutiemax92/repos", "events_url": "https://api.github.com/users/frutiemax92/events{/privacy}", "received_events_url": "https://api.github.com/users/frutiemax92/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
13
2025-01-10T01:24:35
2025-03-06T18:39:20
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft=0.14.0 ### Who can help? @BenjaminBossan @sayakpaul ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ``` from diffusers import SanaPipeline, SanaPAGPipeline, SanaTransformer2DModel from peft import PeftModel transformer = SanaTransformer2DModel.from_pretrained("frutiemax/twistedreality-sana-1600m-1024px") print(transformer) peft_model = PeftModel.from_pretrained(transformer, '0') model = peft_model.merge_and_unload() ``` ### Expected behavior I've trained a Lora model with PEFT on a SANA checkpoint. I can train and inference using the PEFT model. However, when I try to merge the Lora to the base checkpoint, I encounter a shape mismatch. I've attached the Lora model with a rank 4. ![image](https://github.com/user-attachments/assets/9bbdce69-1cbf-4a30-a438-f97614f4c6f3) [0.zip](https://github.com/user-attachments/files/18369238/0.zip)
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2318/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2318/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2317
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2317/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2317/comments
https://api.github.com/repos/huggingface/peft/issues/2317/events
https://github.com/huggingface/peft/issues/2317
2,777,004,984
I_kwDOIf9iDM6lhbu4
2,317
Issue with finetuning with Corda
{ "login": "sirluk", "id": 58826757, "node_id": "MDQ6VXNlcjU4ODI2NzU3", "avatar_url": "https://avatars.githubusercontent.com/u/58826757?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sirluk", "html_url": "https://github.com/sirluk", "followers_url": "https://api.github.com/users/sirluk/followers", "following_url": "https://api.github.com/users/sirluk/following{/other_user}", "gists_url": "https://api.github.com/users/sirluk/gists{/gist_id}", "starred_url": "https://api.github.com/users/sirluk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sirluk/subscriptions", "organizations_url": "https://api.github.com/users/sirluk/orgs", "repos_url": "https://api.github.com/users/sirluk/repos", "events_url": "https://api.github.com/users/sirluk/events{/privacy}", "received_events_url": "https://api.github.com/users/sirluk/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
13
2025-01-09T07:12:18
2025-02-10T10:22:03
2025-02-10T10:22:01
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft master branch (commit 8d3039b6cb724522625bff26988418cac5759ffa) ### Who can help? @BenjaminBossan @5eqn Hi, I would like to try out Corda for my finetuning usecase but looking at the loss curves something seems to be going wrong so I just wanted to verify I implemented Corda correctly. This is the relevant code snippet from my script. I have a tokenized dataset which I wrap with a dataloader with a batch size = 1 to pass to the `preprocess_corda` function. Once `preprocess_corda` is done computing I can just instantiate the peft model as usual with the required config, correct? Would greatly appreciate some feedback. ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction ```python # imports import torch from functools import partial from datasets import load_dataset, interleave_datasets, DatasetDict from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments from peft import get_peft_model, LoraConfig from peft.tuners.lora.corda import preprocess_corda from peft.tuners.lora.config import CordaConfig # functions def _tokenize_fn(prompts, completions, tokenizer): prompt_tokens = tokenizer(prompts, add_special_tokens=False)["input_ids"] input_tokens = tokenizer([x+y for x, y in zip(prompts, completions)], add_special_tokens=False)["input_ids"] input_tokens = [[tokenizer.bos_token_id]+x+[tokenizer.eos_token_id] for x in input_tokens] prompt_length = [len(x)+1 for x in prompt_tokens] # +1 for the bos token input_length = [len(x) for x in input_tokens] return {"input_ids": input_tokens, "prompt_length": prompt_length, "input_length": input_length} class _TokenizerPromptSource: def __init__(self, tokenizer_path, space_after_prompt=True): # import promptsource from promptsource_custom.templates import DatasetTemplates self.dataset_templates = DatasetTemplates self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) self.space_after_prompt = space_after_prompt def __call__(self, examples): examples = [dict(zip(examples.keys(), e)) for e in zip(*examples.values())] prompts, completions = zip(*[self.prompt.apply(e) for e in examples]) if self.space_after_prompt: prompts = [p + " " for p in prompts] return _tokenize_fn(prompts, completions, self.tokenizer) class TokenizerWinogrande(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("winogrande", "winogrande_xl")["multiple_choice_simple"] class TokenizerHellaswag(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("hellaswag")["multiple_choice_simple"] class TokenizerArcChallenge(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("ai2_arc", "ARC-Challenge")["multiple_choice_simple"] class TokenizerArcEasy(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("ai2_arc", "ARC-Easy")["multiple_choice_simple"] class TokenizerPIQA(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("piqa")["multiple_choice_simple"] class TokenizerSIQA(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("social_i_qa")["multiple_choice_simple"] class TokenizerOpenBookQA(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("openbookqa", "main")["multiple_choice_simple"] class TokenizerBoolQ(_TokenizerPromptSource): def __init__(self, tokenizer_path): super().__init__(tokenizer_path) self.prompt = self.dataset_templates("super_glue", "boolq")["multiple_choice_simple"] class DataCollator: def __init__(self, eos_token_id, max_length = None): self.eos_token_id = eos_token_id self.max_length = max_length def __call__(self, batch): batch = {k: [item[k] for item in batch] for k in batch[0]} input_lengths = torch.stack(batch["input_length"]) prompt_lengths = torch.stack(batch["prompt_length"]) input_ids = torch.nn.utils.rnn.pad_sequence(batch["input_ids"], batch_first=True, padding_value=self.eos_token_id) col_indices = torch.arange(input_ids.size(1)).unsqueeze(0) attention_mask = col_indices < input_lengths.unsqueeze(1) label_mask = torch.logical_or(col_indices < prompt_lengths.unsqueeze(1), ~attention_mask) labels = input_ids.masked_fill(label_mask, -100) if self.max_length is not None: input_ids = input_ids[:, :self.max_length] attention_mask = attention_mask[:, :self.max_length] labels = labels[:, :self.max_length] return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} # constants CORDA = False SEED = 0 BATCH_SIZE = 4 NUM_EPOCHS = 1 LEARNING_RATE = 5e-4 GRADIENT_ACCUMULATION_STEPS = 8 MODEL_NAME = "meta-llama/Llama-2-7b-hf" MODEL_MAX_LENGTH = 1024 QA_DATASETS = [ "Rowan/hellaswag", "allenai/winogrande", "allenai/ai2_arc_challenge", "allenai/ai2_arc_easy", "ybisk/piqa", "allenai/social_i_qa", "allenai/openbookqa", "boolq" ] LOAD_DATASET_KWARGS = { "Rowan/hellaswag": {"path": "Rowan/hellaswag"}, "allenai/winogrande": {"path": "allenai/winogrande", "name": "winogrande_xl"}, "allenai/ai2_arc_challenge": {"path": "allenai/ai2_arc", "name": "ARC-Challenge"}, "allenai/ai2_arc_easy": {"path": "allenai/ai2_arc", "name": "ARC-Easy"}, "ybisk/piqa": {"path": "ybisk/piqa"}, "allenai/social_i_qa": {"path": "allenai/social_i_qa"}, "allenai/openbookqa": {"path": "allenai/openbookqa", "name": "main"}, "boolq": {"path": "aps/super_glue", "name": "boolq"} } TOKENIZE_MAP = { "Rowan/hellaswag": TokenizerHellaswag, "allenai/winogrande": TokenizerWinogrande, "allenai/ai2_arc_challenge": TokenizerArcChallenge, "allenai/ai2_arc_easy": TokenizerArcEasy, "ybisk/piqa": TokenizerPIQA, "allenai/social_i_qa": TokenizerSIQA, "allenai/openbookqa": TokenizerOpenBookQA, "boolq": TokenizerBoolQ } # load model model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) model.cuda() # load dataset datasets = [] for dataset_name in QA_DATASETS: tokenizer_cls = TOKENIZE_MAP[dataset_name] tokenizer_wrapper = tokenizer_cls(tokenizer_path=MODEL_NAME) load_dataset_kwargs = LOAD_DATASET_KWARGS[dataset_name] if load_dataset_kwargs["path"] is not None: load_dataset_kwargs["path"] = load_dataset_kwargs["path"] datasets.append(load_dataset(**load_dataset_kwargs, trust_remote_code=True)) datasets[-1] = datasets[-1].map(tokenizer_wrapper, batched=True, remove_columns=datasets[-1]["train"].column_names) datasets[-1].set_format(type="torch") datasets[-1] = datasets[-1].shuffle(seed=SEED) all_splits = set([n for ds in datasets for n in ds.keys()]) datasets = DatasetDict({split: interleave_datasets([ds[split] for ds in datasets if split in ds]) for split in all_splits}) data_collator = DataCollator(tokenizer_wrapper.tokenizer.eos_token_id, MODEL_MAX_LENGTH) # get peft config target_modules = [n for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)] if CORDA: corda_config = CordaConfig(corda_method="ipm") lora_config = LoraConfig( init_lora_weights="corda", target_modules=target_modules, lora_alpha=1, lora_dropout=0, r=16, corda_config=corda_config ) sampled_dataset = datasets["train"].select(list(range(256))) corda_data_loader = torch.utils.data.DataLoader( sampled_dataset, batch_size=1, collate_fn=data_collator, shuffle=True ) def run_model(model, corda_data_loader): for batch in corda_data_loader: input_ids = batch["input_ids"] input_ids = input_ids.to(model.device) with torch.no_grad(): model(input_ids) run_model = partial(run_model, model=model, corda_data_loader=corda_data_loader) preprocess_corda(model, lora_config, run_model=run_model) else: lora_config = LoraConfig( init_lora_weights=True, target_modules=target_modules, lora_alpha=1, lora_dropout=0, r=16 ) model = get_peft_model(model, lora_config) training_args = TrainingArguments( output_dir="output", num_train_epochs=NUM_EPOCHS, per_device_train_batch_size=BATCH_SIZE, per_device_eval_batch_size=BATCH_SIZE, seed=SEED, learning_rate=LEARNING_RATE, remove_unused_columns=False, gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, report_to=[] ) trainer = Trainer( model=model, args=training_args, train_dataset=datasets["train"], eval_dataset=datasets["validation"] if "validation" in datasets else None, data_collator=data_collator ) trainer.train() ``` ### Expected behavior I tried to follow the corda example in the documentation and thought it should work like this
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2317/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2317/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2316
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2316/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2316/comments
https://api.github.com/repos/huggingface/peft/issues/2316/events
https://github.com/huggingface/peft/issues/2316
2,776,718,486
I_kwDOIf9iDM6lgVyW
2,316
peft with DinoV2 and tasktype feature extraction
{ "login": "createdaccountbecauseIwantgithubcopilot", "id": 109659313, "node_id": "U_kgDOBolEsQ", "avatar_url": "https://avatars.githubusercontent.com/u/109659313?v=4", "gravatar_id": "", "url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot", "html_url": "https://github.com/createdaccountbecauseIwantgithubcopilot", "followers_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/followers", "following_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/following{/other_user}", "gists_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/gists{/gist_id}", "starred_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/subscriptions", "organizations_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/orgs", "repos_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/repos", "events_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/events{/privacy}", "received_events_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-09T02:48:36
2025-01-09T14:11:54
2025-01-09T14:11:54
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info irrelevant. ### Who can help? _No response_ ### Information - [X] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction ```python import torch from transformers import AutoImageProcessor, Dinov2WithRegistersModel from peft import LoraConfig, get_peft_model, TaskType def setup_peft_model(model_name="facebook/dinov2-with-registers-large", lora_r=8, lora_alpha=32, lora_dropout=0.1): base_model = Dinov2WithRegistersModel.from_pretrained(model_name) image_processor = AutoImageProcessor.from_pretrained(model_name) peft_config = LoraConfig( task_type=TaskType.FEATURE_EXTRACTION, inference_mode=False, r=lora_r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, target_modules=["query", "key", "value"] ) peft_model = get_peft_model(base_model, peft_config) peft_model.print_trainable_parameters() return peft_model, image_processor def process_image(model, processor, image_size=(518, 518)): sample_input = torch.randn(1, 3, *image_size) with torch.no_grad(): outputs = model(sample_input) return outputs def main(): model, processor = setup_peft_model() outputs = process_image(model, processor) print(f"Output shape: {outputs.last_hidden_state.shape}") if __name__ == "__main__": main() ``` Error: TypeError: Dinov2WithRegistersModel.forward() got an unexpected keyword argument 'input_ids' ### Expected behavior it to work.
{ "login": "createdaccountbecauseIwantgithubcopilot", "id": 109659313, "node_id": "U_kgDOBolEsQ", "avatar_url": "https://avatars.githubusercontent.com/u/109659313?v=4", "gravatar_id": "", "url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot", "html_url": "https://github.com/createdaccountbecauseIwantgithubcopilot", "followers_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/followers", "following_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/following{/other_user}", "gists_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/gists{/gist_id}", "starred_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/subscriptions", "organizations_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/orgs", "repos_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/repos", "events_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/events{/privacy}", "received_events_url": "https://api.github.com/users/createdaccountbecauseIwantgithubcopilot/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2316/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2316/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2315
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2315/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2315/comments
https://api.github.com/repos/huggingface/peft/issues/2315/events
https://github.com/huggingface/peft/issues/2315
2,776,494,295
I_kwDOIf9iDM6lffDX
2,315
Prefix Tuning dimension error with Qwen2 and missing vocab_size for PaliGemma2
{ "login": "Florian-Dreyer", "id": 64322175, "node_id": "MDQ6VXNlcjY0MzIyMTc1", "avatar_url": "https://avatars.githubusercontent.com/u/64322175?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Florian-Dreyer", "html_url": "https://github.com/Florian-Dreyer", "followers_url": "https://api.github.com/users/Florian-Dreyer/followers", "following_url": "https://api.github.com/users/Florian-Dreyer/following{/other_user}", "gists_url": "https://api.github.com/users/Florian-Dreyer/gists{/gist_id}", "starred_url": "https://api.github.com/users/Florian-Dreyer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Florian-Dreyer/subscriptions", "organizations_url": "https://api.github.com/users/Florian-Dreyer/orgs", "repos_url": "https://api.github.com/users/Florian-Dreyer/repos", "events_url": "https://api.github.com/users/Florian-Dreyer/events{/privacy}", "received_events_url": "https://api.github.com/users/Florian-Dreyer/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
15
2025-01-08T22:52:17
2025-02-25T15:04:15
2025-02-25T15:04:15
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info PEFT: 0.14.0 Transformers: 4.48.0.dev0 ### Who can help? @BenjaminBossan ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction For Qwen we get the following error: IndexError: Caught IndexError in replica 0 on device 0. Original Traceback (most recent call last): File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/parallel/parallel_apply.py", line 84, in _worker output = module(*input, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/peft/peft_model.py", line 1755, in forward return self.base_model(input_ids=input_ids, inputs_embeds=inputs_embeds, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/home/{user_name}/venv/lib/python3.10/site-packages/transformers/models/qwen2_vl/modeling_qwen2_vl.py", line 1682, in forward position_ids, rope_deltas = self.get_rope_index( File "/home/{user_name}/venv/lib/python3.10/site-packages/transformers/models/qwen2_vl/modeling_qwen2_vl.py", line 1486, in get_rope_index input_ids = input_ids[attention_mask[i] == 1] IndexError: The shape of the mask [172] at index 0 does not match the shape of the indexed tensor [122] at index 0 And for PaliGemma2 this one: AttributeError Traceback (most recent call last) Cell In[68], line 8 6 tokenizer = processor.tokenizer 7 # Apply PEFT model adaptation ----> 8 peft_model = get_peft_model(model, peft_config) 10 # Print trainable parameters 11 peft_model.print_trainable_parameters() File ~/venv/lib/python3.10/site-packages/peft/mapping.py:222, in get_peft_model(model, peft_config, adapter_name, mixed, autocast_adapter_dtype, revision, low_cpu_mem_usage) 220 if peft_config.is_prompt_learning: 221 peft_config = _prepare_prompt_learning_config(peft_config, model_config) --> 222 return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type]( 223 model, 224 peft_config, 225 adapter_name=adapter_name, 226 autocast_adapter_dtype=autocast_adapter_dtype, 227 low_cpu_mem_usage=low_cpu_mem_usage, 228 ) File ~/venv/lib/python3.10/site-packages/peft/peft_model.py:1684, in PeftModelForCausalLM.__init__(self, model, peft_config, adapter_name, **kwargs) 1681 def __init__( 1682 self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default", **kwargs 1683 ) -> None: -> 1684 super().__init__(model, peft_config, adapter_name, **kwargs) 1685 self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation File ~/venv/lib/python3.10/site-packages/peft/peft_model.py:170, in PeftModel.__init__(self, model, peft_config, adapter_name, autocast_adapter_dtype, low_cpu_mem_usage) 168 self._peft_config = {adapter_name: peft_config} 169 self.base_model = model --> 170 self.add_adapter(adapter_name, peft_config, low_cpu_mem_usage=low_cpu_mem_usage) 171 else: 172 self._peft_config = None File ~/venv/lib/python3.10/site-packages/peft/peft_model.py:958, in PeftModel.add_adapter(self, adapter_name, peft_config, low_cpu_mem_usage) 955 dict_config = self.config 957 peft_config = _prepare_prompt_learning_config(peft_config, dict_config) --> 958 self._setup_prompt_encoder(adapter_name) 959 elif peft_config.is_adaption_prompt: 960 self.base_model.add_adapter(adapter_name, peft_config) File ~/venv/lib/python3.10/site-packages/peft/peft_model.py:642, in PeftModel._setup_prompt_encoder(self, adapter_name) 635 for named_param, value in list(transformer_backbone.named_parameters()): 636 # for ZeRO-3, the tensor is sharded across accelerators and deepspeed modifies it to a tensor with shape 637 # [0] the actual unsharded shape is stored in "ds_shape" attribute special handling is needed in case 638 # the model is initialized in deepspeed.zero.Init() context or HfDeepSpeedConfig has been called before 639 # For reference refer to issue: https://github.com/huggingface/peft/issues/996 640 deepspeed_distributed_tensor_shape = getattr(value, "ds_shape", None) --> 642 if value.shape[0] == self.base_model.config.vocab_size or ( 643 deepspeed_distributed_tensor_shape is not None 644 and deepspeed_distributed_tensor_shape[0] == self.base_model.config.vocab_size 645 ): 646 word_embeddings = transformer_backbone.get_submodule(named_param.replace(".weight", "")) 647 break File ~/venv/lib/python3.10/site-packages/transformers/configuration_utils.py:211, in PretrainedConfig.__getattribute__(self, key) 209 if key != "attribute_map" and key in super().__getattribute__("attribute_map"): 210 key = super().__getattribute__("attribute_map")[key] --> 211 return super().__getattribute__(key) AttributeError: 'PaliGemmaConfig' object has no attribute 'vocab_size' You can find the notebook here to replicate the errors here: https://github.com/Florian-Dreyer/PEFT_BUG/blob/main/prefix_tuning_peft.ipynb Just execute the cells to get the errors. ### Expected behavior We would expect the models to be able to process the input. We tried just calling model(**inputs) but ran into the same error with Qwen. Note: The dimension difference is exactly the prefix length. So the question is, how can we get the models to run? Is PaliGemma even supported?
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2315/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2315/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2310
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2310/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2310/comments
https://api.github.com/repos/huggingface/peft/issues/2310/events
https://github.com/huggingface/peft/issues/2310
2,772,061,506
I_kwDOIf9iDM6lOk1C
2,310
Comparison of Different Fine-Tuning Techniques for Conversational AI
{ "login": "ImamaDev", "id": 172792947, "node_id": "U_kgDOCkyccw", "avatar_url": "https://avatars.githubusercontent.com/u/172792947?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ImamaDev", "html_url": "https://github.com/ImamaDev", "followers_url": "https://api.github.com/users/ImamaDev/followers", "following_url": "https://api.github.com/users/ImamaDev/following{/other_user}", "gists_url": "https://api.github.com/users/ImamaDev/gists{/gist_id}", "starred_url": "https://api.github.com/users/ImamaDev/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ImamaDev/subscriptions", "organizations_url": "https://api.github.com/users/ImamaDev/orgs", "repos_url": "https://api.github.com/users/ImamaDev/repos", "events_url": "https://api.github.com/users/ImamaDev/events{/privacy}", "received_events_url": "https://api.github.com/users/ImamaDev/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 4838806434, "node_id": "LA_kwDOIf9iDM8AAAABIGpTog", "url": "https://api.github.com/repos/huggingface/peft/labels/good%20first%20issue", "name": "good first issue", "color": "7057ff", "default": true, "description": "Good for newcomers" }, { "id": 4838806438, "node_id": "LA_kwDOIf9iDM8AAAABIGpTpg", "url": "https://api.github.com/repos/huggingface/peft/labels/help%20wanted", "name": "help wanted", "color": "008672", "default": true, "description": "Extra attention is needed" }, { "id": 7219265350, "node_id": "LA_kwDOIf9iDM8AAAABrk0_Rg", "url": "https://api.github.com/repos/huggingface/peft/labels/contributions-welcome", "name": "contributions-welcome", "color": "F2AD28", "default": false, "description": "" } ]
open
false
null
[]
null
14
2025-01-07T07:07:50
2025-03-10T10:15:49
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request It would be incredibly helpful to have a clear comparison or support for various fine-tuning techniques specifically for conversational AI. This feature could include insights into their strengths, limitations, and ideal use cases, helping practitioners choose the right approach for their needs. Here’s a list of techniques to consider: LoRa AdaLoRa BONE VeRa XLora LN Tuning VbLora HRA (Hyperparameter Regularization Adapter) IA3 (Input-Aware Adapter) Llama Adapter CPT (Conditional Prompt Tuning)etc ### Motivation With the growing number of fine-tuning techniques for conversational AI, it can be challenging to identify the most suitable approach for specific use cases. A comprehensive comparison of these techniques—highlighting their strengths, limitations, and ideal scenarios—would save time, reduce trial-and-error, and empower users to make informed decisions. This feature would bridge the gap between research and practical application, enabling more effective model customization and deployment. ### Your contribution I’d be happy to collaborate on this! While I might not have a complete solution right now, I’m willing to contribute by gathering resources, reviewing papers, or helping organize comparisons. If others are interested in teaming up, we could work together on a PR to make this feature happen. Let’s connect and brainstorm how we can tackle this effectively!
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2310/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2310/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2307
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2307/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2307/comments
https://api.github.com/repos/huggingface/peft/issues/2307/events
https://github.com/huggingface/peft/issues/2307
2,771,731,382
I_kwDOIf9iDM6lNUO2
2,307
The provided `peft_type` 'PROMPT_TUNING' is not compatible with the `PeftMixedModel`.
{ "login": "Radu1999", "id": 37249331, "node_id": "MDQ6VXNlcjM3MjQ5MzMx", "avatar_url": "https://avatars.githubusercontent.com/u/37249331?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Radu1999", "html_url": "https://github.com/Radu1999", "followers_url": "https://api.github.com/users/Radu1999/followers", "following_url": "https://api.github.com/users/Radu1999/following{/other_user}", "gists_url": "https://api.github.com/users/Radu1999/gists{/gist_id}", "starred_url": "https://api.github.com/users/Radu1999/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Radu1999/subscriptions", "organizations_url": "https://api.github.com/users/Radu1999/orgs", "repos_url": "https://api.github.com/users/Radu1999/repos", "events_url": "https://api.github.com/users/Radu1999/events{/privacy}", "received_events_url": "https://api.github.com/users/Radu1999/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
4
2025-01-07T01:46:18
2025-02-14T15:04:03
2025-02-14T15:04:02
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request PROMPT_TUNING is an useful adapter and it would be great if we can combine it with LORA. ### Motivation Lots of finetunes on consumer grade hardware leverage lora. It would be great we can mix prompt tuning with lora as plug and play. ### Your contribution I would like to submit a PR if there is interest.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2307/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2307/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2304
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2304/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2304/comments
https://api.github.com/repos/huggingface/peft/issues/2304/events
https://github.com/huggingface/peft/issues/2304
2,770,151,254
I_kwDOIf9iDM6lHSdW
2,304
a question about input_ids and attention_mask after prefix-tuning
{ "login": "MaTengSYSU", "id": 104305243, "node_id": "U_kgDOBjeSWw", "avatar_url": "https://avatars.githubusercontent.com/u/104305243?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MaTengSYSU", "html_url": "https://github.com/MaTengSYSU", "followers_url": "https://api.github.com/users/MaTengSYSU/followers", "following_url": "https://api.github.com/users/MaTengSYSU/following{/other_user}", "gists_url": "https://api.github.com/users/MaTengSYSU/gists{/gist_id}", "starred_url": "https://api.github.com/users/MaTengSYSU/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MaTengSYSU/subscriptions", "organizations_url": "https://api.github.com/users/MaTengSYSU/orgs", "repos_url": "https://api.github.com/users/MaTengSYSU/repos", "events_url": "https://api.github.com/users/MaTengSYSU/events{/privacy}", "received_events_url": "https://api.github.com/users/MaTengSYSU/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
4
2025-01-06T08:44:01
2025-02-13T15:04:14
2025-02-13T15:04:14
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info there is a error report: tensor([[ 1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255, 29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568, 6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901, 29871, -200, 29871, 13, 4002, 29581, 278, 1967, 29889, 319, 1799, 9047, 13566, 29901]], device='cuda:0') input_ids shape: torch.Size([1, 48]) attention_mask shape: torch.Size([1, 68]) tensor([[True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]], device='cuda:0') Traceback (most recent call last): File "/mnt/sda1/mateng/PEFT-MLLM/test.py", line 44, in <module> print(description) File "/mnt/sda1/mateng/PEFT-MLLM/llava/eval/run_llava.py", line 113, in eval_model output_ids = model.generate( File "/mnt/sda1/mateng/PEFT-MLLM/peft/src/peft/peft_model.py", line 1130, in generate outputs = self.base_model.generate(**kwargs) File "/home/mateng/anaconda3/envs/peft-mllm/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/home/mateng/anaconda3/envs/peft-mllm/lib/python3.10/site-packages/transformers/generation/utils.py", line 1602, in generate return self.greedy_search( File "/home/mateng/anaconda3/envs/peft-mllm/lib/python3.10/site-packages/transformers/generation/utils.py", line 2450, in greedy_search outputs = self( File "/home/mateng/anaconda3/envs/peft-mllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/mateng/anaconda3/envs/peft-mllm/lib/python3.10/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/mnt/sda1/mateng/PEFT-MLLM/llava/model/language_model/llava_llama.py", line 84, in forward ) = self.prepare_inputs_labels_for_multimodal( File "/mnt/sda1/mateng/PEFT-MLLM/llava/model/llava_arch.py", line 151, in prepare_inputs_labels_for_multimodal input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] File "/mnt/sda1/mateng/PEFT-MLLM/llava/model/llava_arch.py", line 151, in <listcomp> input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] IndexError: The shape of the mask [68] at index 0 does not match the shape of the indexed tensor [48] at index 0 ### Who can help? @BenjaminBossan @sayakpaul @stev ### Information - [X] The official example scripts - [X] My own modified scripts ### Tasks - [X] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction this is my test.py : ``` from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path from peft import PeftModel from PIL import Image import torch # 加载 LLaVA 模型和处理器 model_name = get_model_name_from_path("liuhaotian/llava-v1.5-7b") # 替换为你的 LLaVA 模型名称 print(f"Loading LLaVA model: {model_name}") tokenizer, model, image_processor, context_len = load_pretrained_model( model_path="liuhaotian/llava-v1.5-7b", # 模型路径 model_base=None, # 如果有基础模型(如 Vicuna),可以指定 model_name=model_name, load_8bit=False, # 是否加载 8bit 量化模型 load_4bit=False, # 是否加载 4bit 量化模型 device_map="auto" # 自动分配设备 ) peft_model_path = "/mnt/sda1/mateng/PEFT-MLLM/checkpoints/llava/sqa/llava-sqa-prefix" # 替换为你的微调文件路径 model = PeftModel.from_pretrained(model, peft_model_path) from llava.mm_utils import ( tokenizer_image_token, ) from llava.eval.run_llava import eval_model args = type('Args', (), { "model_path": "liuhaotian/llava-v1.5-7b", "model_base": None, "model_name": 'llava-v1.5-7b', "query": "Describe the image.", "conv_mode": None, "image_file": "/mnt/sda1/mateng/PEFT-MLLM/images/main_fig.jpg", "sep": ",", "temperature": 0, "top_p": None, "num_beams": 1, "max_new_tokens": 512 })() description = eval_model(args, model, tokenizer, image_processor, context_len) print(description) ``` ### Expected behavior I am a novice in this field. How can I solve the problem of input_ids and attention_mask mismatch caused by fine-tuning? And I don't want to affect the performance of the model, I want to use the fine tuned model
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2304/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2304/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2302
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2302/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2302/comments
https://api.github.com/repos/huggingface/peft/issues/2302/events
https://github.com/huggingface/peft/issues/2302
2,764,539,820
I_kwDOIf9iDM6kx4es
2,302
Bug in `get_peft_model_state_dict` when using vblora
{ "login": "KaiyangLi1992", "id": 50897450, "node_id": "MDQ6VXNlcjUwODk3NDUw", "avatar_url": "https://avatars.githubusercontent.com/u/50897450?v=4", "gravatar_id": "", "url": "https://api.github.com/users/KaiyangLi1992", "html_url": "https://github.com/KaiyangLi1992", "followers_url": "https://api.github.com/users/KaiyangLi1992/followers", "following_url": "https://api.github.com/users/KaiyangLi1992/following{/other_user}", "gists_url": "https://api.github.com/users/KaiyangLi1992/gists{/gist_id}", "starred_url": "https://api.github.com/users/KaiyangLi1992/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KaiyangLi1992/subscriptions", "organizations_url": "https://api.github.com/users/KaiyangLi1992/orgs", "repos_url": "https://api.github.com/users/KaiyangLi1992/repos", "events_url": "https://api.github.com/users/KaiyangLi1992/events{/privacy}", "received_events_url": "https://api.github.com/users/KaiyangLi1992/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
3
2024-12-31T16:52:25
2025-02-09T15:03:35
2025-02-09T15:03:34
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info The issue occurs when the following line is executed: ```python to_return["base_model.vblora_vector_bank." + adapter_name] = state_dict["base_model.vblora_vector_bank." + adapter_name] ``` - The `state_dict` does not contain a key named `"base_model.vblora_vector_bank.default"`. - Replacing it with the following resolves the issue: ```python for i in state_dict.keys(): if "vblora_vector_bank" in i: to_return[i] = state_dict[i] ``` --- I’m not sure if this is due to how I am calling or configuring the function. ### Who can help? @leo ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction https://colab.research.google.com/drive/1e6ysneOZflu_TB5Pgj5zLTWyXbZW1Ezy#scrollTo=Da58JezBno0V ### Expected behavior Remove this bug.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2302/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2302/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2301
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2301/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2301/comments
https://api.github.com/repos/huggingface/peft/issues/2301/events
https://github.com/huggingface/peft/issues/2301
2,763,880,938
I_kwDOIf9iDM6kvXnq
2,301
How to pass in an attention _ mask that is one dimension more than input _ ids
{ "login": "Chinesehou97", "id": 152465729, "node_id": "U_kgDOCRZxQQ", "avatar_url": "https://avatars.githubusercontent.com/u/152465729?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Chinesehou97", "html_url": "https://github.com/Chinesehou97", "followers_url": "https://api.github.com/users/Chinesehou97/followers", "following_url": "https://api.github.com/users/Chinesehou97/following{/other_user}", "gists_url": "https://api.github.com/users/Chinesehou97/gists{/gist_id}", "starred_url": "https://api.github.com/users/Chinesehou97/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Chinesehou97/subscriptions", "organizations_url": "https://api.github.com/users/Chinesehou97/orgs", "repos_url": "https://api.github.com/users/Chinesehou97/repos", "events_url": "https://api.github.com/users/Chinesehou97/events{/privacy}", "received_events_url": "https://api.github.com/users/Chinesehou97/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2024-12-31T02:26:14
2025-02-07T15:03:57
2025-02-07T15:03:57
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Hello, how can I pass in `attention_mask` that has one more dimension than `input_ids`, for example: `output = peft_model.generate(input_ids,attention_mask=attention_mask,max_new_tokens=100)` The `input_ids` dimension is [bitch_size,N], and the `attention_mask` dimension is [bitch_size,N,N]. Under this condition, when the above line of code is run, the following error will be reported: File "/root/anaconda3/lib/python3.10/site-packages/transformers/modeling_attn_mask_utils.py", line 179, in _expand_mask bsz, src_len = mask.size() ValueError: too many values ​​to unpack (expected 2) ### Who can help? _No response_ ### Information - [X] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction ` input_ids = torch.cat([ (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device), (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device), image_tokens, (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device), (torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device), input_ids ], dim=1).long() attention_mask = create_attention_mask_for_mmu(input_ids.to(device), eoi_id=int(uni_prompting.sptids_dict['<|eoi|>'])) cont_toks_list = peft_model.generate(input_ids,attention_mask=attention_mask,max_new_tokens=100)` ### Expected behavior Read the model for fine-tuning and reasoning.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2301/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2301/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2299
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2299/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2299/comments
https://api.github.com/repos/huggingface/peft/issues/2299/events
https://github.com/huggingface/peft/issues/2299
2,761,224,091
I_kwDOIf9iDM6klO-b
2,299
Additional Information to prepare_model_for_kbit_training
{ "login": "NilBiescas", "id": 98542048, "node_id": "U_kgDOBd-h4A", "avatar_url": "https://avatars.githubusercontent.com/u/98542048?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NilBiescas", "html_url": "https://github.com/NilBiescas", "followers_url": "https://api.github.com/users/NilBiescas/followers", "following_url": "https://api.github.com/users/NilBiescas/following{/other_user}", "gists_url": "https://api.github.com/users/NilBiescas/gists{/gist_id}", "starred_url": "https://api.github.com/users/NilBiescas/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NilBiescas/subscriptions", "organizations_url": "https://api.github.com/users/NilBiescas/orgs", "repos_url": "https://api.github.com/users/NilBiescas/repos", "events_url": "https://api.github.com/users/NilBiescas/events{/privacy}", "received_events_url": "https://api.github.com/users/NilBiescas/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
5
2024-12-27T19:52:16
2025-01-06T16:16:14
2025-01-06T16:07:09
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request Add a comment in the docstring of prepare_model_for_kbit_training to inform that it sets requires_grad to false to all the base model parameters. ### Motivation As this function is used before training it might be nice to know that its actually freezing all the base model. ### Your contribution I could add a line commenting that the function freezes the base model.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2299/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2299/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2298
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2298/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2298/comments
https://api.github.com/repos/huggingface/peft/issues/2298/events
https://github.com/huggingface/peft/issues/2298
2,760,388,162
I_kwDOIf9iDM6kiC5C
2,298
Qdora support
{ "login": "imrankh46", "id": 103720343, "node_id": "U_kgDOBi6llw", "avatar_url": "https://avatars.githubusercontent.com/u/103720343?v=4", "gravatar_id": "", "url": "https://api.github.com/users/imrankh46", "html_url": "https://github.com/imrankh46", "followers_url": "https://api.github.com/users/imrankh46/followers", "following_url": "https://api.github.com/users/imrankh46/following{/other_user}", "gists_url": "https://api.github.com/users/imrankh46/gists{/gist_id}", "starred_url": "https://api.github.com/users/imrankh46/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/imrankh46/subscriptions", "organizations_url": "https://api.github.com/users/imrankh46/orgs", "repos_url": "https://api.github.com/users/imrankh46/repos", "events_url": "https://api.github.com/users/imrankh46/events{/privacy}", "received_events_url": "https://api.github.com/users/imrankh46/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2024-12-27T04:47:54
2025-01-03T12:26:58
2025-01-03T12:26:58
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request is it possible to use qdora with peft? ### Motivation qdora is better than qlora and perform like full fine tuning. ### Your contribution ``` peft_config = LoraConfig( r=8, lora_alpha=32, lora_dropout=0.1, qdora=True # adding qdora ) ```
{ "login": "githubnemo", "id": 264196, "node_id": "MDQ6VXNlcjI2NDE5Ng==", "avatar_url": "https://avatars.githubusercontent.com/u/264196?v=4", "gravatar_id": "", "url": "https://api.github.com/users/githubnemo", "html_url": "https://github.com/githubnemo", "followers_url": "https://api.github.com/users/githubnemo/followers", "following_url": "https://api.github.com/users/githubnemo/following{/other_user}", "gists_url": "https://api.github.com/users/githubnemo/gists{/gist_id}", "starred_url": "https://api.github.com/users/githubnemo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/githubnemo/subscriptions", "organizations_url": "https://api.github.com/users/githubnemo/orgs", "repos_url": "https://api.github.com/users/githubnemo/repos", "events_url": "https://api.github.com/users/githubnemo/events{/privacy}", "received_events_url": "https://api.github.com/users/githubnemo/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2298/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2298/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2296
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2296/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2296/comments
https://api.github.com/repos/huggingface/peft/issues/2296/events
https://github.com/huggingface/peft/issues/2296
2,757,010,941
I_kwDOIf9iDM6kVKX9
2,296
Error of load_adapter of Target module is not supported when using Qwen2-VL
{ "login": "bigmouthbabyguo-530", "id": 28996090, "node_id": "MDQ6VXNlcjI4OTk2MDkw", "avatar_url": "https://avatars.githubusercontent.com/u/28996090?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bigmouthbabyguo-530", "html_url": "https://github.com/bigmouthbabyguo-530", "followers_url": "https://api.github.com/users/bigmouthbabyguo-530/followers", "following_url": "https://api.github.com/users/bigmouthbabyguo-530/following{/other_user}", "gists_url": "https://api.github.com/users/bigmouthbabyguo-530/gists{/gist_id}", "starred_url": "https://api.github.com/users/bigmouthbabyguo-530/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bigmouthbabyguo-530/subscriptions", "organizations_url": "https://api.github.com/users/bigmouthbabyguo-530/orgs", "repos_url": "https://api.github.com/users/bigmouthbabyguo-530/repos", "events_url": "https://api.github.com/users/bigmouthbabyguo-530/events{/privacy}", "received_events_url": "https://api.github.com/users/bigmouthbabyguo-530/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
4
2024-12-24T01:46:09
2025-02-05T15:04:03
2025-02-05T15:04:03
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Env info: * torch 2.4.0 * peft 0.11.1 * transformers 4.46.1 I finetune lora for Qwen2VL in a 5-fold way. My aim is to load 5 lora models according to the following procedure: ``` from peft import PeftConfig, PeftModel, get_peft_model from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import Qwen2VLForConditionalGeneration, Qwen2VLConfig import torch path="/xxx/saves/qwen2_vl-7b/kgroup_fold_0" config = PeftConfig.from_pretrained(path) model = Qwen2VLForConditionalGeneration.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained("/mnt_nas/download-model-mllm/Qwen2-VL-7B-Instruct") lora_path="/xxx/saves/qwen2_vl-7b/kgroup_fold_{fold}" model = PeftModel.from_pretrained(model, lora_path.format(fold=0), adapter_name=f"fold_{0}") for i in range(1,5): print(i) model.load_adapter(lora_path.format(fold=i), adapter_name=f"fold_{i}") ``` But it reports module is not supported error: > File [~/miniconda3/envs/mllm/lib/python3.10/site-packages/peft/tuners/lora/model.py:322](http://127.0.0.1:10003/lab/tree/~/miniconda3/envs/mllm/lib/python3.10/site-packages/peft/tuners/lora/model.py#line=321), in LoraModel._create_new_module(lora_config, adapter_name, target, **kwargs) 317 break 319 if new_module is None: 320 321 # no module could be matched --> 322 raise ValueError( 323 f"Target module {target} is not supported. Currently, only the following modules are supported: " 324 "`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`." 325 ) 327 return new_module >ValueError: Target module ModuleDict( (fold_0): Dropout(p=0.05, inplace=False) (fold_1): Dropout(p=0.05, inplace=False) ) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`. According to this [issue](https://github.com/huggingface/peft/issues/2286), I try to ignore dropout module mannualy. However, I would like to use a combination of theses loras `model.add_weighted_adapter( adapters=['fold_0', 'fold_1'], weights=[0.5, 0.5], adapter_name="combined", combination_type="svd", )` But it also failed, reporting: > File [~/miniconda3/envs/mllm/lib/python3.10/site-packages/peft/tuners/lora/model.py:659](http://127.0.0.1:10003/lab/tree/~/miniconda3/envs/mllm/lib/python3.10/site-packages/peft/tuners/lora/model.py#line=658), in LoraModel.add_weighted_adapter(self, adapters, weights, adapter_name, combination_type, svd_rank, svd_clamp, svd_full_matrices, svd_driver, density, majority_sign_method) 651 target_lora_B.data[:, : loras_B.shape[1]] = loras_B 652 elif combination_type in [ 653 "svd", 654 "ties_svd", (...) 657 "magnitude_prune_svd", 658 ]: --> 659 target_lora_A.data, target_lora_B.data = self._svd_generalized_task_arithmetic_weighted_adapter( 660 combination_type, 661 adapters, 662 weights, 663 new_rank, 664 target, 665 target_lora_A, 666 target_lora_B, 667 density, 668 majority_sign_method, 669 svd_clamp, 670 full_matrices=svd_full_matrices, 671 driver=svd_driver, 672 ) 673 elif combination_type in ["linear", "ties", "dare_linear", "dare_ties", "magnitude_prune"]: 674 target_lora_A.data, target_lora_B.data = self._generalized_task_arithmetic_weighted_adapter( 675 combination_type, adapters, weights, target, density, majority_sign_method 676 ) > File [~/miniconda3/envs/mllm/lib/python3.10/site-packages/peft/tuners/lora/model.py:703](http://127.0.0.1:10003/lab/tree/~/miniconda3/envs/mllm/lib/python3.10/site-packages/peft/tuners/lora/model.py#line=702), in LoraModel._svd_generalized_task_arithmetic_weighted_adapter(self, combination_type, adapters, weights, new_rank, target, target_lora_A, target_lora_B, density, majority_sign_method, clamp, full_matrices, driver) 701 # if no valid adapter, nothing to do 702 if len(valid_adapters) == 0: --> 703 raise ValueError("No matching LoRAs found. Please raise an issue on Github.") 704 delta_weight = [target.get_delta_weight(adapter) for adapter in valid_adapters] 705 valid_weights = torch.tensor(valid_weights).to(delta_weight[0].device) > ValueError: No matching LoRAs found. Please raise an issue on Github. As my aim is to merge loras and make their contributions equally. I'm not sure if I can use from_pretrain method like this ``` for i in range(5): model = PeftModel.from_pretrained(model, lora_path.format(fold=i)) model = model.merge_and_unload() ``` And adding a weight (like 0.2) to the merge_and_unload method. ### Who can help? @Ben ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction path="/xxx/saves/qwen2_vl-7b/kgroup_fold_0" config = PeftConfig.from_pretrained(path) model = Qwen2VLForConditionalGeneration.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained("/mnt_nas/download-model-mllm/Qwen2-VL-7B-Instruct") lora_path="/xxx/saves/qwen2_vl-7b/kgroup_fold_{fold}" model = PeftModel.from_pretrained(model, lora_path.format(fold=0), adapter_name=f"fold_{0}") for i in range(1,5): print(i) model.load_adapter(lora_path.format(fold=i), adapter_name=f"fold_{i}")` ### Expected behavior Expect to load_adapter successfully
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2296/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2296/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2295
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2295/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2295/comments
https://api.github.com/repos/huggingface/peft/issues/2295/events
https://github.com/huggingface/peft/issues/2295
2,755,569,416
I_kwDOIf9iDM6kPqcI
2,295
PEFT model doesn't update params when having changed LoRA config
{ "login": "d-kleine", "id": 53251018, "node_id": "MDQ6VXNlcjUzMjUxMDE4", "avatar_url": "https://avatars.githubusercontent.com/u/53251018?v=4", "gravatar_id": "", "url": "https://api.github.com/users/d-kleine", "html_url": "https://github.com/d-kleine", "followers_url": "https://api.github.com/users/d-kleine/followers", "following_url": "https://api.github.com/users/d-kleine/following{/other_user}", "gists_url": "https://api.github.com/users/d-kleine/gists{/gist_id}", "starred_url": "https://api.github.com/users/d-kleine/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/d-kleine/subscriptions", "organizations_url": "https://api.github.com/users/d-kleine/orgs", "repos_url": "https://api.github.com/users/d-kleine/repos", "events_url": "https://api.github.com/users/d-kleine/events{/privacy}", "received_events_url": "https://api.github.com/users/d-kleine/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
10
2024-12-23T09:03:50
2025-01-09T14:05:43
2025-01-09T14:05:43
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info I have noticed that when updated the `target_modules` settings in the LoRA config, the PEFT model params remain unchanged. Might affect other PEFT settings too. My assumption is that `get_peft_model()` does not re-instantiate/update its settings once it has been initialized before. System: Windows 11 Python: 3.11 peft: 0.14.0 ### Who can help? @BenjaminBossan @sayakpaul ### Information - [X] The official example scripts - [X] My own modified scripts ### Tasks - [X] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction For reproduction in a Jupyter Notebook: ```py from peft import LoraConfig, get_peft_model, TaskType from transformers import AutoTokenizer, AutoModelForTokenClassification import torch label_list = ['B-LOC', 'B-MISC', 'B-ORG', 'B-PER', 'I-LOC', 'I-MISC', 'I-ORG', 'I-PER', 'O'] # Initialize tokenizer tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" model = AutoModelForTokenClassification.from_pretrained( "meta-llama/Llama-3.2-1B", pad_token_id=tokenizer.eos_token_id, torch_dtype=torch.bfloat16, device_map="auto", num_labels=len(label_list) ) for name, module in model.named_modules(): print(name) ``` ```py lora_config = LoraConfig( task_type=TaskType.TOKEN_CLS, r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.1 ) ``` ```py model = get_peft_model(model, lora_config) model.print_trainable_parameters() ``` This outputs ``` trainable params: 1,722,377 || all params: 1,237,555,218 || trainable%: 0.1392 ``` But when changing the above code without restarting the kernel to: ```py lora_config = LoraConfig( task_type=TaskType.TOKEN_CLS, r=16, lora_alpha=32, target_modules=["layers.0.self_attn.q_proj", "layers.0.self_attn.v_proj"], # changed to specific heads lora_dropout=0.1 ) ``` and retrieving the trainable params again: ```py model = get_peft_model(model, lora_config) model.print_trainable_parameters() ``` it outputs again ``` trainable params: 1,722,377 || all params: 1,237,555,218 || trainable%: 0.1392 ``` but after the update it should be ``` trainable params: 124,937 || all params: 1,235,957,778 || trainable%: 0.0101 ``` ### Expected behavior When having updated `lora_config`, `get_peft_model()` should retrieve the current config.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2295/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2295/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2293
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2293/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2293/comments
https://api.github.com/repos/huggingface/peft/issues/2293/events
https://github.com/huggingface/peft/issues/2293
2,754,818,792
I_kwDOIf9iDM6kMzLo
2,293
Is it possible to add LoRA on specific head?
{ "login": "SpeeeedLee", "id": 132431571, "node_id": "U_kgDOB-S-0w", "avatar_url": "https://avatars.githubusercontent.com/u/132431571?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SpeeeedLee", "html_url": "https://github.com/SpeeeedLee", "followers_url": "https://api.github.com/users/SpeeeedLee/followers", "following_url": "https://api.github.com/users/SpeeeedLee/following{/other_user}", "gists_url": "https://api.github.com/users/SpeeeedLee/gists{/gist_id}", "starred_url": "https://api.github.com/users/SpeeeedLee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SpeeeedLee/subscriptions", "organizations_url": "https://api.github.com/users/SpeeeedLee/orgs", "repos_url": "https://api.github.com/users/SpeeeedLee/repos", "events_url": "https://api.github.com/users/SpeeeedLee/events{/privacy}", "received_events_url": "https://api.github.com/users/SpeeeedLee/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
11
2024-12-22T19:57:54
2025-03-08T15:03:21
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request Could I add LoRA only to some selected heads on the model? I read some documentation [here](https://huggingface.co/docs/peft/developer_guides/custom_models), but am still not sure about how to implement my goal. ### Motivation Current LoRA Config can allow users to decide where matrices to add LoRA, a more fine-grained control on which heads to add LoRA would be beneficial for the developers. ### Your contribution I would appreciate some tips on how to implement this.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2293/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2293/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2292
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2292/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2292/comments
https://api.github.com/repos/huggingface/peft/issues/2292/events
https://github.com/huggingface/peft/issues/2292
2,753,852,491
I_kwDOIf9iDM6kJHRL
2,292
Cannot import name 'EncoderDecoderCache' from 'transformers'
{ "login": "Huang-jia-xuan", "id": 122351359, "node_id": "U_kgDOB0ru_w", "avatar_url": "https://avatars.githubusercontent.com/u/122351359?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Huang-jia-xuan", "html_url": "https://github.com/Huang-jia-xuan", "followers_url": "https://api.github.com/users/Huang-jia-xuan/followers", "following_url": "https://api.github.com/users/Huang-jia-xuan/following{/other_user}", "gists_url": "https://api.github.com/users/Huang-jia-xuan/gists{/gist_id}", "starred_url": "https://api.github.com/users/Huang-jia-xuan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Huang-jia-xuan/subscriptions", "organizations_url": "https://api.github.com/users/Huang-jia-xuan/orgs", "repos_url": "https://api.github.com/users/Huang-jia-xuan/repos", "events_url": "https://api.github.com/users/Huang-jia-xuan/events{/privacy}", "received_events_url": "https://api.github.com/users/Huang-jia-xuan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
3
2024-12-21T09:00:04
2025-03-08T15:03:21
2025-03-08T15:03:21
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info transformer==4.39.3;peft==0.14.0 Maybe this is from transformer's update,so which version can i use. ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction from src import models from src.utils import IImage, resize import numpy as np from src.methods import rasg, sd, sr from PIL import Image from peft import get_peft_model, LoraConfig, TaskType inp_model = models.load_inpainting_model('ds8_inp', device='cpu', cache=True) lora_config = LoraConfig( task_type=TaskType.IMAGE_GENERATION, inference_mode=True, r=8, lora_alpha=16, lora_dropout=0.05, ) new_model = get_peft_model(inp_model.unet, lora_config) print(new_model.state_dict().keys()) ### Expected behavior /root/miniconda3/lib/python3.10/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) Traceback (most recent call last): File "/root/autodl-tmp/workspace/HD-Painter/paratest.py", line 6, in <module> from peft import get_peft_model, LoraConfig, TaskType File "/root/miniconda3/lib/python3.10/site-packages/peft/__init__.py", line 22, in <module> from .auto import ( File "/root/miniconda3/lib/python3.10/site-packages/peft/auto.py", line 32, in <module> from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING File "/root/miniconda3/lib/python3.10/site-packages/peft/mapping.py", line 25, in <module> from .mixed_model import PeftMixedModel File "/root/miniconda3/lib/python3.10/site-packages/peft/mixed_model.py", line 29, in <module> from .peft_model import PeftModel File "/root/miniconda3/lib/python3.10/site-packages/peft/peft_model.py", line 37, in <module> from transformers import Cache, DynamicCache, EncoderDecoderCache, PreTrainedModel ImportError: cannot import name 'Cache' from 'transformers' (/root/miniconda3/lib/python3.10/site-packages/transformers/__init__.py)
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2292/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2292/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2291
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2291/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2291/comments
https://api.github.com/repos/huggingface/peft/issues/2291/events
https://github.com/huggingface/peft/issues/2291
2,752,889,094
I_kwDOIf9iDM6kFcEG
2,291
get_peft_model() adds unwanted arguments to CLIPModel
{ "login": "TimonKaeppel", "id": 57712240, "node_id": "MDQ6VXNlcjU3NzEyMjQw", "avatar_url": "https://avatars.githubusercontent.com/u/57712240?v=4", "gravatar_id": "", "url": "https://api.github.com/users/TimonKaeppel", "html_url": "https://github.com/TimonKaeppel", "followers_url": "https://api.github.com/users/TimonKaeppel/followers", "following_url": "https://api.github.com/users/TimonKaeppel/following{/other_user}", "gists_url": "https://api.github.com/users/TimonKaeppel/gists{/gist_id}", "starred_url": "https://api.github.com/users/TimonKaeppel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TimonKaeppel/subscriptions", "organizations_url": "https://api.github.com/users/TimonKaeppel/orgs", "repos_url": "https://api.github.com/users/TimonKaeppel/repos", "events_url": "https://api.github.com/users/TimonKaeppel/events{/privacy}", "received_events_url": "https://api.github.com/users/TimonKaeppel/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
3
2024-12-20T14:48:35
2024-12-29T02:33:25
2024-12-29T02:33:25
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Python 3.12.6 peft Version: 0.14.0 transformers Version: 4.47.1 ### Who can help? _No response_ ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction ```python from peft import get_peft_model, LoraConfig, TaskType from transformers import CLIPModel # Load the pre-trained CLIP model model = CLIPModel.from_pretrained(model_name) # Define the PEFT configuration peft_config = LoraConfig( task_type=TaskType.FEATURE_EXTRACTION, # CLIP is used for feature extraction inference_mode=False, # Enable fine-tuning mode r=16, # LoRA rank (adapter size) lora_alpha=32, # Scaling factor for LoRA updates lora_dropout=0.1, # Dropout probability in LoRA layers bias="none", # Usually 'none', 'all', or 'lora_only' target_modules=["q_proj", "v_proj"] # Typical attention projections for transformers # , "k_proj" ) print(f"Forward call arguments: {model.forward.__code__.co_varnames}") model = get_peft_model(model, peft_config) print(f"Forward call arguments: {model.forward.__code__.co_varnames}") model.print_trainable_parameters() ``` ----- This prints: ``` Forward call arguments: ('self', 'input_ids', 'pixel_values', 'attention_mask', 'position_ids', 'return_loss', 'output_attentions', 'output_hidden_states', 'interpolate_pos_encoding', 'return_dict', 'vision_outputs', 'text_outputs', 'image_embeds', 'text_embeds', 'logit_scale', 'logits_per_text', 'logits_per_image', 'loss', 'output') Forward call arguments: ('self', 'input_ids', 'attention_mask', 'inputs_embeds', 'output_attentions', 'output_hidden_states', 'return_dict', 'task_ids', 'kwargs', 'peft_config', 'k', 'v', 'batch_size', 'prefix_attention_mask', 'prompts') ``` ------ When training this wrapped peft model the trainer throws ``` TypeError: CLIPModel.forward() got an unexpected keyword argument 'inputs_embeds' ``` ### Expected behavior Peft should not add incompatible keyword arguments to base models
{ "login": "githubnemo", "id": 264196, "node_id": "MDQ6VXNlcjI2NDE5Ng==", "avatar_url": "https://avatars.githubusercontent.com/u/264196?v=4", "gravatar_id": "", "url": "https://api.github.com/users/githubnemo", "html_url": "https://github.com/githubnemo", "followers_url": "https://api.github.com/users/githubnemo/followers", "following_url": "https://api.github.com/users/githubnemo/following{/other_user}", "gists_url": "https://api.github.com/users/githubnemo/gists{/gist_id}", "starred_url": "https://api.github.com/users/githubnemo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/githubnemo/subscriptions", "organizations_url": "https://api.github.com/users/githubnemo/orgs", "repos_url": "https://api.github.com/users/githubnemo/repos", "events_url": "https://api.github.com/users/githubnemo/events{/privacy}", "received_events_url": "https://api.github.com/users/githubnemo/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2291/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2291/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2289
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2289/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2289/comments
https://api.github.com/repos/huggingface/peft/issues/2289/events
https://github.com/huggingface/peft/issues/2289
2,749,020,906
I_kwDOIf9iDM6j2rrq
2,289
Inconsistent Parameter Mismatches After Merging PEFT and Base Models
{ "login": "enhulu-ms", "id": 182672401, "node_id": "U_kgDOCuNcEQ", "avatar_url": "https://avatars.githubusercontent.com/u/182672401?v=4", "gravatar_id": "", "url": "https://api.github.com/users/enhulu-ms", "html_url": "https://github.com/enhulu-ms", "followers_url": "https://api.github.com/users/enhulu-ms/followers", "following_url": "https://api.github.com/users/enhulu-ms/following{/other_user}", "gists_url": "https://api.github.com/users/enhulu-ms/gists{/gist_id}", "starred_url": "https://api.github.com/users/enhulu-ms/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/enhulu-ms/subscriptions", "organizations_url": "https://api.github.com/users/enhulu-ms/orgs", "repos_url": "https://api.github.com/users/enhulu-ms/repos", "events_url": "https://api.github.com/users/enhulu-ms/events{/privacy}", "received_events_url": "https://api.github.com/users/enhulu-ms/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
32
2024-12-19T00:54:08
2025-01-20T17:28:17
2025-01-20T17:28:16
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft 0.14.0, transformers 4.45.2, accelerate 1.0.1, Python 3.11.9, windows ### Who can help? @BenjaminBossan @sayakpaul ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction ```python from transformers_custom.modeling impor6t CustomConfig from transformers_custom.tokenization import CustomTokenizer from transformers_custom.multitask_model import CustomForSequenceClassificationMultitask from peft import PeftModel import torch def compare_model_params(model1, model2): # Extract state dictionaries sd1 = model1.state_dict() sd2 = model2.state_dict() # First, check if they have the same keys keys1 = set(sd1.keys()) keys2 = set(sd2.keys()) # Find parameters that are not present in both missing_in_model2 = keys1 - keys2 missing_in_model1 = keys2 - keys1 if missing_in_model2: print("Parameters missing in model2:", missing_in_model2) if missing_in_model1: print("Parameters missing in model1:", missing_in_model1) # Now compare parameters that exist in both mismatch_names = [] for key in sorted(keys1.intersection(keys2)): param1 = sd1[key] param2 = sd2[key] # Check for shape mismatch if param1.shape != param2.shape: mismatch_names.append(key) continue # Check for value mismatch if not torch.allclose(param1, param2): print("Mismatched values for parameter:", key, f"model1: {param1}", f"model2: {param2}") mismatch_names.append(key) # Print out results if mismatch_names: print("Mismatched parameters:", mismatch_names) else: print("All parameters match perfectly.") base_model_path = r"C:\models\tms\download\base2" peft_path = r"C:\models\tms\download\adapter2" merged_model_path = r"C:\models\tms\download\adapter2_merged\peft_merged" config = CustomConfig.from_pretrained( base_model_path, num_labels=8, finetuning_task=None, cache_dir=None, revision="main", ) base_model = CustomForSequenceClassificationMultitask.from_pretrained( base_model_path, config=config, cache_dir=None, revision="main", ) peft_model = PeftModel.from_pretrained(base_model, peft_path) peft_model_merged = peft_model.merge_and_unload() peft_model_merged.eval() merged_config = CustomConfig.from_pretrained( merged_model_path, num_labels=8, finetuning_task=None, cache_dir=None, revision="main", ) merged_model = CustomForSequenceClassificationMultitask.from_pretrained( merged_model_path, config=merged_config, cache_dir=None, revision="main", ) merged_model.eval() compare_model_params(peft_model_merged, merged_model) ``` ### Expected behavior I saved the base model and the merged model (using save_pretrained) after training and calling merge_and_unload(). I also saved the PEFT model (via trainer.save_model). After loading the PEFT parameters on top of the base model and calling merge_and_unload(), I compared the newly merged model with the previously saved merged model. Some parameters do not match, and the specific mismatches change with each run to compare models. For example, sometimes the mismatched parameters are ['classifier2.class_dense.bias', 'classifier2.class_dense.weight', ...] and other times ['custom.encoder.layer.19.attention.self.query.weight']. How can I resolve this issue? Ideally, there should be no mismatches, or at least the mismatches should be consistent across runs.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2289/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2289/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2286
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2286/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2286/comments
https://api.github.com/repos/huggingface/peft/issues/2286/events
https://github.com/huggingface/peft/issues/2286
2,743,932,927
I_kwDOIf9iDM6jjRf_
2,286
ValueError: Target module Dropout(p=0.05, inplace=False) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`.
{ "login": "gyuilLim", "id": 50009192, "node_id": "MDQ6VXNlcjUwMDA5MTky", "avatar_url": "https://avatars.githubusercontent.com/u/50009192?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gyuilLim", "html_url": "https://github.com/gyuilLim", "followers_url": "https://api.github.com/users/gyuilLim/followers", "following_url": "https://api.github.com/users/gyuilLim/following{/other_user}", "gists_url": "https://api.github.com/users/gyuilLim/gists{/gist_id}", "starred_url": "https://api.github.com/users/gyuilLim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gyuilLim/subscriptions", "organizations_url": "https://api.github.com/users/gyuilLim/orgs", "repos_url": "https://api.github.com/users/gyuilLim/repos", "events_url": "https://api.github.com/users/gyuilLim/events{/privacy}", "received_events_url": "https://api.github.com/users/gyuilLim/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2024-12-17T04:57:31
2024-12-19T07:13:34
2024-12-19T07:13:34
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Library version: PEFT==0.13.2, PyTorch==2.4.0, Transformers==4.46.3 Python version: 3.8.19 CUDA version: 12.6 I am trying to implement Low-Rank Adaptation (LoRA) in my model, but I encountered the following error when running the training script: ValueError: Target module Dropout(p=0.05, inplace=False) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`. ``` [rank0]: Traceback (most recent call last): [rank0]: File "/home/vision/gyuil/lab/vga_finetuning/LLaVA/llava/train/train_mem.py", line 6, in <module> [rank0]: train(attn_implementation="flash_attention_2") [rank0]: File "/home/vision/gyuil/lab/vga_finetuning/LLaVA/llava/train/train.py", line 921, in train [rank0]: model = get_peft_model(model, lora_config) [rank0]: File "/home/vision/anaconda3/envs/torch/lib/python3.8/site-packages/peft/mapping.py", line 194, in get_peft_model [rank0]: return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type]( [rank0]: File "/home/vision/anaconda3/envs/torch/lib/python3.8/site-packages/peft/peft_model.py", line 1609, in __init__ [rank0]: super().__init__(model, peft_config, adapter_name, **kwargs) [rank0]: File "/home/vision/anaconda3/envs/torch/lib/python3.8/site-packages/peft/peft_model.py", line 171, in __init__ [rank0]: self.base_model = cls(model, {adapter_name: peft_config}, adapter_name) [rank0]: File "/home/vision/anaconda3/envs/torch/lib/python3.8/site-packages/peft/tuners/lora/model.py", line 141, in __init__ [rank0]: super().__init__(model, config, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) [rank0]: File "/home/vision/anaconda3/envs/torch/lib/python3.8/site-packages/peft/tuners/tuners_utils.py", line 184, in __init__ [rank0]: self.inject_adapter(self.model, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) [rank0]: File "/home/vision/anaconda3/envs/torch/lib/python3.8/site-packages/peft/tuners/tuners_utils.py", line 496, in inject_adapter [rank0]: self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key) [rank0]: File "/home/vision/anaconda3/envs/torch/lib/python3.8/site-packages/peft/tuners/lora/model.py", line 227, in _create_and_replace [rank0]: new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs) [rank0]: File "/home/vision/anaconda3/envs/torch/lib/python3.8/site-packages/peft/tuners/lora/model.py", line 353, in _create_new_module [rank0]: raise ValueError( [rank0]: ValueError: Target module Dropout(p=0.05, inplace=False) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`. ``` It seems that the LoRA implementation currently does not allow for Dropout layers to be included as target modules. Could you provide guidance on how to properly handle dropout with LoRA or whether it will be supported in future updates? Thank you for your assistance!
{ "login": "gyuilLim", "id": 50009192, "node_id": "MDQ6VXNlcjUwMDA5MTky", "avatar_url": "https://avatars.githubusercontent.com/u/50009192?v=4", "gravatar_id": "", "url": "https://api.github.com/users/gyuilLim", "html_url": "https://github.com/gyuilLim", "followers_url": "https://api.github.com/users/gyuilLim/followers", "following_url": "https://api.github.com/users/gyuilLim/following{/other_user}", "gists_url": "https://api.github.com/users/gyuilLim/gists{/gist_id}", "starred_url": "https://api.github.com/users/gyuilLim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gyuilLim/subscriptions", "organizations_url": "https://api.github.com/users/gyuilLim/orgs", "repos_url": "https://api.github.com/users/gyuilLim/repos", "events_url": "https://api.github.com/users/gyuilLim/events{/privacy}", "received_events_url": "https://api.github.com/users/gyuilLim/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2286/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2286/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2285
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2285/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2285/comments
https://api.github.com/repos/huggingface/peft/issues/2285/events
https://github.com/huggingface/peft/issues/2285
2,743,732,159
I_kwDOIf9iDM6jige_
2,285
TypeError: TorchaoLoraLinear.__init__() missing 1 required keyword-only argument: 'get_apply_tensor_subclass'
{ "login": "spezialspezial", "id": 75758219, "node_id": "MDQ6VXNlcjc1NzU4MjE5", "avatar_url": "https://avatars.githubusercontent.com/u/75758219?v=4", "gravatar_id": "", "url": "https://api.github.com/users/spezialspezial", "html_url": "https://github.com/spezialspezial", "followers_url": "https://api.github.com/users/spezialspezial/followers", "following_url": "https://api.github.com/users/spezialspezial/following{/other_user}", "gists_url": "https://api.github.com/users/spezialspezial/gists{/gist_id}", "starred_url": "https://api.github.com/users/spezialspezial/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/spezialspezial/subscriptions", "organizations_url": "https://api.github.com/users/spezialspezial/orgs", "repos_url": "https://api.github.com/users/spezialspezial/repos", "events_url": "https://api.github.com/users/spezialspezial/events{/privacy}", "received_events_url": "https://api.github.com/users/spezialspezial/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
10
2024-12-17T01:32:07
2025-01-23T07:46:46
2024-12-18T10:02:49
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft-0.14.0 diffusers recent accelerate 1.2.1 torchao 0.7.0 ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction File "site-packages/peft/tuners/lora/torchao.py", line 147, in dispatch_torchao new_module = TorchaoLoraLinear(target, adapter_name, **kwargs) TypeError: TorchaoLoraLinear.__init__() missing 1 required keyword-only argument: 'get_apply_tensor_subclass' Either init arg is wrongfully mandatory or call is missing an arg. Please check if you find a minute. ### Expected behavior 100% less TypeErrors
{ "login": "spezialspezial", "id": 75758219, "node_id": "MDQ6VXNlcjc1NzU4MjE5", "avatar_url": "https://avatars.githubusercontent.com/u/75758219?v=4", "gravatar_id": "", "url": "https://api.github.com/users/spezialspezial", "html_url": "https://github.com/spezialspezial", "followers_url": "https://api.github.com/users/spezialspezial/followers", "following_url": "https://api.github.com/users/spezialspezial/following{/other_user}", "gists_url": "https://api.github.com/users/spezialspezial/gists{/gist_id}", "starred_url": "https://api.github.com/users/spezialspezial/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/spezialspezial/subscriptions", "organizations_url": "https://api.github.com/users/spezialspezial/orgs", "repos_url": "https://api.github.com/users/spezialspezial/repos", "events_url": "https://api.github.com/users/spezialspezial/events{/privacy}", "received_events_url": "https://api.github.com/users/spezialspezial/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2285/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2285/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2283
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2283/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2283/comments
https://api.github.com/repos/huggingface/peft/issues/2283/events
https://github.com/huggingface/peft/issues/2283
2,740,633,871
I_kwDOIf9iDM6jWsEP
2,283
TypeError when inference with different LoRA adapters in the same batch
{ "login": "yuxiang-guo", "id": 54578991, "node_id": "MDQ6VXNlcjU0NTc4OTkx", "avatar_url": "https://avatars.githubusercontent.com/u/54578991?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yuxiang-guo", "html_url": "https://github.com/yuxiang-guo", "followers_url": "https://api.github.com/users/yuxiang-guo/followers", "following_url": "https://api.github.com/users/yuxiang-guo/following{/other_user}", "gists_url": "https://api.github.com/users/yuxiang-guo/gists{/gist_id}", "starred_url": "https://api.github.com/users/yuxiang-guo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yuxiang-guo/subscriptions", "organizations_url": "https://api.github.com/users/yuxiang-guo/orgs", "repos_url": "https://api.github.com/users/yuxiang-guo/repos", "events_url": "https://api.github.com/users/yuxiang-guo/events{/privacy}", "received_events_url": "https://api.github.com/users/yuxiang-guo/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
9
2024-12-15T13:07:34
2025-01-22T15:03:50
2025-01-22T15:03:49
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info transformers 4.41.0 peft 0.13.2 ### Who can help? @BenjaminBossan I tried to adopt [Inference with different LoRA adapters in the same batch] to an encoder-decoder T5 model. Specifically, I load the base model, the first LoRA, and the second LoRA adapters, and perform inference with these three models in the same batch. However, some errors occurred. BTW, does [inference with different LoRA adapters in the same batch] support beam search when using generate()? ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction Code: ```python base_model = MT5ForConditionalGeneration.from_pretrained(base_model_path, cache_dir='cache') peft_model = PeftModel.from_pretrained(base_model,<lora_path1> ,adapter_name="l1") peft_model.load_adapter(<lora_path2>, adapter_name="l2") adapter_names = ["__base__", "l1", "l2"] output = model.generate( input_ids=inputs['input_ids'], adapter_names=adapter_names, max_length=20, prefix_allowed_tokens_fn=self.restrict_decode_vocab, early_stopping=True ) ``` The error message: ``` Traceback (most recent call last): File "/home/user/user1/GR/trainer.py", line 1025, in prediction_step doc_ids = model.generate( File "/home/user/anaconda3/envs/test/lib/python3.8/site-packages/peft/peft_model.py", line 1972, in generate with self._enable_peft_forward_hooks(**kwargs): File "/home/user/anaconda3/envs/test/lib/python3.8/contextlib.py", line 113, in __enter__ python-BaseException return next(self.gen) File "/home/user/anaconda3/envs/test/lib/python3.8/site-packages/peft/peft_model.py", line 798, in _enable_peft_forward_hooks with self.base_model._enable_peft_forward_hooks(*args, **kwargs): File "/home/user/anaconda3/envs/test/lib/python3.8/contextlib.py", line 113, in __enter__ return next(self.gen) File "/home/user/anaconda3/envs/test/lib/python3.8/site-packages/peft/tuners/lora/model.py", line 441, in _enable_peft_forward_hooks handle = module.register_forward_pre_hook(pre_forward, with_kwargs=True) TypeError: register_forward_pre_hook() got an unexpected keyword argument 'with_kwargs' ``` ### Expected behavior I expect the existing function for [inference with different LoRA adapters in the same batch] to support T5 with LoRAs and work in my beam search experiments during generation.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2283/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2283/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2281
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2281/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2281/comments
https://api.github.com/repos/huggingface/peft/issues/2281/events
https://github.com/huggingface/peft/issues/2281
2,737,821,962
I_kwDOIf9iDM6jL9kK
2,281
Incompatibility of X-LoRA and MistralForSequenceClassification
{ "login": "cyx96", "id": 54156215, "node_id": "MDQ6VXNlcjU0MTU2MjE1", "avatar_url": "https://avatars.githubusercontent.com/u/54156215?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cyx96", "html_url": "https://github.com/cyx96", "followers_url": "https://api.github.com/users/cyx96/followers", "following_url": "https://api.github.com/users/cyx96/following{/other_user}", "gists_url": "https://api.github.com/users/cyx96/gists{/gist_id}", "starred_url": "https://api.github.com/users/cyx96/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cyx96/subscriptions", "organizations_url": "https://api.github.com/users/cyx96/orgs", "repos_url": "https://api.github.com/users/cyx96/repos", "events_url": "https://api.github.com/users/cyx96/events{/privacy}", "received_events_url": "https://api.github.com/users/cyx96/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
5
2024-12-13T08:42:00
2025-02-14T15:30:21
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft version: 0.13.2 accelerate version: 1.1.1 transformers version: 4.46.3 Python version: 3.10.15 Platform: Linux-5.10.0-33-cloud-amd64-x86_64-with-glibc2.31 ### Who can help? @BenjaminBossan @EricLBuehler ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction The adapters are fine-tuned mistral 7b v0.1 on xnli dataset. I used the following script to load an xlora version of mistral 7b with 3 pre-trained adapters: ```python import torch from transformers import AutoModelForSequenceClassification, AutoConfig from peft import XLoraConfig, get_peft_model # Load model configuration model_config = AutoConfig.from_pretrained("mistralai/Mistral-7B-v0.1") # XLora Configuration lora_config = XLoraConfig( task_type="SEQ_CLS", hidden_size=model_config.hidden_size, xlora_depth=2, adapters={ "0": "./mistral_xnli_ckpt/de", "1": "./mistral_xnli_ckpt/en", "2": "./mistral_xnli_ckpt/fr", } ) # Load and configure model model = AutoModelForSequenceClassification.from_pretrained( "mistralai/Mistral-7B-v0.1", num_labels=3, # XNLI has 3 labels: entailment, neutral, contradiction trust_remote_code=True, torch_dtype=torch.bfloat16, use_cache=False, ) # Explicitly move the model to GPU device = torch.device("cuda:0") model = model.to(device) # Apply XLora model = get_peft_model(model, lora_config).to(device) ``` Executing above will result in errors: ```bash Some weights of MistralForSequenceClassification were not initialized from the model checkpoint at mistralai/Mistral-7B-v0.1 and are newly initialized: ['score.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. Traceback (most recent call last): File "/home/chenyuxu/XLMoE/mistral_xlora_ft.py", line 51, in <module> model = get_peft_model(model, lora_config).to(device) File "/opt/conda/envs/handbook/lib/python3.10/site-packages/peft/mapping.py", line 193, in get_peft_model return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type]( File "/opt/conda/envs/handbook/lib/python3.10/site-packages/peft/peft_model.py", line 1378, in __init__ super().__init__(model, peft_config, adapter_name, **kwargs) File "/opt/conda/envs/handbook/lib/python3.10/site-packages/peft/peft_model.py", line 171, in __init__ self.base_model = cls(model, {adapter_name: peft_config}, adapter_name) File "/opt/conda/envs/handbook/lib/python3.10/site-packages/peft/tuners/xlora/model.py", line 279, in __init__ _load_adapter_into_lora_model( File "/opt/conda/envs/handbook/lib/python3.10/site-packages/peft/tuners/xlora/model.py", line 148, in _load_adapter_into_lora_model raise ValueError( ValueError: Got unexpected keys! Please raise an issue and tag @EricLBuehler. unexpected_keys=['model.model.score.modules_to_save.0.weight'] ``` ### Expected behavior Reading the above error message, it seems like the `MistralForSequenceClassification` created and initialized some extra weights aside from the ones provided by `"mistralai/Mistral-7B-v0.1"`. Registering the newly added weights to X-LoRA should solve the issue? Any advice or feedback regarding this is greatly appreciated, thanks!
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2281/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2281/timeline
null
reopened
false
https://api.github.com/repos/huggingface/peft/issues/2278
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2278/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2278/comments
https://api.github.com/repos/huggingface/peft/issues/2278/events
https://github.com/huggingface/peft/issues/2278
2,737,366,736
I_kwDOIf9iDM6jKObQ
2,278
Adding Dynamic Low-Rank Adaptation (DoRA ACL2024)
{ "login": "dohuyduc2002", "id": 135585343, "node_id": "U_kgDOCBTePw", "avatar_url": "https://avatars.githubusercontent.com/u/135585343?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dohuyduc2002", "html_url": "https://github.com/dohuyduc2002", "followers_url": "https://api.github.com/users/dohuyduc2002/followers", "following_url": "https://api.github.com/users/dohuyduc2002/following{/other_user}", "gists_url": "https://api.github.com/users/dohuyduc2002/gists{/gist_id}", "starred_url": "https://api.github.com/users/dohuyduc2002/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dohuyduc2002/subscriptions", "organizations_url": "https://api.github.com/users/dohuyduc2002/orgs", "repos_url": "https://api.github.com/users/dohuyduc2002/repos", "events_url": "https://api.github.com/users/dohuyduc2002/events{/privacy}", "received_events_url": "https://api.github.com/users/dohuyduc2002/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2024-12-13T04:23:12
2025-01-20T15:04:01
2025-01-20T15:04:01
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request Paper link: https://arxiv.org/pdf/2405.17357 Source code: https://github.com/MIkumikumi0116/DoRA/blob/main/Src/Finetune_And_Benchmark/Finetune_Utils.py ### Motivation When I read this paper, I found this intrigued me about enhance AdaLoRA in these quotes: > Compared to existing methods of dynamic parameter allocation (e.g., AdaLoRA), DoRA can allocate parameter budgets more appropriately based on a richer set of information from projection matrices. > Compared to previous methods ([Zhang et al., 2023](https://arxiv.org/pdf/2303.10512)), we use \( \|\Delta W_i\|_F \) instead of \( c_i \) to assess the importance of components, thereby incorporating information from \( A_i \) and \( B_i \) for a more comprehensive evaluation of component importance. I have checked AdaLoRA and found that there are 2 implementation in DoRA paper can be added to PEFT - Implement DEM loss in the Trainer with method compute_loss to integrate this loss into DoRA - The pruning method from DoRA to find the rank for LoRA layers ### Your contribution I'm working on reimplementing this paper, further update will be added to this issue
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2278/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2278/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2277
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2277/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2277/comments
https://api.github.com/repos/huggingface/peft/issues/2277/events
https://github.com/huggingface/peft/issues/2277
2,737,215,081
I_kwDOIf9iDM6jJpZp
2,277
Request to intergrate Monarch-based PEFT (MoRe)
{ "login": "Edenzzzz", "id": 87317405, "node_id": "MDQ6VXNlcjg3MzE3NDA1", "avatar_url": "https://avatars.githubusercontent.com/u/87317405?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Edenzzzz", "html_url": "https://github.com/Edenzzzz", "followers_url": "https://api.github.com/users/Edenzzzz/followers", "following_url": "https://api.github.com/users/Edenzzzz/following{/other_user}", "gists_url": "https://api.github.com/users/Edenzzzz/gists{/gist_id}", "starred_url": "https://api.github.com/users/Edenzzzz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Edenzzzz/subscriptions", "organizations_url": "https://api.github.com/users/Edenzzzz/orgs", "repos_url": "https://api.github.com/users/Edenzzzz/repos", "events_url": "https://api.github.com/users/Edenzzzz/events{/privacy}", "received_events_url": "https://api.github.com/users/Edenzzzz/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
4
2024-12-13T02:03:03
2025-01-20T15:04:03
2025-01-20T15:04:03
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request This request proposes to intergrate MoRe, a PEFT method that combines hardware-efficient, block-diagonal structured matrices (BMM) and low-rankness. The ICML paper "**MoRe Fine-Tuning with 10x Fewer Parameters**" can be found here https://arxiv.org/abs/2408.17383, of which i'm the first author. ### Motivation PEFT already integrates a simlar method BOFT. In our paper we analyzed in detail that BOFT is a degenerated (in-efficient) case of MoRe. Our method theoretically submerges BOFT, has much higher performance on a range of reasoning tasks with much fewer parameters, uses less than half of BOFT's memory and finetunes faster than LoRA. Llama 7B adapted using our method achives higher score than Llama 13B adapted using LoRA on Commonsense reasoning with 10% of LoRA's parameters. ![image](https://github.com/user-attachments/assets/f9a66f42-2e8e-4aff-8580-770b584c1948) ### Your contribution We have implemented a [helper function ](https://github.com/SprocketLab/sparse_matrix_fine_tuning/blob/8c57492be0f29393e91a67c56354956cfdb608cc/train_utils.py#L475) to easily adapt all modules specified in a config dictionary. Our [config file](https://github.com/SprocketLab/sparse_matrix_fine_tuning/blob/main/task_configs/llama/monarch_config.json) is also quite similar to yours I'll be working towards making them consistent to your codebase and submitting a pull request.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2277/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2277/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2275
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2275/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2275/comments
https://api.github.com/repos/huggingface/peft/issues/2275/events
https://github.com/huggingface/peft/issues/2275
2,733,721,820
I_kwDOIf9iDM6i8Ujc
2,275
TypeError: LoraConfig.__init__() got an unexpected keyword argument 'eva_config'
{ "login": "Mohankrish08", "id": 81806134, "node_id": "MDQ6VXNlcjgxODA2MTM0", "avatar_url": "https://avatars.githubusercontent.com/u/81806134?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Mohankrish08", "html_url": "https://github.com/Mohankrish08", "followers_url": "https://api.github.com/users/Mohankrish08/followers", "following_url": "https://api.github.com/users/Mohankrish08/following{/other_user}", "gists_url": "https://api.github.com/users/Mohankrish08/gists{/gist_id}", "starred_url": "https://api.github.com/users/Mohankrish08/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mohankrish08/subscriptions", "organizations_url": "https://api.github.com/users/Mohankrish08/orgs", "repos_url": "https://api.github.com/users/Mohankrish08/repos", "events_url": "https://api.github.com/users/Mohankrish08/events{/privacy}", "received_events_url": "https://api.github.com/users/Mohankrish08/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
10
2024-12-11T18:45:42
2025-02-26T10:58:54
2024-12-31T14:36:56
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Name: Peft ### Who can help? _No response_ ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction 1 model_name = "Mohan-08/math-dataset-deepmind-FT" 2 tokenizer = AutoTokenizer.from_pretrained(model_name) ----> 3 model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True) ### Expected behavior Facing this error: TypeError: LoraConfig.__init__() got an unexpected keyword argument 'eva_config' ![image](https://github.com/user-attachments/assets/1bc66495-26da-4f60-8403-17066116eb9b)
{ "login": "Mohankrish08", "id": 81806134, "node_id": "MDQ6VXNlcjgxODA2MTM0", "avatar_url": "https://avatars.githubusercontent.com/u/81806134?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Mohankrish08", "html_url": "https://github.com/Mohankrish08", "followers_url": "https://api.github.com/users/Mohankrish08/followers", "following_url": "https://api.github.com/users/Mohankrish08/following{/other_user}", "gists_url": "https://api.github.com/users/Mohankrish08/gists{/gist_id}", "starred_url": "https://api.github.com/users/Mohankrish08/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mohankrish08/subscriptions", "organizations_url": "https://api.github.com/users/Mohankrish08/orgs", "repos_url": "https://api.github.com/users/Mohankrish08/repos", "events_url": "https://api.github.com/users/Mohankrish08/events{/privacy}", "received_events_url": "https://api.github.com/users/Mohankrish08/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2275/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2275/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2274
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2274/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2274/comments
https://api.github.com/repos/huggingface/peft/issues/2274/events
https://github.com/huggingface/peft/issues/2274
2,732,915,400
I_kwDOIf9iDM6i5PrI
2,274
Question about use lora for mamba2
{ "login": "Doctor-James", "id": 71418209, "node_id": "MDQ6VXNlcjcxNDE4MjA5", "avatar_url": "https://avatars.githubusercontent.com/u/71418209?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Doctor-James", "html_url": "https://github.com/Doctor-James", "followers_url": "https://api.github.com/users/Doctor-James/followers", "following_url": "https://api.github.com/users/Doctor-James/following{/other_user}", "gists_url": "https://api.github.com/users/Doctor-James/gists{/gist_id}", "starred_url": "https://api.github.com/users/Doctor-James/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Doctor-James/subscriptions", "organizations_url": "https://api.github.com/users/Doctor-James/orgs", "repos_url": "https://api.github.com/users/Doctor-James/repos", "events_url": "https://api.github.com/users/Doctor-James/events{/privacy}", "received_events_url": "https://api.github.com/users/Doctor-James/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2024-12-11T12:58:39
2024-12-17T06:24:56
2024-12-17T06:24:56
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
I am trying to fine-tune the Mamba2 model using LoRA, following the guidance provided by https://huggingface.co/docs/transformers/en/model_doc/mamba2 I set ``` lora_config = LoraConfig( r=8, target_modules=["embeddings", "in_proj", "out_proj"], task_type="CAUSAL_LM", bias="none" ) ```` However, after carefully examining the code, I found that Mamba2 uses its own CUDA algorithms, which directly pass **out_proj.weight** and **out_proj.bias**, bypassing **out_proj.forward**. Given this approach, can LoRA work properly? ``` if self.training and cache_params is None: out, ssm_state = mamba_split_conv1d_scan_combined( projected_states, self.conv1d.weight.squeeze(1), self.conv1d.bias, self.dt_bias, A, D=self.D, chunk_size=self.chunk_size, seq_idx=None, # was seq_idx activation=self.activation, rmsnorm_weight=self.norm.weight, rmsnorm_eps=self.norm.variance_epsilon, outproj_weight=self.out_proj.weight, outproj_bias=self.out_proj.bias, headdim=self.head_dim, ngroups=self.n_groups, norm_before_gate=False, return_final_states=True, **dt_limit_kwargs, ) ```
{ "login": "Doctor-James", "id": 71418209, "node_id": "MDQ6VXNlcjcxNDE4MjA5", "avatar_url": "https://avatars.githubusercontent.com/u/71418209?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Doctor-James", "html_url": "https://github.com/Doctor-James", "followers_url": "https://api.github.com/users/Doctor-James/followers", "following_url": "https://api.github.com/users/Doctor-James/following{/other_user}", "gists_url": "https://api.github.com/users/Doctor-James/gists{/gist_id}", "starred_url": "https://api.github.com/users/Doctor-James/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Doctor-James/subscriptions", "organizations_url": "https://api.github.com/users/Doctor-James/orgs", "repos_url": "https://api.github.com/users/Doctor-James/repos", "events_url": "https://api.github.com/users/Doctor-James/events{/privacy}", "received_events_url": "https://api.github.com/users/Doctor-James/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2274/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2274/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2273
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2273/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2273/comments
https://api.github.com/repos/huggingface/peft/issues/2273/events
https://github.com/huggingface/peft/issues/2273
2,731,945,563
I_kwDOIf9iDM6i1i5b
2,273
Support for Custom Adapters
{ "login": "dgme-syz", "id": 97904453, "node_id": "U_kgDOBdXnRQ", "avatar_url": "https://avatars.githubusercontent.com/u/97904453?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dgme-syz", "html_url": "https://github.com/dgme-syz", "followers_url": "https://api.github.com/users/dgme-syz/followers", "following_url": "https://api.github.com/users/dgme-syz/following{/other_user}", "gists_url": "https://api.github.com/users/dgme-syz/gists{/gist_id}", "starred_url": "https://api.github.com/users/dgme-syz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dgme-syz/subscriptions", "organizations_url": "https://api.github.com/users/dgme-syz/orgs", "repos_url": "https://api.github.com/users/dgme-syz/repos", "events_url": "https://api.github.com/users/dgme-syz/events{/privacy}", "received_events_url": "https://api.github.com/users/dgme-syz/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2024-12-11T06:28:08
2025-02-18T10:05:30
2025-01-14T09:51:01
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request In simple terms, I would like support that allows users to customize their own adapter. I noticed that users only need to add a folder under this path src/peft/tuners and place some adapter-related files, usually `config.py`, `layer.py`, and `model.py`. However, during implementation, I found that I also need to modify `src/peft/utils/save_and_load.py/get_peft_model_state_dict` to ensure that the custom adapter can be saved correctly. This is because the function is currently only adapted for existing adapters, so I have to modify the source code to ensure that the custom adapter can be used successfully. **PEFT** is the most convenient and efficient fine-tuning library, and it would be even better if this feature were supported. Perhaps you’ve already implemented this functionality, but I haven’t found it yet. If so, please point it out. Thank you very much. ### Motivation I hope to use custom adapters to fine-tune large language models. ### Your contribution Currently, I have no clear ideas.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2273/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2273/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2270
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2270/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2270/comments
https://api.github.com/repos/huggingface/peft/issues/2270/events
https://github.com/huggingface/peft/issues/2270
2,729,191,175
I_kwDOIf9iDM6irCcH
2,270
Different Results When Predicting with Multiple LoRA Adapters in a Loop VS. Using only One LoRA
{ "login": "beyondguo", "id": 37113676, "node_id": "MDQ6VXNlcjM3MTEzNjc2", "avatar_url": "https://avatars.githubusercontent.com/u/37113676?v=4", "gravatar_id": "", "url": "https://api.github.com/users/beyondguo", "html_url": "https://github.com/beyondguo", "followers_url": "https://api.github.com/users/beyondguo/followers", "following_url": "https://api.github.com/users/beyondguo/following{/other_user}", "gists_url": "https://api.github.com/users/beyondguo/gists{/gist_id}", "starred_url": "https://api.github.com/users/beyondguo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/beyondguo/subscriptions", "organizations_url": "https://api.github.com/users/beyondguo/orgs", "repos_url": "https://api.github.com/users/beyondguo/repos", "events_url": "https://api.github.com/users/beyondguo/events{/privacy}", "received_events_url": "https://api.github.com/users/beyondguo/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
12
2024-12-10T06:53:14
2025-01-18T15:03:27
2025-01-18T15:03:27
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Linux, Python 3.8 A two-H100 node. Name: transformers Version: 4.34.1 Name: peft Version: 0.11.1 ### Who can help? @BenjaminBossan ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ### Description I encountered a strange issue while using PEFT LoRA adapters with the Hugging Face Trainer. When predicting using different LoRA adapters in a loop, the predictions are different compared to when using the same LoRA adapter (e.g., `m4`) individually. The issue arises when I predict using multiple LoRA adapters sequentially, and then compare the results of the `m4` adapter between the two scenarios. ### Steps to Reproduce 1. I have a dictionary `lora_map` that maps LoRA adapter names to their respective paths. 2. The code below iterates over `lora_map` and predicts using each LoRA adapter: ```python dfs = [] for lora_name in lora_map: pred_df = test_df[useful_columns].copy() # model.set_adapter(lora_name) model = PeftModel.from_pretrained(base_model, lora_map[lora_name], adapter_name=lora_name) print("predicting with lora", lora_name) trainer = Trainer(model=model, args=args, data_collator=data_collator) preds = trainer.predict(token_test_dataset).predictions # logits pred_df[['neu','pos','neg']] = torch.softmax(torch.tensor(preds), dim=-1).numpy() pred_df['lora'] = lora_name dfs.append(pred_df) final_pred_df = pd.concat(dfs) ``` the `lora_map` is like `lora_map={'m1':xxx,'m2':xxx,...}` I found the results in `final_pred_df[final_pred_df.lora == 'm4']` is different from predicting with loading `m4` only. But the results for `m1` is the same, probably because its the first in the lora_map. What could be the problem? What happend when I load the second adapter using ` PeftModel.from_pretrained` ? --- I'm sorry I can't share my lora weights (it was trained with **PiSSA**) since its a private model. ### Expected behavior Same results.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2270/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2270/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2266
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2266/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2266/comments
https://api.github.com/repos/huggingface/peft/issues/2266/events
https://github.com/huggingface/peft/issues/2266
2,726,733,078
I_kwDOIf9iDM6ihqUW
2,266
Can't PromptTuning in Multi-GPU with DeepSpeed and Qwen2.5-14B-Instruct
{ "login": "dongshou", "id": 31725976, "node_id": "MDQ6VXNlcjMxNzI1OTc2", "avatar_url": "https://avatars.githubusercontent.com/u/31725976?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dongshou", "html_url": "https://github.com/dongshou", "followers_url": "https://api.github.com/users/dongshou/followers", "following_url": "https://api.github.com/users/dongshou/following{/other_user}", "gists_url": "https://api.github.com/users/dongshou/gists{/gist_id}", "starred_url": "https://api.github.com/users/dongshou/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dongshou/subscriptions", "organizations_url": "https://api.github.com/users/dongshou/orgs", "repos_url": "https://api.github.com/users/dongshou/repos", "events_url": "https://api.github.com/users/dongshou/events{/privacy}", "received_events_url": "https://api.github.com/users/dongshou/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
3
2024-12-09T11:13:06
2025-01-17T15:03:49
2025-01-17T15:03:49
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Name: peft Version: 0.12.0 Name: transformers Version: 4.47.0 Name: accelerate accelerate 0.34.2 Python 3.11.9 cuda Build cuda_11.8.r11.8/compiler.31833905_0 ### Who can help? _No response_ ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [X] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction # 1 prompt tuning ```python model_name_or_path = "/workspace/labels/Qwen2-fintune/qwen/Qwen2.5-14B-Instruct" tokenizer_name_or_path = "/workspace/labels/Qwen2-fintune/qwen/Qwen2.5-14B-Instruct" peft_config = PromptTuningConfig(     task_type=TaskType.CAUSAL_LM,     prompt_tuning_init=PromptTuningInit.TEXT,     num_virtual_tokens=16,     prompt_tuning_init_text=" prompt text which text length more than 16",     tokenizer_name_or_path=tokenizer_name_or_path, ) ``` # 2. dataset ```python dataset have landed from json tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_fn(     examples, ):     """Preprocesses the data for supervised fine-tuning."""     # tokenize input     goal = "xxxxx"     texts = []     for query,response in zip(examples['query'],examples['response']):         msg = [             {"role": "user", "content": goal+query},             {"role":"assistant","content":response}         ]         texts.append(tokenizer.apply_chat_template(                     msg,                     chat_template=qwen_chat_template,                     tokenize=True,                     add_generation_prompt=False,                     padding="max_length",                     max_length=max_length,                     truncation=True,                 ))     input_ids = torch.tensor(texts, dtype=torch.int)     target_ids = input_ids.clone()     target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID     # target_ids[target_ids <= tokenizer.assistant] = IGNORE_TOKEN_ID     attention_mask = input_ids.ne(tokenizer.pad_token_id)     return dict(         input_ids=input_ids, labels=target_ids, attention_mask=attention_mask     ) processed_datasets = dataset.map(     preprocess_fn,     batched=True,     num_proc=16,     remove_columns=dataset.column_names, #remove unprocessed column for training     load_from_cache_file=False,     desc="Running tokenizer on datasset" ) ``` # 3. model ```python model = AutoModelForCausalLM.from_pretrained(     model_name_or_path,     config= transformers.AutoConfig.from_pretrained(model_name_or_path),     attn_implementation="flash_attention_2",     torch_dtype=torch.bfloat16,     device_map = 'balanced'     ) model = get_peft_model(model, peft_config) print(model.print_trainable_parameters()) ``` # 4. trainer ```python from transformers import Trainer, TrainingArguments trainer = Trainer(     model=model,     train_dataset=train_data,     eval_dataset=val_data,     data_collator=default_data_collator,     args=TrainingArguments(       output_dir=output_dir,       per_device_train_batch_size=batch_size,       num_train_epochs=num_epochs,       learning_rate=learning_rate,       lr_scheduler_type='cosine',       per_device_eval_batch_size=batch_size,       deepspeed='deepspeed/ds_z2_config.json',       load_best_model_at_end=False,       logging_strategy='steps',       logging_steps=10,       evaluation_strategy='steps',       eval_steps=1000,       save_strategy='steps',       save_steps=10,     )   ) trainer.train() ``` # 5. deepspeed config json ```python {   "train_batch_size": "auto",   "train_micro_batch_size_per_gpu": "auto",   "gradient_accumulation_steps": "auto",   "gradient_clipping": "auto",   "zero_allow_untested_optimizer": true,   "fp16": {     "enabled": "auto",     "loss_scale": 0,     "loss_scale_window": 1000,     "initial_scale_power": 16,     "hysteresis": 2,     "min_loss_scale": 1   },   "bf16": {     "enabled": "auto"   },   "zero_optimization": {     "stage": 2,     "allgather_partitions": true,     "allgather_bucket_size": 5e8,     "overlap_comm": true,     "reduce_scatter": true,     "reduce_bucket_size": 5e8,     "contiguous_gradients": true,     "round_robin_gradients": true   } } ``` # 6 debug info when mv label to another coda, the label value have been changed! loss code from transformers/loss/loss_utils.py ```python def ForCausalLMLoss(     logits, labels, vocab_size: int, num_items_in_batch: int = None, ignore_index: int = -100, **kwargs ):     # Upcast to float if we need to compute the loss to avoid potential precision issues     logits = logits.float()     # Shift so that tokens < n predict n     shift_logits = logits[..., :-1, :].contiguous()     shift_labels = labels[..., 1:].contiguous()     # Flatten the tokens     shift_logits = shift_logits.view(-1, vocab_size)     shift_labels = shift_labels.view(-1)     # Enable model parallelism     print("label before move",shift_labels.min(),shift_labels.max(),shift_labels.shape)     shift_labels = shift_labels.to(shift_logits.device)     print("label after move",shift_labels.min(),shift_labels.max(),shift_labels.shape)     loss = fixed_cross_entropy(shift_logits, shift_labels, num_items_in_batch, ignore_index, **kwargs)     return loss ``` ## 6.1log and error ```python peft label dtail tensor(-100, device='cuda:0') tensor(151645, device='cuda:0') torch.Size([4, 2048]) peft label dtail 2 tensor(-100, device='cuda:0') tensor(151645, device='cuda:0') torch.Size([4, 2048]) ### label before move tensor(-100, device='cuda:0') tensor(151645, device='cuda:0') torch.Size([8252]) ###label after move tensor(0, device='cuda:3') tensor(0, device='cuda:3') torch.Size([8252]) 0%| | 1/47500 [00:16<218:02:43, 16.53s/it]peft label dtail tensor(-100, device='cuda:0') tensor(151645, device='cuda:0') torch.Size([4, 2048]) peft label dtail 2 tensor(-100, device='cuda:0') tensor(151645, device='cuda:0') torch.Size([4, 2048]) ### label before move tensor(-100, device='cuda:0') tensor(151645, device='cuda:0') torch.Size([8252]) ### label after move tensor(-9223372034707292160, device='cuda:3') tensor(0, device='cuda:3') torch.Size([8252]) Traceback (most recent call last): File "/workspace/llm-tuning/prompt_tuning_qa.py", line 173, in <module> trainer.train() File "/opt/conda/lib/python3.11/site-packages/transformers/trainer.py", line 2164, in train return inner_training_loop( ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/transformers/trainer.py", line 2522, in _inner_training_loop tr_loss_step = self.training_step(model, inputs, num_items_in_batch) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/transformers/trainer.py", line 3688, in training_step self.accelerator.backward(loss, **kwargs) File "/opt/conda/lib/python3.11/site-packages/accelerate/accelerator.py", line 2196, in backward loss.backward(**kwargs) File "/opt/conda/lib/python3.11/site-packages/torch/_tensor.py", line 581, in backward torch.autograd.backward( File "/opt/conda/lib/python3.11/site-packages/torch/autograd/__init__.py", line 347, in backward _engine_run_backward( File "/opt/conda/lib/python3.11/site-packages/torch/autograd/graph.py", line 825, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/flash_attn/bert_padding.py", line 27, in backward grad_input = torch.zeros( ^^^^^^^^^^^^ RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ../aten/src/ATen/native/cuda/Loss.cu:250: nll_loss_forward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [0,0,0] Assertion `t >= 0 && t < n_classes` failed. ../aten/src/ATen/native/cuda/Loss.cu:250: nll_loss_forward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [1,0,0] Assertion `t >= 0 && t < n_classes` failed. ../aten/src/ATen/native/cuda/Loss.cu:250: nll_loss_forward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [2,0,0] Assertion `t >= 0 && t < n_classes` failed. ../aten/src/ATen/native/cuda/Loss.cu:250: nll_loss_forward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [3,0,0] Assertion `t >= 0 && t < n_classes` failed. ``` ### Expected behavior expect prompt-tuning with multi-gpu
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2266/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2266/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2264
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2264/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2264/comments
https://api.github.com/repos/huggingface/peft/issues/2264/events
https://github.com/huggingface/peft/issues/2264
2,723,078,376
I_kwDOIf9iDM6iTuDo
2,264
Guidance Needed on Two-Stage Fine-Tuning with LoRA(SFT and DPO) for Model Adaptation
{ "login": "none0663", "id": 169760423, "node_id": "U_kgDOCh5Wpw", "avatar_url": "https://avatars.githubusercontent.com/u/169760423?v=4", "gravatar_id": "", "url": "https://api.github.com/users/none0663", "html_url": "https://github.com/none0663", "followers_url": "https://api.github.com/users/none0663/followers", "following_url": "https://api.github.com/users/none0663/following{/other_user}", "gists_url": "https://api.github.com/users/none0663/gists{/gist_id}", "starred_url": "https://api.github.com/users/none0663/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/none0663/subscriptions", "organizations_url": "https://api.github.com/users/none0663/orgs", "repos_url": "https://api.github.com/users/none0663/repos", "events_url": "https://api.github.com/users/none0663/events{/privacy}", "received_events_url": "https://api.github.com/users/none0663/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
5
2024-12-06T13:35:20
2025-01-06T10:50:09
2025-01-06T10:50:09
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
# I am planning to perform a two-stage fine-tuning process and need some guidance on how to proceed. ## First Stage 1. Load Base Model: I start by loading the base model, qwen1.5 32B. 2. Apply LoRA Fine-Tuning: I then apply LoRA fine-tuning to this base model and obtain a new model state. 3. Save Adapter Model: This fine-tuned model state is saved as adapter_model.safetensors, named qwen1.5_lora_sft. ## Second Stage 1. Load the Model from the First Stage: I load both qwen1.5 32B and qwen1.5_lora_sft. It's crucial that qwen1.5_lora_sft integrates correctly with the base model qwen1.5 32B. 2. . Continue Fine-Tuning: On this model, which already includes the LoRA adapter, I continue to apply LoRA and DPO for further fine-tuning. 3. Save the New Adapter Model: After fine-tuning, I need to save the new adapter state, which includes adjustments from both the original LoRA and the new DPO. ## My questions are: 1. How to load the model from the base model(qwen1.5 32B) with the lora module qwen1.5_lora_sft 2. How to Continue Fine-Tuning from the First Stage model, and save the lora model after dpo training with the base model(qwen1.5 32B) and only one qwen1.5_lora_sft_dpo module.( adapter_model_sft_dpo.safetensors) ## What I had now 1. base model, qwen1.5 32B model path 2. qwen1.5_lora_sft module path: adapter_model.safetensors ## What I Need 1. qwen1.5_lora_sft _dpo module: adapter_model_sft_dpo.safetensors ## This is train a base_model to get LoRA_weights_1 base_model_1 = merge(base_model and LoRA_weights_1) train base_model_1 to get LoRA_weights_2 base_model_2 = merge(base_model_1 and LoRA_weights_2) how to split the base_model_2 into base_model and LoRA_weights_1_2 Thinks!
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2264/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2264/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2262
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2262/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2262/comments
https://api.github.com/repos/huggingface/peft/issues/2262/events
https://github.com/huggingface/peft/issues/2262
2,720,228,617
I_kwDOIf9iDM6iI2UJ
2,262
Could you provide example code for AdaLoRA finetuning decoder-only model?
{ "login": "SpeeeedLee", "id": 132431571, "node_id": "U_kgDOB-S-0w", "avatar_url": "https://avatars.githubusercontent.com/u/132431571?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SpeeeedLee", "html_url": "https://github.com/SpeeeedLee", "followers_url": "https://api.github.com/users/SpeeeedLee/followers", "following_url": "https://api.github.com/users/SpeeeedLee/following{/other_user}", "gists_url": "https://api.github.com/users/SpeeeedLee/gists{/gist_id}", "starred_url": "https://api.github.com/users/SpeeeedLee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SpeeeedLee/subscriptions", "organizations_url": "https://api.github.com/users/SpeeeedLee/orgs", "repos_url": "https://api.github.com/users/SpeeeedLee/repos", "events_url": "https://api.github.com/users/SpeeeedLee/events{/privacy}", "received_events_url": "https://api.github.com/users/SpeeeedLee/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
4
2024-12-05T12:03:31
2025-01-18T15:03:29
2025-01-18T15:03:29
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request The current [example of AdaLoRA](https://github.com/huggingface/peft/blob/b2922565c4c4445706a87cf7b988c828b451fe61/examples/conditional_generation/peft_adalora_seq2seq.py) is on **facebook/bart-base**. Since AdaLoRA requires hand-crafted calculations on loss, would it be possible to provide me some hints on how can this be done when it comes to decoder-only (e.g., Llama-Instruct) LM? Specificially, I would like to mask out the loss calculation on the instruction part or system prompt, focusing only on the assistant response. ### Motivation AdaLoRA requires hand-crafted calculations on loss, which becomes complex when desired to mask out some system/instructino tokens. ### Your contribution N.A.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2262/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2262/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2261
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2261/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2261/comments
https://api.github.com/repos/huggingface/peft/issues/2261/events
https://github.com/huggingface/peft/issues/2261
2,720,065,982
I_kwDOIf9iDM6iIOm-
2,261
Make module imports / re-export conforming with typing specs for proper type checker support
{ "login": "bluenote10", "id": 3620703, "node_id": "MDQ6VXNlcjM2MjA3MDM=", "avatar_url": "https://avatars.githubusercontent.com/u/3620703?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bluenote10", "html_url": "https://github.com/bluenote10", "followers_url": "https://api.github.com/users/bluenote10/followers", "following_url": "https://api.github.com/users/bluenote10/following{/other_user}", "gists_url": "https://api.github.com/users/bluenote10/gists{/gist_id}", "starred_url": "https://api.github.com/users/bluenote10/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bluenote10/subscriptions", "organizations_url": "https://api.github.com/users/bluenote10/orgs", "repos_url": "https://api.github.com/users/bluenote10/repos", "events_url": "https://api.github.com/users/bluenote10/events{/privacy}", "received_events_url": "https://api.github.com/users/bluenote10/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
4
2024-12-05T10:51:46
2024-12-13T14:51:00
2024-12-13T14:51:00
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request Make peft's modules type checker friendly. ### Motivation Currently, using peft with a type checker is somewhat painful, because its module re-exports are not conforming to the [typing specs for library interfaces](https://github.com/python/typing/blob/ad4cbc45f868f47031494694bdb7349119302f59/docs/spec/distributing.rst#library-interface-public-and-private-symbols). This means that very basic things do not type check properly. For instance the following is a type error in both pyright and mypy: ```py from peft import LoraConfig ``` Mypy error is for instance: ``` example.py:1: error: Module "peft" does not explicitly export attribute "LoraConfig" [attr-defined] ``` This is obviously not great, because the code works fine as runtime. Suppressing all these type errors causes a lot of noise on user side, and even worse, fails to make any benefit from the type annotations. ### Your contribution As the specs say: _Imported symbols are considered private by default._ There are basically two ways to get proper library interfaces: - Using an explicit `__all__` in the modules to mark the re-exports. - Using the patterns shown in the [Import Conventions](https://github.com/python/typing/blob/ad4cbc45f868f47031494694bdb7349119302f59/docs/spec/distributing.rst#import-conventions) section. Using an explicit `__all__` would also allow you to remove the linter suppressions like this one https://github.com/huggingface/peft/blob/f86522e011af21697ef1477da4d232e74de83232/src/peft/__init__.py#L1-L3 because the linter would then understand that the symbol is being used for re-export purposes.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2261/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2261/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2260
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2260/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2260/comments
https://api.github.com/repos/huggingface/peft/issues/2260/events
https://github.com/huggingface/peft/issues/2260
2,719,217,739
I_kwDOIf9iDM6iE_hL
2,260
Is it possible to support the transformer engine when using Lora in Megatron?
{ "login": "liulong11", "id": 25365827, "node_id": "MDQ6VXNlcjI1MzY1ODI3", "avatar_url": "https://avatars.githubusercontent.com/u/25365827?v=4", "gravatar_id": "", "url": "https://api.github.com/users/liulong11", "html_url": "https://github.com/liulong11", "followers_url": "https://api.github.com/users/liulong11/followers", "following_url": "https://api.github.com/users/liulong11/following{/other_user}", "gists_url": "https://api.github.com/users/liulong11/gists{/gist_id}", "starred_url": "https://api.github.com/users/liulong11/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/liulong11/subscriptions", "organizations_url": "https://api.github.com/users/liulong11/orgs", "repos_url": "https://api.github.com/users/liulong11/repos", "events_url": "https://api.github.com/users/liulong11/events{/privacy}", "received_events_url": "https://api.github.com/users/liulong11/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
3
2024-12-05T03:24:15
2025-01-12T15:03:29
2025-01-12T15:03:29
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request I am currently using the Megatron framework and want to use Lora for training. I saw that the Megatron format is supported at https://github.com/huggingface/peft/blob/main/src/peft/tuners/lora/tp_layer.py RowParallelLinear and ColumnParallelLinear do the adaptation. But if I use the transformer engine, the corresponding TELayerNormColumnParallelLinear and TERowParallelLinear will not be adapted. ### Motivation This will better support Megatron framework using LoRA. ### Your contribution I don't have a PR.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2260/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2260/timeline
null
completed
false