File size: 3,386 Bytes
d3dd510 6089239 83db203 aa0fe20 83db203 2282caf 83db203 aa0fe20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
---
# Semantics Lead the Way: Harmonizing Semantic and Texture Modeling with Asynchronous Latent Diffusion
## π© Overview
<p align="center">
<img src="https://raw.githubusercontent.com/yuemingPAN/SFD/main/images/teaser_v5.png" width="95%">
</p>
<div align="center" style="max-width:900px; text-align:justify; font-size:14px; line-height:1.5;">
<p>
<strong>(a) Overview of Semantic-First Diffusion (SFD).</strong>
Semantics (dashed curve) and textures (solid curve) follow asynchronous denoising trajectories.
SFD operates in three phases:
<span style="color:#d62728;">Stage I β Semantic initialization</span>, where semantic latents denoise first;
<span style="color:#4472c4;">Stage II β Asynchronous generation</span>, where semantics and textures denoise jointly but asynchronously, with semantics ahead of textures;
<span style="color:#2ca02c;">Stage III β Texture completion</span>, where only textures continue refining.
After denoising, the generated semantic latent <b>sβ</b> is discarded, and the final image is decoded solely from the texture latent <b>zβ</b>.
<strong>(b) Training convergence on ImageNet 256Γ256 without guidance.</strong>
SFD achieves substantially faster convergence than DiT-XL/2 and LightningDiT-XL/1 by approximately <b>100Γ</b> and <b>33.3Γ</b>, respectively.
</p>
</div>
---
## β¨ Highlights
- We propose **Semantic-First Diffusion (SFD)**, a novel latent diffusion paradigm that performs asynchronous denoising on semantic and texture latents, allowing semantics to denoise earlier and subsequently guide texture generation.
- **SFD achieves state-of-the-art FID score of 1.04** on ImageNet 256Γ256 generation.
- Exhibits **100Γ** and **33.3Γ faster** training convergence compared to **DiT** and **LightningDiT**, respectively.
---
## π§ͺ Quantitative Results
Explicitly **leading semantics ahead of textures with a moderate offset (Ξt = 0.3)** achieves an optimal balance between early semantic stabilization and texture collaboration, effectively harmonizing their joint modeling.
<p align="center">
<img src="https://raw.githubusercontent.com/yuemingPAN/SFD/main/images/fid_vs_delta_t.png" width="50%">
</p>
### With AutoGuidance
| Model | Epochs | #Params | FID (NPU) |
|:--------|:-------:|:--------:|:----------:|
| SFD-XL | 80 | 675M | 1.30 |
| SFD-XL | 800 | 675M | **1.06** |
| SFD-XXL | 80 | 1.0B | 1.19 |
| SFD-XXL | 800 | 1.0B | **1.04** |
---
## π¨ Visual Results
<p align="center">
<img src="https://raw.githubusercontent.com/yuemingPAN/SFD/main/images/demo_Sample.png" width="90%">
</p>
---
## π Links
- π **Project Page:** [https://yuemingpan.github.io/SFD.github.io/](https://yuemingpan.github.io/SFD.github.io/)
- π **Paper (arXiv):** [https://arxiv.org/pdf/2512.04926](https://arxiv.org/pdf/2512.04926)
- πΎ **Code:** [https://github.com/yuemingPAN/SFD](https://github.com/yuemingPAN/SFD)
- π§° **License:** MIT
---
## π§© Citation
```bibtex
@article{Pan2025SFD,
title={Semantics Lead the Way: Harmonizing Semantic and Texture Modeling with Asynchronous Latent Diffusion},
author={Pan, Yueming and Feng, Ruoyu and Dai, Qi and Wang, Yuqi and Lin, Wenfeng and Guo, Mingyu and Luo, Chong and Zheng, Nanning},
journal={arXiv preprint arXiv:2512.04926},
year={2025}
}
|