File size: 10,101 Bytes
6900c6f cf93828 6000fdb cf93828 6000fdb cf93828 8d94e26 cf93828 6000fdb 6900c6f cf93828 6000fdb 6900c6f 6000fdb 29f95b3 cf93828 6000fdb cf93828 6000fdb cf93828 feee54d cf93828 6000fdb cf93828 6900c6f cf93828 6000fdb cf93828 6000fdb cf93828 6000fdb cf93828 6000fdb cf93828 6900c6f cf93828 6000fdb cf93828 6900c6f cf93828 6900c6f 29f95b3 6900c6f cf93828 6000fdb 6900c6f fce28d6 6900c6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/OpenOneRec/OneRec-8B/blob/main/LICENSE
---
<div align="center">
<h1>OpenOneRec</h1>
<p align="center">
<strong>An Open Foundation Model and Benchmark to Accelerate Generative Recommendation</strong>
</p>
<p align="center">
<a href="https://huggingface.co/OpenOneRec">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-OneRec-ffc107?color=ffc107&logoColor=white" />
</a>
<a href="https://github.com/Kuaishou-OneRec/OpenOneRec">
<img alt="GitHub Code" src="https://img.shields.io/badge/GitHub-OpenOneRec-black?logo=github" />
</a>
<a href="https://arxiv.org/pdf/2512.24762">
<img alt="Paper" src="https://img.shields.io/badge/Paper-ArXiv-b31b1b?logo=arxiv" />
</a>
<a href="#license">
<img alt="License" src="https://img.shields.io/badge/License-Apache%202.0-green" />
</a>
</p>
</div>
<br>
## ๐ Introduction
**OpenOneRec** is an open-source framework designed to bridge the gap between traditional recommendation systems and Large Language Models (LLMs). While Generative Recommendation has shown promise, existing models often struggle with isolated data silos and a lack of reasoning capabilities.
To address this, we introduce a unified framework that comprises:
* **RecIF-Bench**: The first holistic Recommendation Instruction-Following Benchmark, containing **100M interactions** from 200k users across heterogeneous domains (Short Video, Ads, Product).
* **OneRec-Foundation Models**: A family of models (1.7B & 8B) built on the Qwen3 backbone. The series includes **Standard** versions trained on our open-source dataset and **Pro** versions enhanced with a hundred-billion-token industrial corpus from Kuaishou.
* **Full-Stack Pipeline**: We open-source our comprehensive training pipeline, including data processing, co-pretraining, and post-training, to ensure full reproducibility and facilitate scaling law research in recommendation.
## ๐ฅ News
* **[2026.1.1]** ๐ The technical report has been released.
* **[2026.1.1]** ๐ **OneRec-Foundation** models (1.7B, 8B) are now available on Hugging Face!
* **[2026.1.1]** ๐ **RecIF-Bench** dataset and evaluation scripts are open-sourced.
* **[2026.1.5]** ๐ก **OneRec-Tokenizer** is open-sourced to support SID generation for new domains.
## ๐ RecIF-Bench
We propose **RecIF-Bench** to rigorously assess the synergy between instruction following and domain-specific recommendation. It organizes 8 distinct tasks into a four-layer capability hierarchy:
* **Layer 0: Semantic Alignment** (Item Understanding)
* **Layer 1: Fundamental Prediction** (Short Video Rec, Ad Rec, Product Rec, Label Prediction)
* **Layer 2: Instruction Following** (Interactive Rec, Label-Conditional Rec)
* **Layer 3: Reasoning** (Recommendation Explanation)
The benchmark aggregates data from three domains: **Short Video** (Content), **Ads** (Commercial), and **Product** (E-commerce).
## ๐ค Model Zoo
The OpenOneRec-Foundation series is built upon the Qwen architecture, enhanced with **Itemic Tokens** for modality alignment and trained via a multi-stage protocol.
| Model | Backbone | Parameters | Description | Link |
| :--- | :--- | :--- | :--- | :--- |
| **OneRec-1.7B** | Qwen3-1.7B | 1.7B | Standard version trained on open-source data (~33B tokens) | [HuggingFace](https://huggingface.co/OpenOneRec/OneRec-1.7B) |
| **OneRec-8B** | Qwen3-8B | 8B | Standard version trained on open-source data (~33B tokens) | [HuggingFace](https://huggingface.co/OpenOneRec/OneRec-8B) |
| **OneRec-1.7B-Pro** | Qwen3-1.7B | 1.7B | Scaled-up version with expanded datasets (~130B tokens) | [HuggingFace](https://huggingface.co/OpenOneRec/OneRec-1.7B-pro) |
| **OneRec-8B-Pro** | Qwen3-8B | 8B | Scaled-up version with expanded datasets (~130B tokens) | [HuggingFace](https://huggingface.co/OpenOneRec/OneRec-8B-pro) |
## ๐๏ธ Method & Architecture
OpenOneRec reframes recommendation as a general-purpose sequence modeling paradigm.
### 1. Items as Tokens
To bridge the modality gap, we treat items as a distinct modality using **Itemic Tokens** derived from hierarchical vector quantization. This allows the LLM to process interaction history as a cohesive context sequence.
### 2. Training Pipeline
Our framework utilizes the following recipe:
* **Pre-Training**: Integrates collaborative signals via Itemic-Text Alignment and Full-Parameter Co-Pretraining.
* **Post-Training**:
* *Stage 1*: Multi-task Supervised Fine-tuning for basic instruction following.
* *Stage 2*: On-policy Distillation to restore general reasoning performance.
* *Stage 3*: Reinforcement Learning to enhance recommendation capabilities.
<div align="center">
<img src="assets/framework.png" width="80%" alt="OpenOneRec Overall Framework" />
<br>
<em>Figure: The Overall Framework of OpenOneRec.</em>
</div>
## ๐ Performance
### Results on RecIF-Bench
OpenOneRec-Foundation achieves **State-of-the-Art (SOTA)** results across RecIF-Bench tasks, significantly outperforming baselines like LC-Rec and TIGER.
| Task | Metric | SASRec | TIGER | LC-Rec | OneRec-1.7B | OneRec-8B | OneRec-1.7B-Pro | **OneRec-8B-Pro** |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| **Short Video Rec** | Recall@32 | 0.0119 | 0.0132 | 0.0180 | 0.0272 | 0.0355 | 0.0274 | **0.0369** |
| **Ad Rec** | Recall@32 | 0.0293 | 0.0581 | 0.0723 | 0.0707 | 0.0877 | 0.0735 | **0.0964** |
| **Product Rec** | Recall@32 | 0.0175 | 0.0283 | 0.0416 | 0.0360 | 0.0470 | 0.0405 | **0.0538** |
| **Label-Cond. Rec** | Recall@32 | 0.0140 | 0.0123 | 0.0170 | 0.0184 | 0.0228 | 0.0182 | **0.0235** |
| **Label Pred.** | AUC | 0.6244 | 0.6675 | 0.6139 | 0.6184 | 0.6615 | 0.6071 | **0.6912** |
| **Interactive Rec** | Recall@32 | -- | -- | 0.2394 | 0.1941 | 0.3032 | 0.2024 | **0.3458** |
| **Item Und.** | LLM Score | -- | -- | 0.2517 | 0.3175 | 0.3202 | 0.3133 | **0.3209** |
| **Rec. Explanation** | LLM Score | -- | -- | 3.9350 | 3.3540 | 3.6774 | 3.5060 | **4.0381** |
<div align="center">
<img src="assets/benchmark.png" width="80%" alt="Holistic Performance Overview of OpenOneRec." />
<br>
<em>Holistic Performance Overview of OpenOneRec.</em>
</div>
### Cross-Domain Transferability
On the **Amazon Benchmark** (10 datasets), OpenOneRec demonstrates exceptional zero-shot/few-shot transfer capabilities, achieving an average **26.8% improvement** in Recall@10 over the second-best method.
| Domain | SASRec | TIGER | LC-Rec | **Ours** |
| :--- | :--- | :--- | :--- | :--- |
| Baby | 0.0381 | 0.0318 | 0.0344 | **0.0513** |
| Beauty | 0.0639 | 0.0628 | 0.0764 | **0.0924** |
| Cell Phones | 0.0782 | 0.0786 | 0.0883 | **0.1036** |
| Grocery | 0.0789 | 0.0691 | 0.0790 | **0.1029** |
| Health | 0.0506 | 0.0534 | 0.0616 | **0.0768** |
| Home | 0.0212 | 0.0216 | 0.0293 | **0.0390** |
| Pet Supplies | 0.0607 | 0.0542 | 0.0612 | **0.0834** |
| Sports | 0.0389 | 0.0331 | 0.0418 | **0.0547** |
| Tools | 0.0437 | 0.0344 | 0.0438 | **0.0593** |
| Toys | 0.0658 | 0.0527 | 0.0549 | **0.0953** |
*Metric: Recall@10. Ours refers to OneRec-Foundation with text-augmented itemic tokens strategy.*
## ๐ Quick Start
*Code release and detailed usage instructions are coming soon.*
Currently, you can load our models using `transformers>=4.51.0`:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenOneRec/OneRec-8B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
# case - prompt with itemic tokens
prompt = "่ฟๆฏไธไธช่ง้ข๏ผ<|sid_begin|><s_a_340><s_b_6566><s_c_5603><|sid_end|>๏ผๅธฎๆๆป็ปไธไธ่ฟไธช่ง้ข่ฎฒ่ฟฐไบไปไนๅ
ๅฎน"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
# Note: In our experience, default decoding settings may be unstable for small models.
# For 1.7B, we suggest: top_p=0.95, top_k=20, temperature=0.75 (during 0.6 to 0.8)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
## ๐ Citation
If you find our work helpful, please cite our technical report:
```bibtex
@article{openonerec2025,
title={An Open Foundation Model and Benchmark to Accelerate Generative Recommendation},
author={OneRec Team},
journal={arXiv preprint},
year={2025}
}
```
## ๐ก๏ธ License
The code in this repository is licensed under the Apache 2.0 License. The model weights are subject to their specific license agreements.
## ๐ Acknowledgements
OpenOneRec is built upon and inspired by the open-source ecosystem. We would like to thank:
- **Qwen3**: for providing the base architecture and model initialization that OpenOneRec builds upon.
- **General-domain data sources**: for the public corpora referenced in [`data/general_text`](https://github.com/Kuaishou-OneRec/OpenOneRec/tree/main/data/general_text) used for mixed-domain training.
- **VeRL & PyTorch distributed training**: for the training infrastructure and scalable primitives (e.g., **FSDP**) used in post-training and large-scale runs.
We sincerely thank these projects for their outstanding work.
|